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Abstract

Plasma lipid levels are risk factors for cardiovascular disease, a leading cause of death

worldwide. While many studies have been conducted in genetic variation underlying lipid

levels, they mainly comprise individuals of European ancestry and thus their transferability

to non-European populations is unclear. We performed genome-wide (GWAS) and imputed

transcriptome-wide association studies of four lipid traits in the Hispanic Community Health

Study/Study of Latinos cohort (HCHS/SoL, n = 11,103), replicated top hits in the Multi-Ethnic

Study of Atherosclerosis (MESA, n = 3,855), and compared the results to the larger, pre-

dominantly European ancestry meta-analysis by the Global Lipids Genetics Consortium

(GLGC, n = 196,475). In our GWAS, we found significant SNP associations in regions within

or near known lipid genes, but in our admixture mapping analysis, we did not find significant

associations between local ancestry and lipid phenotypes. In the imputed transcriptome-

wide association study in multiple tissues and in different ethnicities, we found 59 significant

gene-tissue-phenotype associations (P < 3.61×10−8) with 14 unique significant genes,

many of which occurred across multiple phenotypes, tissues, and ethnicities and replicated

in MESA (45/59) and in GLGC (44/59). These include well-studied lipid genes such as

SORT1, CETP, and PSRC1, as well as genes that have been implicated in cardiovascular

phenotypes, such as CCL22 and ICAM1. The majority (40/59) of significant associations

colocalized with expression quantitative trait loci (eQTLs), indicating a possible mechanism

of gene regulation in lipid level variation. To fully characterize the genetic architecture of lipid

traits in diverse populations, larger studies in non-European ancestry populations are

needed.

Introduction

Lipid levels are a major risk factor for cardiovascular disease, the leading cause of death in the

United States [1]. While lipid levels are known to have a highly heritable component, lipid lev-

els as a complex trait are increasingly concerning due to the growing global rate of obesity

caused by rapid urbanization and high-fat foods [2]. Hispanic populations have been especially
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affected by this shift as Hispanic children and adolescents have the highest rate of obesity

among ethnicities in the United States [1, 3]. However, like many other genetic trait studies,

large lipid meta-analyses, such as the Global Lipids Genetics Consortium (GLGC), acquire

information predominantly from Europeans, and these within-European discoveries may not

extrapolate to other populations [4–6].

To increase our understanding of the genetic architecture of lipid traits in non-European

populations, we chose to study the Hispanic Community Health Study/Study of Latinos

(HCHS/SoL) [7, 8]. Phenotypes under investigation include total cholesterol (CHOL), high

density lipoproteins (HDL), triglycerides (TRIG), and low density lipoproteins (LDL). This

cohort has been previously studied in a GWAS for lipid traits and there were no novel loci

found that replicated in independent cohorts [9].

Here, we expand upon GWAS by integrating eQTL data to predict transcriptomes in multi-

ple tissues and in multiple ethnicities for HCHS/SoL and replication cohorts, the Multiethnic

Study of Atherosclerosis (MESA) and GLGC, to further investigate the biological effects of

these variants. We performed a linear mixed model GWAS for each of the four lipid pheno-

types [10] in HCHS/SoL. We also performed imputed transcriptome-based association studies

with PrediXcan [11] for each phenotype and cohort using gene expression prediction models

built with data from 44 tissues in the Genotype-Tissue Expression Project (GTEx) [12, 13] and

monocytes in MESA [14]. We calculated colocalization over all GWAS results with GTEx and

MESA eQTL data, indicating possible mechanisms of action through gene regulation [13, 15].

To fully characterize the genetic architecture of traits in diverse populations, both larger tran-

scriptome and GWAS cohorts in diverse populations are needed. All scripts used for analyses

are available at https://github.com/WheelerLab/px_his_chol.

Results

Hispanic populations have diverse genetic ancestry between and within

self-identified regions

We sought to understand the genetically regulated architecture underlying lipid traits in His-

panic populations. The genetic diversity within HCHS/SoL and other Hispanic populations

has been extensively described previously and thus we concentrated on calculating cohort-spe-

cific principal components to be used as covariates in our analyses [16–18]. We calculated

relatedness and genotypic principal components (PCs) with the software KING, which is

designed to estimate kinship coefficients in the presence of population structure [19]. Most

HCHS/SoL participants included in the analyses reported a self-identified region of ancestry

in the Americas, which we included as a covariate in the regression analyses. Not only is the

whole HCHS/SoL cohort genetically differentiated and heterogenous, but there is also great

diversity within each self-identified region. Most individuals from the same regions tend to

cluster in the same direction until the fifth principal component, but have a wide variation in

eigenscores (Fig 1 and S1 Fig). In our further analyses, we used 5 PCs as fixed effects as previ-

ously performed (S2 Fig) [16].

Joint analysis of GWAS results implicates 24 loci in lipid traits

We performed GWAS using a linear mixed model implemented in the software GEMMA [10]

to investigate individual SNP associations with CHOL, HDL, TRIG, and LDL in HCHS/SoL

(n = 11,103). There was little test statistic inflation among the GWAS results (S3 Fig). We fol-

lowed the initial GWAS with fine-mapping by conditional and joint analyses using GCTA-

COJO software [20, 21]. We used linkage disequilibrium (LD) calculated with the HCHS/SoL
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genotypes. We report GTCA-COJO joint effect sizes (bJ) and p-values (pJ) to emphasize inde-

pendent loci signals.

In the fine-mapping joint analysis, we found multiple significant, independent SNPs associ-

ated with the four phenotypes. These SNPs include 12 with CHOL, 7 with HDL, 0 with TRIG,

and 10 with LDL, totalling 29 associations (S1 Table). There were 24 unique independent

SNPs across the phenotypes with some associations replicating in CHOL and an additional

lipid trait (S1 Table).

Two of the significant SNPs, both associated with CHOL, had MAF < 0.01 in European

populations, but both had MAF > 0.05 within HCHS/SoL (Table 1, Fig 2). rs117961479 is in

LD (1000G AMR r2 = 0.632) with rs199768142, which is implicated in total cholesterol levels

[22]. SNPs in LD with rs17041688 (1000G AMR r2> 0.6) in the GWAS catalog had one associ-

ation with marginal zone lymphoma, and no linked SNPs had obesity or cardiovascular associ-

ations [23].

Fig 1. Genotypic principal component eigenscores of HCHS/SoL participants by self-identified region. Each line represents an individual in

HCHS/SoL connected by their eigenscores calculated in KING and colored by self-identified region. Hispanic populations are mainly admixed

between Native American, West African, and European populations, resulting in a genetically diverse and structured cohort under the umbrella

term “Hispanic”.

https://doi.org/10.1371/journal.pone.0220827.g001

Table 1. Significant conditional and joint analysis SNPs with rare allele frequency in European populations. In the GWAS of HCHS/SoL, we found 29 independent

associations between SNPs and 4 lipid traits in the joint analysis, including 2 SNPs with minor allele frequency< 0.01 in Europeans. bJ indicates the effect size and pJ rep-

resents the p-value, both from a joint analysis of all the SNPs at the significant loci. The SNPs included in this table have pJ< 5×10−8 and EUR MAF< 0.01. Neither of

these SNPs were present in our genotype data for MESA. Full results for all conditional and joint analyses are in S1 Table.

Chr. BP Pheno. SNP bJ pJ GLGC P HCHS/SoL MAF EUR MAF Intronic gene

2 21199426 CHOL rs17041688 -0.114 4.8×10−9 0.651 0.112 0.003 NA

19 19410750 CHOL rs117961479 -0.153 1.5×10−9 0.740 0.060 0.003 SUGP1

https://doi.org/10.1371/journal.pone.0220827.t001
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Percent variance explained (PVE) by all genotypes as calculated in GEMMA for each phe-

notype were similar to those previously observed [25, 26]. These values are CHOL:

0.269 ± 0.029, HDL: 0.180 ± 0.031, TRIG: 0.135 ± 0.030, and LDL: 0.278 ± 0.030.

Admixture mapping does not identify ancestral associations with lipid

phenotypes

Admixture mapping has been previously used in HCHS/SoL to uncover ancestral tracts, espe-

cially of Native American ancestry, that may affect traits [27, 28]. We performed admixture

mapping using local ancestry estimates of European, African, and Native American chromo-

some tracts in each individual. We used RFMix to estimate how many alleles at each SNP

came from each ancestral population [29]. We ran a separate linear mixed model for each of

the three ancestries testing the number of estimated alleles from the origin ancestry for associa-

tion with each phenotype in GEMMA [10]. Our reference panels for local ancestry were Ibe-

rian in Spain (IBS, n = 107), Native American (NAT, n = 27), and Yoruba in Ibadan, Nigeria

(YRI, n = 108) with procedures used for reference population selection detailed in the Meth-

ods. We used a significance threshold for admixture mapping tests of P < 5.7×10−5, previously

determined within HCHS/SoL [27]. We restricted analyses to chromosomes 16 and 19 due to

their known importance in lipid traits. None of the significant SNPs within our admixture

Fig 2. Conditional association of rs117961479 with CHOL in HCHS/SoL. Conditional and joint analysis (COJO) [21] of the HCHS/SoL

CHOL GWAS results revealed a genome-wide significant signal for rs117961479 (pJ = 1.5×10−9). Plotted p-values for other SNPs in the region

are from a conditional GWAS where the rs117961479 genotype was used as a covariate. The color of each dot represents the SNP’s linkage

disequilibrium (LD) r2 with the labeled SNP in the 1000 Genomes American populations. Many nearby SNPs within or near SUGP1 and MAU2
are in high LD with rs117961479. These conditional results indicate one signal in this region, which was plotted with LocusZoom [24].

https://doi.org/10.1371/journal.pone.0220827.g002
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analyses reached previously determined significance. The most significant ancestry tract was

on chromosome 19 from 49945850 bp to 50108983 bp for TRIG in Native American ancestry

(P = 3.1×10−4). We include our top 1000 most significant SNPs (P < 5.3×10−3) in admixture

analyses in S2 Table.

Imputed transcriptome-based association study in HCHS/SoL implicates

14 genes in lipid traits

We performed imputed transcriptome-based association studies to investigate the associations

of genetically predicted gene expression with the four lipid traits while also accounting for

relatedness and structure in the discovery cohort HCHS/SoL (n = 11,103) [10, 11]. We used

two main sets of prediction models: GTEx V6 and MESA. GTEx V6 predictor models include

44 individual tissue models built in predominantly European-American individuals (predictor

population n > 70, 85% European and 15% African-American), and MESA predictor models

include monocyte models from 5 populations comprising multiple ethnicities, including Afri-

can-American and Hispanic (predictor population n > 233) [12–14, 30]. All GTEx results

were filtered to those with green flags as described on http://predictdb.org/. We defined dis-

covery significance as P < 3.1×10−8, which is 0.05/(all associations tested). Primary signifi-

cance may be stringent due to the amount of eQTL sharing between transcriptomic models

[31]. We tested significant associations for replication in the genotyped MESA cohort

(n = 3,855) and using GWAS summary statistics from GLGC (n = 196,475) [5, 13, 32]. There

were no Hispanic/Latino populations included in the GLGC analysis [5]. There was little test

statistic inflation among the PrediXcan results for HCHS/SoL (S4 Fig), MESA, or GLGC. Full

PrediXcan results for all cohorts are available at https://github.com/WheelerLab/px_his_chol.

Across 4 phenotypes, 44 GTEx models, and 5 MESA models, we found 59 significant gene-

tissue-phenotype associations, including 14 unique significant genes. These include well-stud-

ied lipid genes such as APOB, PSRC1, SORT1, and CETP and genes that have been implicated

in cardiovascular traits such as CCL22 and ICAM1 (Table 2, Fig 3) [33–35]. 45/59 associations

replicated in MESA and 44/59 associations replicated in GLGC (P < 0.05). The only associa-

tions that did not replicate in GLGC were those that were not predicted at all due to lack of

SNP overlap between the GLGC GWAS summary results and the expression prediction mod-

els. All 44 of the GLGC associations also met the more stringent threshold of P < 8.5×10−4, the

Bonferroni adjustment for 59 tests. Despite being just 2% of the size of GLGC, 40 of the MESA

associations also met the Bonferroni adjusted threshold (Table 2).

Though most of the results were from the 44 predominantly European GTEx tissue models,

we also had significant PrediXcan results using the five MESA monocyte models built in vari-

ous ethnicities [14]. 14/59 of the significant associations in HCHS/SoL were in MESA models,

with 4 associations in CETP and 10 associations in PSRC1 in the same effect direction as the

other tissues (Table 2).

A recent study investigated cardiometabolic traits, including the four lipid phenotypes,

within diverse cohorts using PrediXcan GTEx V7 models, which, unlike V6 used in our analy-

ses, include only European ancestry individuals [36]. They found 12 gene-lipid-tissue associa-

tions at P< 2.6×10−5, one of which replicated in GLGC. We compared their novel GTEx tissue

results to our results. None of their gene associations replicated in our analyses (all P> 0.09).

A majority of significant PrediXcan gene associations have colocalized

GWAS and eQTL signals

We further investigated whether the PrediXcan gene associations had colocalized signal with

known eQTLs. Colocalization provides additional evidence that the SNPs in a given expression

Genetically regulated gene expression underlies lipid traits in Hispanic cohorts
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Table 2. Significant PrediXcan associations in HCHS/SoL and replication in MESA and GLGC. We performed PrediXcan for four lipid phenotypes in HCHS/SoL

using GTEx and MESA monocyte gene expression prediction models [12–14]. In total, there are 14 unique genes across 59 significant gene-tissue-phenotype associations.

MESA population abbreviations: African-American (AFA), European (CAU), Hispanic (HIS), AFA and HIS (AFHI), and all populations combined (ALL).

Chr. BP Gene name Pheno. Model HCHS β HCHS P MESA β MESA P GLGC β GLGC P

1 109792641 CELSR2 CHOL Esophagus Mucosa -0.311 9.323×10−12 -0.424 3.095×10−7 -0.321 6.300×10−145

1 109792641 CELSR2 CHOL Liver -0.179 3.471×10−25 NA NA -0.123 2.080×10−119

1 109792641 CELSR2 CHOL Muscle Skeletal -0.195 1.526×10−28 -0.209 1.317×10−9 -0.144 2.169×10−149

1 109792641 CELSR2 CHOL Skin Sun Exposed Lower leg -0.216 1.268×10−10 -0.335 1.930×10−6 -0.127 5.802×10−42

1 109792641 CELSR2 LDL Esophagus Mucosa -0.388 2.662×10−15 -0.418 1.403×10−7 -0.399 6.393×10−204

1 109792641 CELSR2 LDL Liver -0.218 4.283×10−32 NA NA -0.161 3.712×10−183

1 109792641 CELSR2 LDL Muscle Skeletal -0.235 2.534×10−35 -0.234 1.500×10−12 -0.184 5.141×10−220

1 109792641 CELSR2 LDL Skin Sun Exposed Lower leg -0.274 3.415×10−14 -0.369 4.634×10−8 -0.162 6.032×10−60

1 109822178 PSRC1 CHOL MESA monocytes AFA -0.103 1.165×10−11 -0.210 1.801×10−4 -0.163 7.152×10−61

1 109822178 PSRC1 CHOL MESA monocytes AFHI -0.080 6.403×10−16 -0.124 5.406×10−4 -0.175 1.039×10−102

1 109822178 PSRC1 CHOL MESA monocytes ALL -0.082 1.145×10−16 -0.140 7.278×10−5 -0.148 2.074×10−100

1 109822178 PSRC1 CHOL MESA monocytes CAU -0.092 1.984×10−16 -0.188 5.741×10−6 -0.161 9.507×10−99

1 109822178 PSRC1 CHOL MESA monocytes HIS -0.115 2.185×10−17 -0.247 1.842×10−6 -0.249 5.981×10−133

1 109822178 PSRC1 CHOL Esophagus Mucosa -0.173 2.883×10−15 -0.226 3.018×10−8 -0.149 1.324×10−131

1 109822178 PSRC1 CHOL Liver -0.142 3.098×10−23 NA NA -0.105 7.243×10−130

1 109822178 PSRC1 CHOL Lung -0.344 3.267×10−8 -0.316 1.417×10−2 NA NA

1 109822178 PSRC1 CHOL Muscle Skeletal -0.267 7.747×10−9 -0.438 4.135×10−6 -0.235 5.258×10−67

1 109822178 PSRC1 CHOL Pancreas -0.204 3.887×10−10 -0.457 3.811×10−9 -0.161 8.042×10−84

1 109822178 PSRC1 CHOL Pituitary -0.196 1.913×10−11 -0.421 1.125×10−9 -0.149 3.348×10−85

1 109822178 PSRC1 CHOL Testis -0.211 2.429×10−15 -0.235 2.543×10−6 -0.162 2.286×10−94

1 109822178 PSRC1 CHOL Whole Blood -0.822 1.722×10−24 -0.901 3.215×10−9 -0.691 3.309×10−175

1 109822178 PSRC1 LDL MESA monocytes AFA -0.127 6.119×10−15 -0.196 2.732×10−4 -0.210 3.754×10−90

1 109822178 PSRC1 LDL MESA monocytes AFHI -0.095 2.221×10−19 -0.125 2.602×10−4 -0.223 1.057×10−151

1 109822178 PSRC1 LDL MESA monocytes ALL -0.099 1.499×10−20 -0.139 4.357×10−5 -0.187 4.240×10−147

1 109822178 PSRC1 LDL MESA monocytes CAU -0.112 1.179×10−20 -0.184 3.897×10−6 -0.206 2.933×10−146

1 109822178 PSRC1 LDL MESA monocytes HIS -0.138 3.418×10−21 -0.245 8.567×10−7 -0.315 7.900×10−194

1 109822178 PSRC1 LDL Esophagus Mucosa -0.214 7.540×10−20 -0.244 4.273×10−10 -0.189 1.019×10−193

1 109822178 PSRC1 LDL Liver -0.173 2.231×10−29 NA NA -0.135 1.613×10−190

1 109822178 PSRC1 LDL Lung -0.451 1.458×10−11 -0.364 3.239×10−3 NA NA

1 109822178 PSRC1 LDL Muscle Skeletal -0.341 6.847×10−12 -0.402 1.040×10−5 -0.277 1.836×10−87

1 109822178 PSRC1 LDL Pancreas -0.262 6.506×10−14 -0.480 1.079×10−10 -0.201 2.633×10−121

1 109822178 PSRC1 LDL Pituitary -0.254 5.485×10−16 -0.442 2.330×10−11 -0.183 1.146×10−120

1 109822178 PSRC1 LDL Skin Not Sun Exposed Suprapubic -0.187 1.492×10−10 -0.228 2.529×10−4 NA NA

1 109822178 PSRC1 LDL Testis -0.255 5.398×10−19 -0.236 8.441×10−7 -0.208 4.254×10−139

1 109822178 PSRC1 LDL Whole Blood -1.011 1.096×10−31 -0.959 4.887×10−11 -0.866 7.059×10−253

1 109852192 SORT1 CHOL Liver -0.166 5.472×10−28 NA NA -0.106 1.046×10−123

1 109852192 SORT1 LDL Liver -0.203 1.217×10−35 NA NA -0.136 7.449×10−183

1 109852192 SORT1 LDL Pancreas -0.284 3.414×10−9 -0.300 1.318×10−4 -0.237 6.478×10−96

1 110026101 ATXN7L2 LDL Liver -0.103 2.109×10−9 NA NA -0.064 6.624×10−53

1 110230436 GSTM1 CHOL Small Intestine Terminal Ileum -4.469 1.481×10−8 NA NA NA NA

1 110230436 GSTM1 LDL Small Intestine Terminal Ileum -5.404 1.747×10−10 NA NA NA NA

2 21224301 APOB CHOL Adipose Subcutaneous 0.193 2.400×10−11 0.199 6.413×10−4 0.166 2.972×10−67

2 21224301 APOB LDL Adipose Subcutaneous 0.233 6.653×10−14 0.209 1.854×10−4 0.193 1.117×10−86

15 58702768 LIPC HDL Liver -0.175 2.558×10−9 NA NA NA NA

16 56995762 CETP HDL MESA monocytes AFHI -0.425 7.337×10−30 -0.560 8.862×10−8 -0.951 0

16 56995762 CETP HDL MESA monocytes ALL -0.259 1.076×10−27 -0.327 2.156×10−7 -0.518 0

(Continued)
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model are functioning via gene regulation to affect lipid traits. We restricted variants to those

within PrediXcan models and we tested them for colocalization of eQTLs and lipid trait

GWAS associations. We used the software COLOC, which estimates the colocalization proba-

bility for a SNP between an eQTL and a GWAS hit [15]. We have previously applied COLOC

to gene-level PrediXcan results and observed clustering of significant genes into non-coloca-

lized, colocalized, or unknown signal [13]. P3 estimations indicate the probability of indepen-

dent signals from an eQTL association and a GWAS association, with P3 > 0.5 indicating no

colocalization. P4 > 0.5 indicates a shared eQTL and GWAS association of variants within the

prediction model, and if neither P3 nor P4> 0.5, whether or not the GWAS and the eQTL sig-

nals are colocalized is unknown [13, 15]. We used eQTL data from GTEx V6 and MESA

monocytes, the same populations as the PrediXcan predictors [14, 30].

Table 2. (Continued)

Chr. BP Gene name Pheno. Model HCHS β HCHS P MESA β MESA P GLGC β GLGC P

16 56995762 CETP HDL MESA monocytes CAU -0.202 7.302×10− -0.408 6.857×10−7 -0.675 0

16 56995762 CETP HDL MESA monocytes HIS -0.290 1.848×10−31 -0.572 8.532×10−11 -0.835 0

16 56995762 CETP HDL Artery Coronary -0.454 1.286×10−27 -0.983 1.372×10−13 NA NA

16 56995762 CETP HDL Cells Transformed fibroblasts -0.120 1.504×10−8 -0.144 1.093×10−1 NA NA

16 56995762 CETP HDL Esophagus Mucosa -1.011 6.544×10−32 -2.084 2.853×10−14 NA NA

16 56995762 CETP HDL Lung -0.477 1.515×10−24 -0.979 2.270×10−12 NA NA

16 57023397 NLRC5 HDL Cells Transformed fibroblasts -0.107 3.175×10−18 -0.218 8.743×10−4 NA NA

16 57023397 NLRC5 HDL Heart Atrial Appendage 0.156 1.643×10−9 0.062 5.211×10−1 NA NA

16 57392684 CCL22 HDL Esophagus Muscularis -9.841 1.405×10−38 -15.845 3.502×10−14 NA NA

19 10381511 ICAM1 HDL Esophagus Muscularis -0.181 1.998×10−8 -0.439 1.021×10−2 -0.153 1.068×10−10

19 11039409 TIMM29 CHOL Brain Cerebellar Hemisphere 5.137 1.754×10−13 NA NA NA NA

19 11309971 DOCK6 HDL Artery Tibial 0.457 2.930×10−9 0.776 1.015×10−3 0.268 2.196×10−5

19 44645710 ZNF234 LDL Breast Mammary Tissue -0.171 1.872×10−8 0.265 1.669×10−3 NA NA

https://doi.org/10.1371/journal.pone.0220827.t002

Fig 3. Predicted expression vs. observed phenotype for CETP. Using the GTEx Artery Coronary expression

prediction model, increased predicted gene expression of CETP is significantly associated with decreased observed HDL

in both HCHS/SoL (A) and MESA (B) (Table 2), which is consistent with previous studies of CETP [35].

https://doi.org/10.1371/journal.pone.0220827.g003
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We calculated colocalization probabilities for all significant gene-phenotype-tissue associa-

tions. Of these associations, 40/59 had a better than chance probability of colocalization

between GWAS and eQTL signals (P4 > 0.5) (Table 3). This included the genes PSRC1,

APOB, CELSR2, SORT1, CETP, DOCK6, ICAM1, CCL22, and LIPC. Of the remaining 19 asso-

ciations, 12 were likely independent signals (P3> 0.5) and 7 were inconclusive. Full results are

available at https://github.com/WheelerLab/px_his_chol.

Of the 8 significant associations found in liver, 7/8 had a significant P4 (P4> 0.5) and 6/8

with P4> 0.99, highlighting the liver’s importance in lipid metabolism and possibly indicating

its action through gene regulation. While somewhat expected, these results are notable because

the GTEx liver tissue has a smaller sample size (n = 97) than other tissues with multiple associ-

ations (whole blood: 2/49, n = 338; MESA monocytes ALL 3/49, n = 1,163), signifying that

liver is an especially important tissue in lipid metabolism as extensively studied previously [15,

37].

We found differences in colocalization probabilities between the MESA models of different

ethnicities. This is most prevalent in the CETP model, a known driver of cholesterol metabo-

lism, where only the models including Hispanic genotypes had P4> 0.99, while the CAU

model displayed independent GWAS and eQTL signals (Table 3). This is likely due to the

shared LD patterns in the Hispanic eQTL and GWAS cohorts (Fig 4). SNPs included in the

MESA HIS and MESA CAU PrediXcan models for CETP are different because elastic net vari-

able selection, which was used to generate the model in each population [14], is partially

dependent on correlation among variables, i.e. LD. Thus, since the LD pattern of HCHS more

closely resembles HIS than CAU and because linked SNPs in HCHS and HIS were most signif-

icantly associated with HDL and CETP expression, respectively, the colocalization probability

is much higher in the HIS model than the CAU model (Fig 4, Table 3).

Discussion

We integrated expression quantitative trait loci (eQTL) data from multiple tissues and multiple

ethnicities in transcriptome-wide association and colocalization studies to investigate the bio-

logical mechanisms underlying lipid trait variation. GWAS have previously been performed in

the Hispanic discovery cohort, HCHS/SoL, with no novel, replicable associations found [9],

similar to our SNP-level findings. We acknowledge our GWAS findings were limited due to

our restriction to SNPs present in PrediXcan models, which were derived from predominantly

European cohorts. However, with PrediXcan, we found 59 transcriptome-wide significant

gene associations with lipid traits in HCHS/SoL, with 45/59 gene-tissue-phenotype combina-

tions replicating in MESA and 44/59 combinations replicating in GLGC. MESA and GLGC

are of diverse (African-American, European, and Hispanic ancestry) and European-only

ancestry, respectively, with a similar replication rate in MESA, which has< 2% of the cohort

size of GLGC.

Imputed-transcriptome based association methods like PrediXcan offer benefits over SNP-

level GWAS in producing actionable results [11]. Running PrediXcan across GTEx models

can implicate particular tissues in a phenotype. Here, we find the most (8/59) significant asso-

ciations with the GTEx liver models compared to other tissue models, which is encouraging as

the liver is key in cholesterol synthesis and metabolism (Table 2, Fig 3) [37]. PrediXcan results

include a direction of effect, and many of our results had the same direction of effect as in vivo
observations in humans and mice [35, 40]. For example, we found increased expression of

PSRC1 is significantly associated with lower CHOL and LDL in multiple tissues and ethnici-

ties. The same relationship has been previously observed in the cholesterol metabolism of mice

and in the measured gene expression in an Indian population [41, 42]. Our CETP results
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Table 3. Gene associations and colocalization with eQTLs. We performed COLOC to test colocalization between HCHS/SoL GWAS and eQTL data in our transcrip-

tomic models (44 GTEx, 5 MESA). We found 40/59 of significant (P< 3.61×10−8) PrediXcan associations had significant probability (P4> 0.5) for colocalization, indicat-

ing that the variants may be acting through gene regulation to affect the phenotypes. P3> 0.5 indicates independence between GWAS and eQTL signals. Full results are

available at https://github.com/WheelerLab/px_his_chol.

Chr. BP Gene Model Pheno. HCHS β HCHS P P3 P4

1 109792641 CELSR2 Liver CHOL -0.179 3.471×10−25 0.001 0.999

1 109792641 CELSR2 Muscle Skeletal CHOL -0.195 1.526×10−28 0.001 0.999

1 109792641 CELSR2 Liver LDL -0.218 4.283×10−32 0.001 0.999

1 109792641 CELSR2 Muscle Skeletal LDL -0.235 2.534×10−35 0.002 0.998

1 109792641 CELSR2 Skin Sun Exposed Lower Leg LDL -0.274 3.415×10−14 0.006 0.982

1 109792641 CELSR2 Skin Sun Exposed Lower Leg CHOL -0.216 1.268×10−10 0.007 0.982

1 109792641 CELSR2 Esophagus Mucosa LDL -0.388 2.662×10−15 0.028 0.959

1 109792641 CELSR2 Esophagus Mucosa CHOL -0.311 9.323×10−12 0.028 0.959

1 109822178 PSRC1 Liver CHOL -0.142 3.098×10−23 0.001 0.999

1 109822178 PSRC1 Liver LDL -0.173 2.231×10−29 0.001 0.999

1 109822178 PSRC1 Esophagus Mucosa LDL -0.214 7.540×10−20 0.002 0.998

1 109822178 PSRC1 Esophagus Mucosa CHOL -0.173 2.883×10−15 0.003 0.997

1 109822178 PSRC1 Pancreas CHOL -0.204 3.887×10−10 0.010 0.981

1 109822178 PSRC1 Pancreas LDL -0.262 6.506×10−14 0.010 0.981

1 109822178 PSRC1 Whole Blood CHOL -0.822 1.722×10−24 0.019 0.977

1 109822178 PSRC1 Whole Blood LDL -1.011 1.096×10−31 0.019 0.977

1 109822178 PSRC1 Skin Not Sun Exposed Suprapubic LDL -0.187 1.492×10−10 0.044 0.906

1 109822178 PSRC1 Pituitary LDL -0.254 5.485×10−16 0.019 0.905

1 109822178 PSRC1 Pituitary CHOL -0.196 1.913×10−11 0.020 0.902

1 109822178 PSRC1 Testis CHOL -0.211 2.429×10−15 0.090 0.891

1 109822178 PSRC1 Testis LDL -0.255 5.398×10−19 0.090 0.891

1 109822178 PSRC1 Muscle Skeletal CHOL -0.267 7.747×10−9 0.070 0.801

1 109822178 PSRC1 Muscle Skeletal LDL -0.341 6.847×10−12 0.072 0.795

1 109822178 PSRC1 MESA monocytes HIS LDL -0.138 3.418×10−21 0.285 0.715

1 109822178 PSRC1 MESA monocytes HIS CHOL -0.115 2.185×10−17 0.293 0.707

1 109822178 PSRC1 Lung CHOL -0.344 3.267×10−8 0.067 0.437

1 109822178 PSRC1 Lung LDL -0.451 1.458×10−11 0.067 0.432

1 109822178 PSRC1 MESA monocytes CAU CHOL -0.092 1.984×10−16 0.998 0.002

1 109822178 PSRC1 MESA monocytes CAU LDL -0.112 1.179×10−20 0.998 0.002

1 109822178 PSRC1 MESA monocytes AFHI CHOL -0.080 6.403×10−16 0.999 0.001

1 109822178 PSRC1 MESA monocytes AFHI LDL -0.095 2.221×10−19 0.999 0.001

1 109822178 PSRC1 MESA monocytes AFA LDL -0.127 6.119×10−15 1.000 0.000

1 109822178 PSRC1 MESA monocytes AFA CHOL -0.103 1.165×10−11 1.000 0.000

1 109822178 PSRC1 MESA monocytes ALL LDL -0.099 1.499×10−20 1.000 0.000

1 109822178 PSRC1 MESA monocytes ALL CHOL -0.082 1.145×10−16 1.000 0.000

1 109852192 SORT1 Liver CHOL -0.166 5.472×10−28 0.001 0.999

1 109852192 SORT1 Liver LDL -0.203 1.217×10−35 0.001 0.999

1 109852192 SORT1 Pancreas LDL -0.284 3.414×10−9 0.035 0.910

1 110026101 ATXN7L2 Liver LDL -0.103 2.109×10−9 0.988 0.010

1 110230436 GSTM1 Small Intestine Terminal Ileum CHOL -4.469 1.481×10−8 0.080 0.340

1 110230436 GSTM1 Small Intestine Terminal Ileum LDL -5.404 1.747×10−10 0.080 0.340

2 21224301 APOB Adipose Subcutaneous CHOL 0.193 2.400×10−11 0.167 0.833

2 21224301 APOB Adipose Subcutaneous LDL 0.233 6.653×10−14 0.305 0.695

15 58702768 LIPC Liver HDL -0.175 2.558×10−9 0.061 0.652

16 56995762 CETP MESA monocytes ALL HDL -0.259 1.076×10−27 0.002 0.998

(Continued)
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indicated that higher CETP expression is associated with lower HDL levels, which has been

previously observed extensively within humans and has become a potential drug target for pre-

venting atherosclerosis [35, 43–46]. Directions of effect revealed by PrediXcan can help eluci-

date genetic pathways of metabolism or potential drug targets [11].

Our significance threshold was stringent because we used the Bonferroni correction over all

associations, but many of the eQTLs between genes and tissues, especially related tissues, are

the same or in linkage disequilibrium [31]. PSRC1 and SORT1 are linked and were both highly

significant in our analyses. Knowing liver is the key tissue involved in lipid metabolism may

help us prioritize the slightly more significant SORT1 liver association over PSRC1, even

though PSRC1 associations were more significant in 9 other tissues (Table 3). However,

because liver expression between the genes is highly correlated (Pearson R = 0.75) [47], condi-

tional analyses cannot help us distinguish between one or both genes contributing to lipid

metabolism. In one functional study, overexpression and knockdown of Sort1 in mice altered

cholesterol levels, while perturbation of Psrc1 did not [48], suggesting SORT1 is the more likely

causal gene [47]. However, subsequent functional studies also implicate PSRC1 in cholesterol

transport in apoE-/- mice [41]. Thus, additional evidence is often necessary to identify the

most likely causal gene or genes, due to potential confounding PrediXcan results from linkage

and co-regulation of gene expression [47].

We found numerous significant gene associations with lipid traits that displayed colocaliza-

tion with eQTL signals and replication with GLGC (Tables 2 and 3). These include CELSR2,

PSRC1, SORT1, GSTM1, APOB, LIPC, CETP, NLRC5, CCL22, ICAM1, TIMM29, DOCK6,

ZNF234. Of these genes, CELSR2, PSRC1, GSTM1, SORT1, APOB, LIPC, CETP, and DOCK6,

which all have been extensively implicated and studied in the processes of lipid metabolism in

humans [5, 49–52]. Other genes within this set are located near these well-studied genes, such

as NLRC5, which is 5,645 bp downstream from CETP. Here, we describe the current implica-

tions of genes that are greater than 100 kb away from the closest significant gene or previously

observed known lipid gene (Table 3).

Increased CCL22 predicted expression significantly associated with lower HDL levels,

showed evidence of colocalization, and the gene is located 375 kb downstream from CETP
(Tables 2 and 3). It is involved in immunoregulatory and inflammatory processes, and variants

within it have been implicated in multiple sclerosis and lupus [53, 54]. Apoe knockout mice

Table 3. (Continued)

Chr. BP Gene Model Pheno. HCHS β HCHS P P3 P4

16 56995762 CETP MESA monocytes AFHI HDL -0.425 7.337×10−30 0.002 0.998

16 56995762 CETP MESA monocytes HIS HDL -0.290 1.848×10−31 0.005 0.995

16 56995762 CETP Esophagus Mucosa HDL -1.011 6.544×10−32 0.007 0.963

16 56995762 CETP Lung HDL -0.477 1.515×10−24 0.007 0.961

16 56995762 CETP Artery Coronary HDL -0.454 1.286×10−27 0.026 0.819

16 56995762 CETP Cells Transformed Fibroblasts HDL -0.120 1.504×10−8 0.509 0.124

16 56995762 CETP MESA monocytes CAU HDL -0.202 7.302×10−23 0.997 0.003

16 57023397 NLRC5 Heart Atrial Appendage HDL 0.156 1.643×10−9 0.130 0.060

16 57023397 NLRC5 Cells Transformed Fibroblasts HDL -0.107 3.175×10−18 1.000 0.000

16 57392684 CCL22 Esophagus Muscularis HDL -9.841 1.405×10−38 0.034 0.749

19 10381511 ICAM1 Esophagus Muscularis HDL -0.181 1.998×10−8 0.023 0.802

19 11039409 TIMM29 Brain Cerebellar Hemisphere CHOL 5.137 1.754×10−13 0.071 0.086

19 11309971 DOCK6 Artery Tibial HDL 0.457 2.930×10−9 0.020 0.820

19 44645710 ZNF234 Breast Mammary Tissue LDL -0.171 1.872×10−8 0.095 0.250

https://doi.org/10.1371/journal.pone.0220827.t003
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with a high cholesterol diet were found to have significantly higher CCL22 serum levels than

similar mice on a regular diet, contributing to the progression of atherosclerosis [55]. A sepa-

rate study in humans from the same group found increased CCL22 abundance associated with

ischemic heart disease progression [56]. These observations correlate with our observed associ-

ation of higher predicted CCL22 expression with lower HDL levels, as higher amounts of HDL

might protect against atherosclerosis [57].

Fig 4. Colocalization of HCHS/SoL HDL GWAS and MESA eQTL signals at the CETP locus. (A) Zoomed in Manhattan plot of the key SNPs

driving the CETP association in the MESA HIS and MESA CAU PrediXcan models. Filled circles represent HDL associations in HCHS/SoL and

open triangles represent eQTLs in MESA (up- or down-triangles indicate the effect allele is associated with increased or decreased CETP
expression, respectively). Blue symbols represent SNPs in the MESA HIS PrediXcan model and black symbols represent SNPs in the MESA

CAU PrediXcan model. Linkage disequilibrium (LD) plots are labeled with the population genotypes used to calculate r2. Note several SNPs

present in the Hispanic populations were monomorphic in MESA CAU and thus not included on the plot. Comparison between eQTL and

HCHS/SoL HDL GWAS p-values for SNPs in either the MESA HIS (B) or MESA CAU (C) PrediXcan model. The most significant HCHS/SoL

HDL GWAS SNP is the index SNP (purple diamond) in each plot. LD is calculated from the 1000 Genomes American (AMR) or European

(EUR) populations. Note the index SNP is linked to the strongest eQTL signals in the MESA HIS model, but not in the MESA CAU model. Plots

were generated with snp.plotter (A) and LocusCompare (B,C) [38, 39].

https://doi.org/10.1371/journal.pone.0220827.g004
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Increased ICAM1 predicted expression is significantly associated with lower HDL levels, it

showed evidence of colocalization, and it is located 803 kb upstream of LDLR, a prominent

lipid gene. It produces ICAM-1, an intercellular adhesion molecule. In male rats, a high choles-

terol diet was found to significantly influence ICAM-1 molecule levels in the aorta, signifying a

correlation between a cholesterol diet and ICAM-1 expression, and ICAM-1 molecule levels

were negatively correlated with baseline HDL levels [58]. Another study found that HDL sup-

presses expression of ICAM1 through transfer of microRNA-223 to endothelial cells, which

correlated with our observed association [59].

Increased GSTM1 predicted expression is significantly associated with lower CHOL and

LDL levels and is located 378 kb downstream from SORT1 (Table 2). A study in north India

found no significant difference in any lipid phenotype between individuals with GSTM1(-)

and GSTM1(+), but did find that the GSTM1(-) genotype had a 2-fold increased risk of devel-

oping coronary artery disease in the cohort [60]. This gene has also been studied for associa-

tion with atherosclerosis, and frequency of atherosclerosis in a GSTM1 polymorphic group

were found to be 1.2 times higher than those in the control group in a study from a Brazilian

cohort [61].

In many studies, participants are asked to self-identify under a given label, such as the four

race/ethnicity classifications used in MESA: “White, Caucasian”, “Chinese American”, “Black,

African-American”, and “Hispanic”. These self-identifications are often not indicative of

genetic ancestry, especially in admixed populations such as African-Americans and Hispanics

due to a complex population history [32]. For example, even within self-identified regions in

Latin America, populations can be heavily stratified (Fig 1 and S1 Fig). Our group recently cre-

ated the first multi-ethnic transcriptomic prediction models for PrediXcan and observed that

predictive performance was improved in cohorts of similar ancestry [14]. In our current analy-

sis, we found PSRC1 and CETP to be significantly associated with multiple phenotypes in

MESA models, and these genes have been previously extensively studied in association with

lipids [49]. The majority of HCHS/SoL results replicated in both GLGC and MESA even

though there is a 50-fold difference in sample size (Table 2).

Recent studies have tested the portability of PrediXcan models across populations, notably

between African and European populations. When predicting gene expression using GTEx

models, the Yoruba population from West Africa had poorer accuracy compared to several

European-ancestry populations tested [62]. Another study found similar results as both simu-

lated and real African-American populations had poorer correlations of predicted versus

observed gene expression than European populations [63]. Accuracy varied with both model

population sample size and ancestry [63]. Both studies emphasized that a shared genetic archi-

tecture and ancestry between test and reference populations is imperative for accurate gene

expression prediction and that further efforts in collection and creating multi-ethnic models

are needed [62, 63].

In 2012, Stranger et al. observed significant sharing of eQTL effect sizes between Asians,

European-admixed, and African subpopulations and suggested that the driving force behind

the discovery of an eQTL in one population but not another is mainly due to allele frequency

differences and not due to differences in absolute effect size [64]. Indeed, we recently showed

differences in gene expression predictive performance are due to allele frequency differences

between populations [14]. In MESA, we also showed that genetic correlation (rG) of eQTLs

depends on shared ancestry proportions, ranging from rG = 0.46 between AFA and CAU to

rG = 0.62 between HIS and CAU [14]. Thus, each population has shared and unique eQTL

effects. Other than population-specific SNPs present in the MESA monocyte prediction mod-

els, SNPs that are both rare in European populations and common in Hispanic populations
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are not present in our analyses here and we continue to seek larger and more diverse gene

expression data to improve inclusion of population-specific effects.

Another recent study showed that incorporating the use of local ancestry can improve

eQTL mapping and gene expression prediction [65]. Future studies of lipid traits in larger His-

panic populations may include testing local ancestry portions individually in this population

to see if less-studied ancestries, such as Native American and West African, are associated with

SNPs and genes that have not been previously observed in European-majority cohorts. In our

admixture mapping analysis to determine if significant GWAS signals originate from tracts of

African or Native American ancestry within HCHS/SoL, we did not find any significant

results, possibly due to the small non-admixed Native American reference cohort (n = 27) we

used from the 1000 Genomes Project. This cohort is mainly Peruvian, which is likely not the

best reference panel for the Native American component of most individuals in HCHS/SoL

[66]. To have a higher power in these analyses, more samples, especially from Native American

genomes and transcriptomes, are needed to integrate local ancestry into gene expression stud-

ies. By combining information from both local ancestry mapping and eQTL studies in non-

European populations, we may better characterize and predict gene expression in admixed

populations.

There is a dearth of diversity of genetic studies that greatly impacts the ability to apply the

results of genetic studies to non-European populations. With many biobank-sized resources

only including European data, this gap continues to grow [6]. Without data collection and

proper models for non-European populations, there is less potential for accurate implementa-

tion of precision medicine. To fully characterize the impact of genetic variation between and

within populations and allow all individuals to benefit from biomedical research, we must

expand genetic studies to include individuals of diverse ancestries.

Materials and methods

This work was approved by the Loyola University Chicago Institutional Review Board (project

number 2014).

Phenotypic and genomic data

The analyses in HCHS/SoL and MESA were performed with whole genome genotypes from

the database of Genotypes and Phenotypes (Table 4) [67]. The HCHS/SoL cohort is composed

of self-identified Hispanic adults (18-74) recruited from four urban centers in the US: Chicago,

IL; Miami, FL; the Bronx, NY; and San Diego, CA, using a previously described household-

based sampling technique with written consent of the individual in their preferred language

with data subsequently de-identified [7]. Within the collected lipid phenotypes, we rank-nor-

malized CHOL, HDL, TRIG, and LDL to correct the skewing in the raw data. The majority of

Table 4. Genotyped cohorts.

HCHS MESA

Accession number phs000810.v1.p1 phs000209.v13.p3

Pre-QC SNPs 2,536,661 909,622

Pre-QC individuals 12,434 8,224

Post-QC SNPs 2,074,058 819,939

Post-QC individuals 12,235 8,224

Post-imputation SNPs 7,576,834 7,043,460

Ind. with lipid pheno. 11,104 3,855

https://doi.org/10.1371/journal.pone.0220827.t004
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participants reported a self-identified region from Cuba (n = 1,987), Dominican Republic

(n = 1,132), Mexico (n = 4,056), Puerto Rico (n = 1,984), Central America (n = 1,244), or

South America (n = 707). Original genotypes were collected from a standard Illumina

Omni2.5M array with 109,571 custom SNPs.

Within the MESA cohort, individuals were recruited from six urban centers in the US: Bal-

timore, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; northern Manhattan,

NY; and St. Paul, MN. Genotype data were collected from blood samples using an Affymetrix

6.0 SNP array and phenotype data from Exam 1 were used. MESA individuals include those

that self-identified as “Black, African-American” (AFA, n = 613), “White, Caucasian”

(CAU = 2,243), and “Hispanic” (HIS, n = 999). Cohorts underwent quality control and impu-

tation as previously performed by our group [14].

Summary statistics from the Global Lipids Genetics Consortium were downloaded from

http://csg.sph.umich.edu/willer/public/lipids2013/. This cohort is>95% European and con-

tained 196,475 individuals. The original study had quantile-normalized phenotypes [5].

Quality control

For quality control, we merged the two HCHS/SoL permission groups from dbGaP and ran all

processes in PLINK. All of the genotypes are in genome build GRCh37/hg19. We removed

individuals with genotyping rate< 99%. Additionally, we removed SNPs with failed heterozy-

gosity (outside ± 3 standard deviations from the mean), with failed Hardy-Weinberg equilib-

rium (P< 1×10−6), and restricted analyses to SNPs on autosomes only. Unlike the typical

quality control process for non-admixed populations, we did not remove principal component

outliers nor did we remove individuals with>0.125 identity by descent in HCHS/SoL as this

would have included>66% of the sample [68–70].

Imputation, relationship inference, and principal component calculation

For imputation, we used the University of Michigan Imputation Server with EAGLE2 phasing

[71]. The reference panel was 1000 Genomes Phase 3, using all populations due to the multi-

continental nature of the cohort [72]. We then filtered imputation results to SNPs with R2 >

0.8 and minor allele frequency> 1% within PLINK. Quality control and imputation for

MESA was performed by our group previously with the same parameters [14]. In MESA, each

subpopulation was imputed separated and the post-imputation quality control procedures

involved filtering by R2 > 0.8 in each subpopulation, combining the imputations, filtering by

MAF > 0.01, and keeping all SNPs with genotyping rate> 0.99.

Within this cohort, there are potentially confounding amounts of genetic substructure pres-

ent [73] (Fig 1). In structured and admixed cohorts, such as Hispanic and African-American

populations, software such as KING are robust to complex population structure for relatedness

and principal component calculations. [16]. We calculated pedigrees, then inferred relation-

ships across all individuals in the cohort into a relationship matrix, and also calculated the first

20 principal components using KING, and we used the first 5 principal components in the rest

of the analyses as performed previously within this cohort and since PCs > 5 explained less

than 5% of the variance each (Fig 1 and S2 Fig) [19, 74].

Genome-wide association study

We used the software GEMMA for the GWAS portion of the study. We ran separate univariate

linear mixed models for each of the four phenotypes and included the relationship matrix as

random effects. For the covariates used as fixed effects within the model, we included self-iden-

tified region, use of lipid or other cardiovascular medication, and the first 5 of 20 principal
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components as previously conducted in this cohort [16]. P values presented were calculated

using the Wald test [10]. We restricted the analyses to SNPs in PrediXcan models as this was

the main focus of the analyses, analyzing in total 1,770,809 SNPs for each phenotype. We per-

formed multi-SNP-based conditional and joint association analysis using GWAS data in

GCTA-COJO, and we included the genotype data to use the linkage disequilibrium calcula-

tions in the actual genotypes with a collinearity cutoff of 0.9 and a standard genome-wide sig-

nificance threshold of 5×10−8 [20, 21]. We report these results and not base GWAS results to

emphasize independent SNPs.

Local ancestry inference

Since local ancestry inference for a population with three or more origins requires reference

populations, we used Iberian from Spain (IBS) and Yoruba from Ibadan, Nigeria (YRI), both

from 1000 Genomes Phase 3, as representatives for European and West African ancestry,

respectively [72]. The European component of Hispanic populations has been previously iden-

tified as most similar to modern-day Iberian populations, and the African component has

been identified as most similar to the Yoruba people [75].

In ADMIXTURE, we ran the 1000G American (AMR) populations with the Native Ameri-

can sequences, 1000G IBS, and 1000G YRI as reference populations, and kept 1000G AMR

individuals with> 90% native American ancestry to use as a Native American reference panel

for uniformity with 1000G (NAT), including 4 Mexicans from Los Angeles, USA and 23 Peru-

vians from Lima, Peru [76]. In total, our reference panel populations were IBS (n = 107), NAT

(n = 27), and YRI (n = 108). We restricted analyses to chromosomes 16 and 19 due to their

known importance in lipid traits.

To prepare our genotypes from local ancestry estimation, we used HAPI-UR to infer haplo-

types with a maximum HMM window size of 64 [77]. We calculated local ancestry inference

using RFMix in PopPhased mode, and due to our unequal reference population sizes, follow-

ing the recommendation to use a minimum node size of 5 and a window size of 0.025, with all

other options run as default [29].

Admixture mapping

We converted the RFMix output to the three continental ancestry allelic estimations (NAT,

IBS, and YRI). We tested each ancestry allele count for association with each phenotype to

observe how local ancestry may be associated with each lipid trait using a univariate linear

mixed model including relatedness as random effects and the first 5 principal components,

lipid medications, and region as fixed effects [10]. Genome-wide admixture mapping signifi-

cance was previously determined in HCHS/SoL at 5.7×10−5 [27].

Imputed transcriptome-based association study

We used the software PrediXcan to produce predicted expression from genotype for both

HCHS/SoL and MESA. The models we used include 44 tissue models from the GTEx V6 tis-

sues with at least 70 individuals (85% European, 15% African-American) each, with an average

of 5,179 genes predicted in each tissue [11, 13, 30]. We did not use GTEx V7 as the models

only include individuals of European ancestry. We filtered the GTEx V6 results by removing

red- and yellow-flagged false positive gene-tissue associations and our results only include

gene-model combinations with green flags as described at http://predictdb.org/. The other set

of PrediXcan models we used were made from monocyte gene expression in MESA [14].

Each of these five models had a training set of at least 233 individuals, including models of

African-American (AFA), European (CAU), Hispanic (HIS), AFA and HIS (AFHI), and all
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populations combined (ALL). These models were retrieved from http://predictdb.org/, and all

models in the analyses were filtered by protein coding genes, R2 > 0.01 and predictive perfor-

mance P< 0.05. Individuals used to train the AFHI, ALL, and HIS models are also included in

the MESA lipid trait replication cohort [14].

After the 49 predicted expression files were made using PrediXcan, we ran them as a pseudo-

genotype in a univariate linear mixed model in GEMMA using the command -notsnp. This

was performed in GEMMA rather than base PrediXcan as base PrediXcan does not have an

option to include a relationship matrix, which is important in a heavily related and structured

cohort like HCHS/SoL [10]. We again included the KING relationship matrix as random effects

and the first five principal components, use of lipid medication, and self-identified region as

fixed effects. P values presented were calculated using the Wald test.

Since we did not have the GLGC genotypes, we used the software S-PrediXcan, which is an

extension of PrediXcan that takes GWAS summary statistics as input [13]. We ran S-PrediX-

can on GLGC with all 44 GTEx tissue models and all 5 MESA monocyte models in different

ethnicities. We considered significance in the discovery population, HCHS/SoL, as

P< 3.1×10−8, 0.05/(all gene-model associations), and in the replication populations, MESA

and GLGC, as P< 0.05 within the model. This significance threshold is conservative, since

many tissues share eQTLs [31].

Colocalization analysis

We performed a colocalization analysis by applying the software COLOC to the lipid GWAS

results and eQTL data from GTEx and MESA to determine whether eQTLs within gene pre-

diction models and GWAS hits were shared [15]. We subset the COLOC input to only contain

SNPs within the predictor models of genes from the PrediXcan analyses due to computational

restraints. A higher P4 probability (P> 0.5) indicates likely colocalized signals between an

eQTL and a GWAS hit, especially in well-predicted genes with a high R2 value, while a high P3

probability indicates independent signals between an eQTL and a GWAS hit and a high P0,

P1, or P2 indicates an unknown association [13]. Analyses were run using scripts from the

S-PrediXcan manuscript at https://github.com/hakyimlab/summary-gwas-imputation/wiki/

Running-Coloc [13].

Supporting information

S1 Table. HCHS/SoL GCTA-COJO results for independent GWAS loci across all lipid phe-

notypes.

(CSV)

S2 Table. Top 1000 SNPs with most significant P values for admixture mapping.

(CSV)

S1 Fig. Genotypic principal component analysis in HCHS/SoL by self-identified regions.

PC1 vs. PC2 is plotted for each individual separated by their self-identified region. From previ-

ous observations and studies, Hispanic populations have multiple continental ancestries due

to a previous history of colonization and slavery: African (bottom right, YRI), Native Ameri-

can (left, NAT), and European (top, EUR). Caribbean populations, such as the Cuban, Domin-

ican, and Puerto Rican groups, tend to be mainly admixed between African and European,

while mainland populations such as Mexican, Central American, and South American, tend to

be mainly admixed between Native American and European.

(TIF)
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S2 Fig. Scree plot of the proportion of variance explained by the first 20 principal compo-

nents. Principal components 1, 2, and 3, explain 16.934%, 11.060%, and 5.494% of the vari-

ance, respectively. All other principal components explain < 5% of the variance each. All

analyses used 5 PCs as fixed effects, as previously used in analyses of HCHS/SoL.

(TIF)

S3 Fig. Quantile-quantile plots of the four lipid traits for GWAS results in HCHS/SoL.

Genomic control lambda values (λ) indicate little genome-wide deviation from the signifi-

cance expectation line in any of the GWAS results.

(TIF)

S4 Fig. Quantile-quantile plots of the four lipid traits for PrediXcan results in HCHS/SoL.

PrediXcan results for all 44 GTEx tissue models and 5 MESA monocyte populations are com-

bined. Each point is a gene-tissue or gene-population association. Genomic control lambda

values (λ) indicate little genome-wide deviation from the significance expectation line in any

of the PrediXcan results.

(TIF)
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50. Surakka I, Horikoshi M, Mägi R, Sarin AP, Mahajan A, Lagou V, et al. The impact of low-frequency and

rare variants on lipid levels. Nature Genetics. 2015; 47(6):589–597. https://doi.org/10.1038/ng.3300

PMID: 25961943

51. Paththinige CS, Sirisena ND, Dissanayake VHWW. Genetic determinants of inherited susceptibility to

hypercholesterolemia—a comprehensive literature review. Lipids in Health and Disease. 2017; 16

(1):1–22. https://doi.org/10.1186/s12944-017-0488-4

52. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Deere KA, Cruz-Bautista I, Arellano-Campos O,

et al. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci.

Journal of Medical Genetics. 2013; 50(5):298–308. https://doi.org/10.1136/jmedgenet-2012-101461

PMID: 23505323

53. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of

immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics.

2013; 45(11):1353–1362. https://doi.org/10.1038/ng.2770 PMID: 24076602

54. Langefeld CD, Ainsworth HC, Graham DSC, Kelly JA, Comeau ME, Marion MC, et al. Transancestral

mapping and genetic load in systemic lupus erythematosus. Nature Communications. 2017; 8(May).

https://doi.org/10.1038/ncomms16021 PMID: 28714469

55. Kimura S, Wang Ky, Yamada S, Guo X, Nabeshima A, Noguchi H, et al. CCL22/Macrophage-derived

Chemokine Expression in Apolipoprotein E-deficient Mice and Effects of Histamine in the Setting of Ath-

erosclerosis. Journal of Atherosclerosis and Thrombosis. 2015; 22(6):599–609. https://doi.org/10.5551/

jat.27417 PMID: 25492567

56. Kimura S, Tanimoto A, Wang KY, Shimajiri S, Guo X, Tasaki T, et al. Expression of macrophage-

derived chemokine (CCL22) in atherosclerosis and regulation by histamine via the H2 receptor. Pathol-

ogy International. 2012; 62(10):675–683. https://doi.org/10.1111/j.1440-1827.2012.02854.x PMID:

23005594

57. Rosenson RS, Brewer HB, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, et al. Dysfunctional HDL

and atherosclerotic cardiovascular disease. Nature Reviews Cardiology. 2016; 13(1):48–60. https://doi.

org/10.1038/nrcardio.2015.124 PMID: 26323267

58. Fotis L, Agrogiannis G, Vlachos IS, Pantopoulou A, Margoni A, Kostaki M, et al. Intercellular adhesion

molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclero-

sis in a rat model. In Vivo. 2018; 26(2):243–250.

59. Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, et al. HDL-transferred

microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature Communications. 2014; 5:1–

14. https://doi.org/10.1038/ncomms4292

Genetically regulated gene expression underlies lipid traits in Hispanic cohorts

PLOS ONE | https://doi.org/10.1371/journal.pone.0220827 August 8, 2019 20 / 21

https://doi.org/10.1016/j.yjmcc.2018.01.013
http://www.ncbi.nlm.nih.gov/pubmed/29378206
https://doi.org/10.1016/j.jjcc.2014.02.012
http://www.ncbi.nlm.nih.gov/pubmed/24674750
https://doi.org/10.1161/01.ATV.0000054658.91146.64
http://www.ncbi.nlm.nih.gov/pubmed/12588754
https://doi.org/10.1194/jlr.R400007-JLR200
https://doi.org/10.1194/jlr.R400007-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/15342674
https://doi.org/10.4137/CMC.S32667
http://www.ncbi.nlm.nih.gov/pubmed/26997876
https://doi.org/10.1161/CIRCRESAHA.117.311978
http://www.ncbi.nlm.nih.gov/pubmed/29018035
https://doi.org/10.1038/nature09266
https://doi.org/10.1038/nature09266
http://www.ncbi.nlm.nih.gov/pubmed/20686566
https://doi.org/10.1038/srep19429
http://www.ncbi.nlm.nih.gov/pubmed/26780889
https://doi.org/10.1038/ng.3300
http://www.ncbi.nlm.nih.gov/pubmed/25961943
https://doi.org/10.1186/s12944-017-0488-4
https://doi.org/10.1136/jmedgenet-2012-101461
http://www.ncbi.nlm.nih.gov/pubmed/23505323
https://doi.org/10.1038/ng.2770
http://www.ncbi.nlm.nih.gov/pubmed/24076602
https://doi.org/10.1038/ncomms16021
http://www.ncbi.nlm.nih.gov/pubmed/28714469
https://doi.org/10.5551/jat.27417
https://doi.org/10.5551/jat.27417
http://www.ncbi.nlm.nih.gov/pubmed/25492567
https://doi.org/10.1111/j.1440-1827.2012.02854.x
http://www.ncbi.nlm.nih.gov/pubmed/23005594
https://doi.org/10.1038/nrcardio.2015.124
https://doi.org/10.1038/nrcardio.2015.124
http://www.ncbi.nlm.nih.gov/pubmed/26323267
https://doi.org/10.1038/ncomms4292
https://doi.org/10.1371/journal.pone.0220827


60. Bhatti JS, Vijayvergiya R, Singh B, Bhatti GK. Genetic susceptibility of glutathione S-transferase genes

(GSTM1/T1 and P1) to coronary artery disease in Asian Indians. Annals of Human Genetics. 2018; 82

(6):448–456. https://doi.org/10.1111/ahg.12274 PMID: 30039864

61. Rodrigues DA, Martins JVM, E Silva KSF, Costa IR, Lagares MH, Campedelli FL, et al. GSTM1 poly-

morphism in patients with clinical manifestations of atherosclerosis. Genetics and Molecular Research.

2017; 16(1):1–9. https://doi.org/10.4238/gmr16019101

62. Mikhaylova AV, Thornton TA. Accuracy of Gene Expression Prediction From Genotype Data With Pre-

diXcan Varies Across and Within Continental Populations. Frontiers in Genetics. 2019; 10(April):1–10.

63. Keys K, Mak ACY, White MJ, Eckalbar WL, Dahl AW, Mefford J, et al. On the cross-population portabil-

ity of gene expression prediction models. bioRxiv. 2019; https://doi.org/10.1101/552042.

64. Stranger BE, Montgomery SB, Dimas AS, Parts L, Stegle O, Ingle CE, et al. Patterns of Cis regulatory

variation in diverse human populations. PLoS Genetics. 2012; 8(4):e1002639. https://doi.org/10.1371/

journal.pgen.1002639 PMID: 22532805

65. Zhong Y, Perera MA, Gamazon ER. On Using Local Ancestry to Characterize the Genetic Architecture

of Human Traits: Genetic Regulation of Gene Expression in Multiethnic or Admixed Populations. The

American Journal of Human Genetics. 2019; 104(6):1097–1115. https://doi.org/10.1016/j.ajhg.2019.

04.009 PMID: 31104770

66. Browning SR, Grinde K, Plantinga A, Gogarten SM, Stilp AM, Kaplan RC, et al. Local Ancestry Infer-

ence in a Large US-Based Hispanic/Latino Study: Hispanic Community Health Study/Study of Latinos

(HCHS/SOL). G3: Genes, Genomes, Genetics. 2016; 6(6):1525–1534. https://doi.org/10.1534/g3.116.

028779

67. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of

genotypes and phenotypes. Nature Genetics. 2007; 39(10):1181–1186. https://doi.org/10.1038/

ng1007-1181 PMID: 17898773

68. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MARR, Bender D, et al. PLINK: A Tool Set for

Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human

Genetics. 2007; 81(3):559–575. https://doi.org/10.1086/519795 PMID: 17701901

69. Turner S, Armstrong LL, Bradford Y, Carlson CS, Dana C, Crenshaw AT, et al. Quality control proce-

dures for genome wide association studies. Current Proceedings in Human Genetics. 2011; 68(1):1–

24.

70. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to

the challenge of larger and richer datasets. GigaScience. 2015; 4(7):1–16.

71. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation

service and methods. Nature Genetics. 2016; 48(10):1284–1287. https://doi.org/10.1038/ng.3656

PMID: 27571263

72. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference

for human genetic variation. Nature. 2015; 526(7571):68–74. https://doi.org/10.1038/nature15393

PMID: 26432245

73. Daviglus ML, Talavera GA, Avilés-Santa ML, Allison M, Cai J, Criqui MH, et al. Prevalence of major car-

diovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse back-

grounds in the United States. JAMA. 2012; 308(17):1775–1784. https://doi.org/10.1001/jama.2012.

14517 PMID: 23117778

74. Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction

and correction of stratification in the presence of relatedness. Genetic Epidemiology. 2015; 39(4):276–

293. https://doi.org/10.1002/gepi.21896 PMID: 25810074

75. Moreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK, Gignoux CR, et al. Reconstructing

the Population Genetic History of the Caribbean. PLoS Genetics. 2013; 9(11). https://doi.org/10.1371/

journal.pgen.1003925

76. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.

Genome Research. 2009; 19(9):1655–1664. https://doi.org/10.1101/gr.094052.109 PMID: 19648217

77. Williams ALL, Patterson N, Glessner J, Hakonarson H, Reich D. Phasing of many thousands of geno-

typed samples. American Journal of Human Genetics. 2012; 91(2):238–251. https://doi.org/10.1016/j.

ajhg.2012.06.013 PMID: 22883141

Genetically regulated gene expression underlies lipid traits in Hispanic cohorts

PLOS ONE | https://doi.org/10.1371/journal.pone.0220827 August 8, 2019 21 / 21

https://doi.org/10.1111/ahg.12274
http://www.ncbi.nlm.nih.gov/pubmed/30039864
https://doi.org/10.4238/gmr16019101
https://doi.org/10.1101/552042
https://doi.org/10.1371/journal.pgen.1002639
https://doi.org/10.1371/journal.pgen.1002639
http://www.ncbi.nlm.nih.gov/pubmed/22532805
https://doi.org/10.1016/j.ajhg.2019.04.009
https://doi.org/10.1016/j.ajhg.2019.04.009
http://www.ncbi.nlm.nih.gov/pubmed/31104770
https://doi.org/10.1534/g3.116.028779
https://doi.org/10.1534/g3.116.028779
https://doi.org/10.1038/ng1007-1181
https://doi.org/10.1038/ng1007-1181
http://www.ncbi.nlm.nih.gov/pubmed/17898773
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/ng.3656
http://www.ncbi.nlm.nih.gov/pubmed/27571263
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1001/jama.2012.14517
https://doi.org/10.1001/jama.2012.14517
http://www.ncbi.nlm.nih.gov/pubmed/23117778
https://doi.org/10.1002/gepi.21896
http://www.ncbi.nlm.nih.gov/pubmed/25810074
https://doi.org/10.1371/journal.pgen.1003925
https://doi.org/10.1371/journal.pgen.1003925
https://doi.org/10.1101/gr.094052.109
http://www.ncbi.nlm.nih.gov/pubmed/19648217
https://doi.org/10.1016/j.ajhg.2012.06.013
https://doi.org/10.1016/j.ajhg.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22883141
https://doi.org/10.1371/journal.pone.0220827

