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Abstract
Volatilemetabolites are currently under investigation as potential biomarkers for the detection and
identification of pathogenicmicroorganisms, including bacteria, fungi, and viruses. Unlike bacteria
and fungi, which produce distinct volatilemetabolic signatures associatedwith innate differences in
both primary and secondarymetabolic processes, viruses arewholly reliant on themetabolic
machinery of infected cells for replication and propagation. In the present study, the ability of volatile
metabolites to discriminate between respiratory cells infected and uninfectedwith virus, in vitro, was
investigated. Two important respiratory viruses, namely respiratory syncytial virus (RSV) and
influenza A virus (IAV), were evaluated. Data were analyzed using three differentmachine learning
algorithms (random forest (RF), linear support vectormachines (linear SVM), and partial least
squares-discriminant analysis (PLS-DA)), with volatilemetabolites identified from a training set used
to predict sample classifications in a validation set. The discriminatory performances of RF, linear
SVM, andPLS-DAwere comparable for the comparison of IAV-infected versus uninfected cells, with
area under the receiver operating characteristic curves (AUROCs) between 0.78 and 0.82, while RF
and linear SVMdemonstrated superior performance in the classification of RSV-infected versus
uninfected cells (AUROCs between 0.80 and 0.84) relative to PLS-DA (0.61). A subset of
discriminatory features were assigned putative compound identifications, with an overabundance of
hydrocarbons observed in both RSV- and IAV-infected cell cultures relative to uninfected controls.
Thisfinding is consistent with increased oxidative stress, a process associatedwith viral infection of
respiratory cells.

1. Introduction

Infections of the lower respiratory tract, including
both influenza and pneumonia, are among the top 10
leading causes of death in the United States [1], and
pneumonia remains one of the world’s leading causes
of death for children under the age of five [2].
According to the Centers for Disease Control and
Prevention (CDC), approximately 30% of acute
respiratory infections of viral etiology in the United
States (roughly 47million cases annually) are inappro-
priately treated with antimicrobial therapies that are
not effective against viral pathogens [3–5]. Further-
more, it is estimated that a causative pathogen is
identified in only approximately 40% of pneumonia

cases overall, and a subset of these cases for which a
pathogen could not be identified are likely of viral
etiology [6]. A diagnostic capable of rapidly distin-
guishing between infections of viral, bacterial, or
fungal etiology could inform the clinical management
of individuals with respiratory infections, potentially
reducing the inappropriate use of antibiotics for viral
infections [7, 8].

Limitations of currently-available diagnostic tools
for the detection of lower respiratory infections are
mainly related to the difficulty of obtaining an ade-
quate sputum sample (e.g., sputum is not produced by
most children) and in differentiating between infec-
tion and colonization in the setting of a positive result
[9]. Specifically, onemust be careful when interpreting
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the results obtained from tests that specifically target
organisms such as Staphylococcus aureus, Streptococcus
pneumoniae, Haemophilus influenzae, or certain fungi
(i.e., Candida), as up to 20% of healthy individuals can
be asymptomatically colonized [10]. Several rapid,
multiplex diagnostic tests for organism detection are
commercially available [8, 11, 12], but their role at pre-
sent is limited, since, in addition to the previously-
mentioned shortcomings, they lack proper evaluation
of their selectivity and specificity, mainly due to the
absence of an indisputable gold standard techniques
for the identification ofmany pathogens [8, 10–13].

To-date, most assays for the detection of respira-
tory viruses have focused on the identification of either
virally-derived nucleic acids (e.g., multiplex PCR, such
as PneumoVir®) or antigens (e.g., rapid influenza
immunoassays, such as DirectigenTM EZ Flu A+ B).
Recently, however, volatile metabolites in exhaled
breath have been investigated as potential alternative
biomarkers for pathogen detection and identification.
For example, volatile metabolites in breath are widely
used in the diagnosis of Helicobacter pylori gastritis
[14], and are under investigation for the diagnosis of
both acute and chronic respiratory infections [15]. In
the murine model, it has been shown that volatile
metabolites can discriminate between respiratory
infections caused by common bacterial pathogens,
including H. influenzae, Klebsiella pneumoniae, Legio-
nella pneumophila, Moraxella catarrhalis, Pseudomo-
nas aeruginosa, S. aureus, and S. pneumoniae [16–18].
However, unlike bacteria, which produce distinct
volatile metabolic signatures derived from funda-
mental differences in components of both core and
secondary metabolism [19], viruses are entirely reliant
on the metabolic machinery of infected cells. Several
transcriptomics studies have demonstrated that differ-
ent infectious agents (both viruses and bacteria) trig-
ger specific pattern-recognition receptors expressed
on host immune cells, activating different transcrip-
tional factors that activate specificmetabolic programs
[20–30]. For instance, the cytokine profile induced by
influenza A virus (IAV) infection in infants is distinct
from the profile induced by respiratory syncytial virus
(RSV) [30]. In light of these findings, we hypothesized
that volatile metabolic signatures could differentiate
between virally-infected and uninfected cells. In addi-
tion to assessing the diagnostic utility of such an
approach, the study of volatile metabolites produced
during infection has the potential to generate insight
into viral pathogenesis.

To-date, few studies have focused on the identifi-
cation of volatile metabolites produced by cell cultures
infected with virus (i.e., influenza, RSV, human rhino-
virus, adenovirus, and herpes simplex) [31–35]. These
studies involved basic characterization of the head-
space of infected cell culture versus uninfected cell cul-
ture, but did not evaluate the discrimination capability
of the volatile metabolites produced during infection.
The aim of this study is therefore to generate volatile

fingerprints of cell cultures infected with virus (both
RSV and IAV) and to evaluate their discrimination
capability. Volatile metabolites were extracted from
the headspace using solid-phase microextraction
(SPME) and then separated and identified by
comprehensive two-dimensional gas chromatography
(GC×GC) hyphenated with a ToF mass spectrometer
(MS). The present study represents a novel application
of this technique, which is particularly well-suited for
the analysis of complex mixtures and is amongst the
most powerful analytical tools available today for the
analysis of volatile metabolites [36]. Using different
machine learning algorithms, we were able to identify
volatile metabolic patterns that could discriminate
between cells infected with virus and those that were
uninfected.

2.Materials andmethods

2.1. Viral infection of human cell lines
2.1.1. RSV infection
Six-wellmicrotiter plateswere seededwithHEp-2 cells
(a human laryngeal cancer cell line) from the Amer-
ican Type Culture Collection (ATCC®, CL-23™) (4×
105 cells/well) to be 70%–80% confluent in 24 h.
Human RSV (ATCC® VR-1540™) was diluted to a
multiplicity of infection (MOI) of 0.3 in phosphate-
buffered saline. HEp-2 cells were maintained in a
growth media consisting of Minimum Essential Med-
ium (MEM) (Corning CellGro 15-010) containing
penicillin (100 units ml−1) and streptomycin
(100 μg ml−1) (Hyclone, Pittsburgh, PA, USA), and
10% fetal bovine serum (FBS). For viral infection, the
culture supernatant was removed, and cells were
inoculated with 0.5 ml of the viral suspension. Plates
were incubated at 37 °C with a 5% CO2 atmosphere,
with gentle shaking/rocking every 30 min for 1.5 h.
After this initial incubation, the supernatant was
aspirated and each single well was overlaid with 3.0 ml
of MEM containing penicillin-streptomycin and 2%
FBS (Corning CellGro 15-010). At 5, 24, 48, and 72 h
after the initial inoculation, a microtiter plate was
sampled by collecting 2.5 ml of media from each well
in a 10 ml air-tight glass vial sealed with a PTFE/
silicone cap (both from Sigma-Aldrich) and frozen at
−30 °C. At each sampling time, six replicates each of
RSV-infected and uninfected cells were collected.

2.1.2. IAV infection
Aliquots of 500 000 MLE-Kd cells (a mouse lung
epithelial cell line) maintained in 100 μl of 1X
Dulbecco’s Modified Eagle Medium (DMEM) (con-
taining glucose, L-glutamine, and sodium pyruvate;
Mediatech)were infected on ice with 10 μl of a stock of
A/PR8/34 H1N1 influenza virus, titrated at∼1×108

TCID50 (tissue culture infective dose 50%) units per
ml for 20 min, corresponding to an MOI of 1. The
suspensions were pipetted into 6-well polystyrene
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tissue culture plates containing 3 ml per well of pre-
warmed completemedia (1XDMEM, 10%FBS, 200U
each of penicillin and streptomycin, and 2 mM extra
L-glutamine) (Hyclone). Plates were swirled to mix
and incubated at 37 °Cwith a 5%CO2 atmosphere. At
24, 49, 72, and 122 h, 2.5 ml supernatant for each well
were collected into a 10 ml air-tight glass vial sealed
with a PTFE/silicone cap (Sigma-Aldrich) and frozen
at −30 °C. Controls consisting of uninfected cells in
mediawere incubated and collected in parallel. At each
sampling time, six replicates each of IAV-infected and
uninfected cells were collected.

2.2. Sample preparation
All samples were analyzed within one month of
collection. Volatile metabolites were extracted using
a divinylbenzene/carboxen/polydimethylsiloxane
(DVB/CAR/PDMS) df 50/30 μm, 2 cm length fiber
from Supelco (Bellefonte, PA, USA). The fiber was
conditioned before use. Samples (agitated at
250 rpm) were incubated for 15 min at 37 °C before
fiber exposure for 30 min at the same temperature.
The fiber was introduced into the GC injector for
thermal desorption for 1 min at 250 °C in split-
less mode.

2.3. Analytical instrumentation
A Pegasus 4D (LECO Corporation, St. Joseph, MI)
GC×GC time-of-flight (TOF)MS instrument with an
Agilent 6890N GC, and an MPS autosampler (Gerstel,
Linthicum Heights, MD, USA) equipped with a cooled
sampler tray (4 °C), was used. The primary column was
an Rxi-624Sil (60m×250 μm×1.4 μm) connected
in series with a Stabilwax secondary column
(1m×250 μm×1.4 μm) from Restek (Bellefonte,
PA, USA). The carrier gas was helium, at a flow rate of
2mlmin−1. The primary oven temperature program
was 35 °C (hold 1min) ramped to 230 °C at a rate of
5 °Cmin−1. The secondary oven and the thermal
modulator were offset from the primary oven by+5 °C
and +25 °C, respectively. A modulation period of 2.5 s
(alternating 0.75 s hot and 0.5 s cold) was used. The
transfer line temperaturewas set at 250 °C.Amass range
ofm/z 30 to 500 was collected at a rate of 200 spectra/s
following a 3min acquisition delay. The ion source was
maintained at 200 °C. Data acquisition and analysis was
performed using ChromaTOF software, version 4.50
(LECOCorp.).

2.4. Processing and analysis of
chromatographic data
Chromatographic data were processed and aligned
using ChromaTOF. For peak identification, a signal-
to-noise cutoff was set at 50:1 in at least one
chromatogram and aminimumof 20:1 S/N ratio in all
others. The resulting peaks were identified by a
forward search of the NIST 2011 library. For putative
peak identification, a forwardmatch score of�800 (of

1000) was required. For the alignment of peaks across
chromatograms, maximum first and second-dimen-
sion retention time deviations were set at 6 s and 0.2 s,
respectively, and the inter-chromatogram spectral
match threshold was set at 600. Compounds eluting
prior to 4 min and artifacts (e.g., siloxane, phthalates,
etc)were removed prior to statistical analysis.

A mixture of normal alkanes (C6–C20), and the
Grob mixture (containing Methyl decanoate (CAS#:
110-42-9), Methyl undecanoate (CAS#: 1731-86-8),
Methyl dodecanoate (CAS#: 111-82-0), Decane
(CAS#: 124-18-5), Undecane (CAS#: 1120-21-4),
2,6-Dimethylaniline (CAS#: 87-62-7), 2,6-Dimethyl-
phenol (CAS#: 576-26-1), 2-Ethylhexanoic acid
(CAS#: 149-57-5), Nonanal (CAS#: 124-19-6), and
1-Octanol (CAS#: 111-87-5)) (Supelco, Bellefonte,
PA, USA) were analyzed every 20 runs to calculate the
linear retention index (LRI) [37] and evaluate
the instrument and SPME performance, respectively.
The same SPME and GC methods were used, except
for the SPME exposition time which was shorter
(5 min) to avoid excessive overload of the fiber.

Discriminatory features were tentatively identified
based on mass spectral similarities to the NIST 2011
mass spectral library, with a match score �800 (of
1000) required for putative identifications. In addi-
tion, at least one of the following two criteria were
required: (I) a probability �5000 out of 10 000, and/
or (II) an experimentally-determined LRI in agree-
ment (i.e., in the ±10 range), with data reported
using the same stationary phase. For the latter
information, three main sources were used, namely
[38], an application note (http://blog.restek.com/

wp-content/uploads/2013/04/624silms.pdf), and
the Pro EZGC® Chromatogram Modeler (http://
restek.com/proezgc) (the latter two both from
Restek).Most hydrocarbons were generally assigned as
‘alkylated hydrocarbons’, as it is almost impossible to
assign them a specific name based only on the mass
spectra similarity, due to the intense fragmentation of
this class of compounds into theMS ion source. How-
ever, the chemical class of these compounds can be
assigned by considering both their location in the two-
dimensional chromatogram and their mass spectral
fragmentation pattern.

2.5. Statistical analysis
All statistical analyses were performed using R v3.3.2 (R
Foundation for Statistical Computing, Vienna, Aus-
tria). Prior to statistical analyses, the relative abundance
of compounds across chromatograms was normalized
using Probabilistic Quotient Normalization [39]. Data
was randomly subdivided into discovery (training) and
validation (test) sets 100 times, with 2/3 of samples
included in the discovery set, and the remaining 1/3 in
the validation set. Three machine learning algorithms
were used to identify the most highly discriminatory
volatile metabolites and predict the class (i.e., cells
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infected with virus versus uninfected cells) to which
samples in the validation set belonged, namely: random
forest (RF) [40], support vector machines with a linear
kernel (linear SVM) [41], and partial least-squares
discriminant analysis (PLS-DA) [42]. Mean decrease in
accuracy, feature weights, and variable importance in
projection were used as the measures of variable
importance for RF, linear SVM, and PLS-DA, respec-
tively [43]. For each of the 100 discovery/validation
splits, volatile compounds were ranked according to
their discriminatory ability, and different feature inclu-
sion thresholds were compared (e.g., top 10%, 20% and
30%, etc) in terms of predictive ability. A compromise
between the number of features included and model
accuracy was obtained via the inclusion of the top 20%
of features. The class probabilities were used to generate
receiver operating characteristic (ROC) curves, and
from these ROC curves, sensitivities, specificities, and
area under the ROC curve (AUROC) were calculated.
The optimal thresholds for class probabilities were
calculated usingYouden’s J statistic [44], rather than the
0.5 cutoff that is traditionally applied to two-class
classification problems.K-means clustering was used to
identify groups of volatile metabolites that exhibited
similar changes in relative concentration as a function
of time, with the relative concentration defined as the
difference in the chromatographic area (calculated
based on the unique mass, A) between cells infected
with virus and uninfected cells (Ainfected–Auninfected).
The elbow method was used to estimate the optimal
number of clusters for k-means clustering [45].

3. Results and discussion

Prior to the statistical analysis of headspace volatiles,
the stability of the HS-SPMEGC×GC-ToFMS system
was assessed using the Grob mixture, both in term of
retention time shift and area repeatability. A coeffi-
cient of variation (CV %) below 0.2% and 2% were
obtained for first and second dimension times, respec-
tively, for all peaks except for 1-octanol, which
presented a higher shift in the second dimension
(about 20%, standard deviation of 0.2 s). This shift was
taken into account in setting the alignment matching
parameters. A variation of the area �15% was
obtained for all standards considered.

3.1. RSV: discrimination between infected and
uninfected cells
To identify volatile metabolic fingerprints that were
discriminatory between cells infected with RSV and
uninfected HEp-2 cells, the chromatographic data
were first pre-processed to remove artifacts, reducing
the total number of peak features from 358 to 216.
These features were used for further data analysis. RF,
linear SVM, and PLS-DA, were used to identify the
most highly discriminatory volatile metabolites in the
discovery set, and predict the class to which samples in

the validation set belonged. This process was repeated
100 times using unique discovery/validation splits for
each iteration, and the most highly discriminatory
volatile metabolites (top 20%, corresponding to 43
features per iteration) were retained and used to
predict the class (i.e., virally-infected cells versus
uninfected cells, pooling together the different time
points) to which samples in the validation set
belonged.

The performance of these models was visualized
by generating a ROC curve using the validation set
class probabilities for each sample, and from these, the
AUROC, as well as optimal sensitivities and specifi-
cities, were calculated (figure 1(A)).

The AUROCs were generated using the class prob-
abilities for validation set samples and were similar for
RF and linear SVM (0.844 and 0.802, respectively),
while PLS-DA performed relatively poorly (0.605).
The optimal thresholds for class probabilities ranged
from 0.401 for PLS-DA to 0.526 for RF. At these opti-
mal thresholds, RF achieved the highest specificity
(0.782) relative to either linear SVM or PLS-DA (0.652
and 0.391, respectively), while PLS-DA achieved the
highest sensitivity (0.913) relative to either RF or linear
SVM (0.875 and 0.870), albeit with poor overall model
performance.

To assess the contribution of incubation time to
the model performance, we considered the average
prediction accuracies for samples at each of the four-
time points evaluated independently (supplementary
figure S1 is available online at stacks.iop.org/JBR/12/
026015/mmedia). RF yielded the highest mean sam-
ple classification accuracy at three of four sampling
times (5, 48, and 72 h), while SVM yielded the highest
accuracy at 24 h. PLS-DA yielded the lowest classifica-
tion accuracy at all sampling points. Of note, classifica-
tion accuracy was most highly variable at 72 h,
probably related to the confounding effect of natural
senescence (and possibly cell death) of the in vitro cell
culture, irrespective of the infection process.

The top discriminatory features obtained from the
three models were compared to evaluate possible
overlap. The number of features selected from dis-
covery set samples to predict the classification of vali-
dation set samples was held constant across all three
machine learning algorithms (n= 43, corresponding
to the top 20% of discriminatory features). In total, 92
distinct volatilemetabolites were included in the selec-
ted features for one or more algorithm, of which nine
(10%)were in common across all three algorithms, 10
(11%) between SVM and RF only, six (7%) between
RF and PLS-DA only, and three (3%) between SVM
and PLS-DA only. The remaining 64 (70%) were
unique to a single algorithm (figure 1(B)). The ranks of
these discriminatory features varied considerably
between algorithms. For example, the most dis-
criminatory feature from RF and PLS-DA was identi-
fied as hexadecane, which ranked 7th for SVM, while
pentadecane, which ranked 1st for SVM, had lower
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ranks for both RF (2nd) and PLS-DA (4th). A compre-
hensive listing of all discriminatory volatile metabolites
with their feature importance ranks across all three
machine learning algorithms is presented in table 1.

The relative concentration (Ainfected–Auninfected) of
all 92 discriminatorymetabolites (putatively identified
through mass spectral matching) was calculated at
each time point individually. K-means clustering was
used to identify metabolites with similar behavior as a
function of time. Three main clusters were identified.
Cluster I included three metabolites (#31: molecule
not identified, #32: 2-methyl-pentane, #48: methyl
sulfone) which were in highest abundance at the
beginning of the infection process (5 h), and subse-
quently decreased and remained relatively constant
between 24 and 72 h (figure 1(C)). Cluster II included
four (#71: 2,4-dimethyl-heptane, #77: 4-methyl-
octane, #92: alkylated hydrocarbon, #97: alkylated
hydrocarbon), which remained relatively constant
between 5 and 48 h, and then substantially decreased
at 72 h (figure 1(C)). Of note, for features in cluster II,
increased expression was observed in the uninfected
cells (rather than decreased expression in RSV-

infected cells) at 72 h. Finally, cluster III encompassed
the remaining 84, which exhibited no clear temporal
trend (supplementary figure S2).

3.2. InfluenzaA: discrimination between infected
anduninfected cells
The chromatographic data obtained for the compar-
ison of cells infected with IAV versus uninfectedMLE-
Kd were pre-processed to remove artifacts, reducing
the total number of peak features from 278 to 177. The
performance of themodels were visualized by generat-
ing ROC curves using the validation set class probabil-
ities for each sample, and from these, the AUROCs, as
well as optimal sensitivities and specificities, were
calculated (figure 2(A)). The AUROCs were similar
across the three algorithms employed, with SVM
yielding the best overall performance (0.825), followed
by RF (0.806), and PLS-DA (0.783). At the optimal
classification probability thresholds, sensitivities and
specificities were 0.792 and 0.792 for RF (optimal cut-
off of 0.499), 0.708 and 0.875 for linear SVM (optimal
cut-off of 0.530), and 0.708 and 0.708 for PLS-DA
(optimal cut-off of 0.514).
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Figure 1.Differential production of volatilemetabolites by RSV-infected and uninfectedHEp-2 cells. (A)ROCcurve for the
discrimination between infected and uninfected cells using random forest (RF, green), support vectormachines with a linear kernel
(linear SVM, blue), and partial least-squares discriminant analysis (PLS-DA, red). *Optimal sensitivity and specificity of each statistical
model are calculated at the given class prediction cutoff (ranging from 0 to 1). (B)VennDiagram of the top 20%of features selected as
themost discriminatory betweenRSV-infected and uninfected cells usingRF, SVM, and PLS-DA algorithms. (C)Differences in the
composition of headspace volatilemolecules as a function of sampling time (5, 24, 48, and 72 h), for two sample clusters identified via
k-means clustering. The remaining cluster reported in supplementary figure 2.# features codification as in table 1.
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Table 1. List of the discriminatory volatilemetabolites putatively identified, alongwith their importance ranks from eachmachine learning algorithms (RF, SVM, and PLS-DA).

RSVRank IAVRank

# RF PLS SVM RF PLS SVM Compound Class Formula CAS

Forward

similarity

Reverse

similarity Probability

LRI

exp

LRI

lit

1tR
(min:s)

2tR
(s) Reference

1 34 Unknown 467 04:02 0.8

2 9 Unknown 467 04:03 1.3

3 18 8 Unknown 468 04:04 0.8

4 16 16 6 Unknown 469 04:06 0.7

5 20 Unknown 473 04:14 0.7

6 42 22 Unknown 474 04:16 0.7

7 35 5 13 10 Unknown 475 04:18 1.2

8 20 14 Acetaldehyde Ald C2H4O 75-07-0 863 905 8534 476 04:20 0.8 [46, 47, 54]
9 12 34 11 Unknown 476 04:21 2.1

10 17 Unknown 476 04:22 0.6

11 25 19 Unknown 477 04:22 0.9

12 34 25 Unknown 477 04:23 0.7

13 17 Unknown 483 04:36 0.7

14 33 Unknown 487 04:43 0.8

15 8 29 23 Alkylated hydrocarbon Hyd 469 04:52 0.6

16 19 Unknown 478 05:07 0.7

17 33 24 Unknown 487 05:22 0.8

18 31 11 23 30 Ethanol Alc C2H6O 64-17-5 820 836 5124 500 506 05:45 1.3 [46, 51, 56]
19 21 Unknown 509 06:00 0.7

20 18 Furan Het-

Cyc

C4H4O 110-00-9 801 905 9424 512 511 06:05 0.9 [47]

21 4 2 2-Propenal Ald C3H4O 107-02-8 808 860 9010 519 523 06:17 1.0 [47]
22 29 Propanal Ald C3H6O 123-38-6 846 851 7605 522 526 06:23 0.8 [38, 46, 47, 52]
23 15 32 Acetone Ket C3H6O 67-64-1 965 967 9537 526 530 06:30 0.9 [33, 46, 47]
24 32 4 Unknown 529 06:35 0.9

25 6 31 20 Unknown 532 06:40 0.7

26 34 Unknown 539 06:51 0.8

27 14 Unknown 545 07:01 0.8

28 35 4 2-Propanol Alc C3H8O 67-63-0 872 910 7258 552 542 07:14 1.1 [31, 52]
29 39 8 13 1-Propanol Alc C3H8O 71-23-8 867 912 7823 553 07:16 1.1 [50, 51]
30 31 Unknown 556 07:21 0.9

31 9 2 Unknown 556 07:21 1.1

32 41 11 2-methyl-Pentane Hyd C6H14 107-83-5 923 932 7352 557 564 07:23 0.7 [46, 50–52]
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Table 1. (Continued.)

RSVRank IAVRank

# RF PLS SVM RF PLS SVM Compound Class Formula CAS

Forward

similarity

Reverse

similarity Probability

LRI

exp

LRI

lit

1tR
(min:s)

2tR
(s) Reference

33 38 Alkylated hydrocarbon Hyd 561 07:28 0.7

34 1 3-Hydroxy-3-methyl-2-

butanone

Ket C5H10O2 115-22-0 815 837 6977 561 07:29 1.0

35 10 Unknown 575 07:53 1.1

36 4 5 3-methyl-Pentane Hyd C6H14 96-14-0 868 878 3671 576 581 07:55 0.7 [46, 51]
37 23 24 26 2,3-dihydro-Furan Het-

Cyc

C4H6O 1191-

99-7

844 913 5941 591 08:20 0.9 [19]

38 7 Unknown 599 08:34 0.7

39 17 13 2-Butenal Ald C4H6O 4170-

30-3

819 872 5104 605 08:46 0.8 [46]

40 11 29 9 Alkylated hydrocarbons Hyd 606 08:48 0.7

41 1 17 32 n-Hexane hyd C6H14 110-54-3 911 921 8003 606 600* 08:48 0.7 [47, 50, 52]
42 40 Alkylated hydrocarbons Hyd 622 09:20 0.7

43 36 Alkylated hydrocarbons Hyd 622 09:21 0.7

44 23 10 Alkylated hydrocarbons Hyd 96-37-7 628 09:32 0.7

45 27 Disulfide, bis[1-(methyl-

thio)ethyl]
S-Com C6H14S4 69078-

77-9

802 851 5684 630 09:37 1.2 [57]

46 25 3 2-Butanone Ket C4H8O 78-93-3 890 904 7723 633 09:42 0.9 [47, 50, 55]
47 15 28 Methyl-cyclopentane Hyd C6H12 96-37-7 891 905 4872 639 638 09:55 0.7 [50, 51]
48 6 34 36 Methyl sulfone S-Com C2H6O2S 67-71-0 823 832 6612 639 09:56 2.1 [49]
49 38 Formic acid, propyl ester Est C4H8O2 110-74-7 809 829 7358 647 10:10 0.9

50 5 21 Tetrahydrofuran Het-

Cyc

C4H8O 845 864 4102 652 655 10:18 0.8 [47]

51 11 Unknown 654 10:26 2.0

52 23 Alkylated hydrocarbons Hyd 662 10:43 0.7

53 12 Alkylated hydrocarbon Hyd 667 10:52 0.7

54 29 9 2-methyl-hexane Hyd C7H16 856 864 4872 673 674 11:05 0.7 [51]
55 18 Cyclohexane Hyd C6H12 110-82-7 849 867 1590 676 673 11:10 0.7 [51]
56 10 26 26 9 Benzene Aro C6H6 71-43-2 883 911 7847 684 684 11:28 0.9 [46, 47, 51]
57 28 Unknown 691 11:42 0.9

58 28 3-methyl-butanal Ald C5H10O 96-17-3 882 884 5914 701 694 12:02 0.8 [47, 51]
59 14 27 Alkylated hydrocarbons Hyd 731 13:13 0.7

60 27 Alkylated hydrocarbons Hyd 731 13:13 0.7
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Table 1. (Continued.)

RSVRank IAVRank

# RF PLS SVM RF PLS SVM Compound Class Formula CAS

Forward

similarity

Reverse

similarity Probability

LRI

exp

LRI

lit

1tR
(min:s)

2tR
(s) Reference

61 43 2,5-dimethyl hexane Hyd C8H18 592-13-2 802 823 3156 734 737 13:20 0.7

62 22 Alkylated hydrocarbons Hyd 755 14:10 0.7

63 24 Alkylated hydrocarbons Hyd 757 14:15 0.7

64 10 Alkylated hydrocarbons Hyd 762 14:28 0.7

65 17 2-methyl heptane Hyd C8H18 592-27-8 833 854 3824 766 767 14:36 0.7 [46]
66 16 3-methyl heptane Hyd C8H18 589-81-1 826 845 3421 774 774 14:55 0.7 [46, 51]
67 19 27 Toluene Aro C7H8 108-88-3 841 877 4083 794 795 15:42 0.9 [47, 52]
68 21 Alkylated hydrocarbon Hyd 806 16:12 0.7

69 24 19 13 Unknown 818 16:40 0.7

70 31 Alkylated hydrocarbons Hyd 821 16:47 0.7

71 26 37 Alkylated hydrocarbons Hyd 823 16:52 0.7

72 7 Alkylated hydrocarbons Hyd 830 17:07 0.7

73 40 Unknown 837 17:25 1.0

74 30 16 15 Hexanal Ald C6H12O 66-25-1 841 868 5463 840 540 17:32 0.9 [46, 47, 51]
75 18 2,4-dimethyl-Heptane Hyd C9H20 2213-

23-2

852 892 3592 844 844 17:40 0.7 [47]

76 35 43 2,4-Dimethyl-1-heptene Hyd C9H20 19549-

87-2

834 861 3120 847 847 17:47 0.7 [46, 48]

77 20 22 2-methyl-Octane Hyd C9H20 3221-

61-2

819 893 4734 865 873 18:30 0.7 [47]

78 13 Alkylated hydrocarbons Hyd 875 18:54 0.7

79 32 Unknown 885 19:18 0.8

80 8 7 15 Ethylbenzene Aro C8H10 100-41-4 840 886 4996 890 889 19:28 0.9 [38, 51]
81 3 31 3 p-Xylene Aro C8H10 106-42-3 812 832 2691 898 897 19:48 0.9 [47, 51]
82 28 Alkylated hydrocarbons Hyd 918 20:33 0.7

83 25 o-Xylene Aro C8H10 95-47-6 815 847 2264 926 924 20:51 1.0 [31, 47, 51]
84 33 39 Styrene Aro C8H8 100-42-5 909 922 4797 928 926 20:55 1.1 [47, 51]
85 15 Alkylated hydrocarbons Hyd 930 21:00 0.7

86 27 Unknown Est C5H10O2 934 21:08 0.9

87 33 Alkylated hydrocarbons Hyd 936 21:12 0.7

88 21 Benzene, (1-methylethyl)- Aro C9H12 98-82-8 818 861 4654 953 954 21:51 0.9

89 25 Alkylated hydrocarbons Hyd 965 22:18 0.7

90 27 30 Alkylated hydrocarbons Hyd 978 22:45 0.7
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Table 1. (Continued.)

RSVRank IAVRank

# RF PLS SVM RF PLS SVM Compound Class Formula CAS

Forward

similarity

Reverse

similarity Probability

LRI

exp

LRI

lit

1tR
(min:s)

2tR
(s) Reference

91 2 33 2 Decane Hyd C10H22 124-18-5 821 853 768 1000 1000* 23:35 0.7 [47, 51]
92 30 Alkylated hydrocarbons Hyd 1014 24:05 0.7

93 26 17 Alkylated hydrocarbons Hyd 1020 24:17 0.7

94 18 14 Alkylated hydrocarbons Hyd 1024 24:25 0.7

95 14 Benzaldehyde Ald C7H6O 100-52-7 802 900 5753 1030 24:38 1.5 [31, 34, 47, 52]
96 43 Alkylated hydrocarbons Hyd 1049 25:17 0.7

97 42 35 10 Alkylated hydrocarbons Hyd 1059 25:37 0.7

98 31 Alkylated hydrocarbons Hyd 1065 25:50 0.7

99 39 Benzonitrile Aro C7H5N 100-47-0 807 837 5265 1068 1071 25:56 1.6 [34]
100 38 2-ethyl-1-hexanol Alc C8H18O 104-76-7 871 883 6374 1079 26:18 1.1 [48]
101 5 Ketone Ket 1094 26:50 0.9

102 22 7 Undecane Hyd C11H24 1120-

21-4

841 868 1477 1100 1100* 27:03 0.7

103 18 21 Alkylated adehyde Ald C5H10O 1101 27:05 1.5

104 12 Alkylated hydrocarbons Hyd 1102 27:06 0.7

105 9 Alkylated hydrocarbons Hyd 1102 27:07 0.7

106 28 Alkylated hydrocarbons Hyd 1109 27:19 0.7

107 34 Alkylated hydrocarbons Hyd 1126 27:52 1.0

108 19 16 Alkylated hydrocarbon Hyd 1126 27:53 0.6

109 8 Unknown 1128 27:57 0.9

110 5 6 Unknown 1142 28:25 1.4

111 4 Nonanal Ald C9H18O 124-19-6 846 839 5616 1150 1147* 28:40 0.9 [47, 49, 52, 53]
112 7 12 16 19 3 Dodecane Hyd C12H26 112-40-3 836 859 788 1200 1200* 30:17 0.7 [38]
113 30 Unknown 1219 30:52 0.6

114 12 Alkylated hydrocarbons Hyd 1214 30:43 0.7

115 22 Alkylated hydrocarbons Hyd 1246 31:39 0.7

116 32 Alkylated hydrocarbons Hyd 1251 31:50 0.7

117 12 Unknown 1256 31:59 0.7

118 6 Unknown 1261 32:07 0.8

119 11 41 25 Alkylated hydrocarbons Hyd 1265 32:15 0.7

120 42 Unknown 1275 32:32 0.7

121 13 Alkylated benzene Hyd C14H22 1280 32:42 0.8 [51]
122 37 37 35 Alkylated hydrocarbons Hyd 1281 32:44 0.7
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Table 1. (Continued.)

RSVRank IAVRank

# RF PLS SVM RF PLS SVM Compound Class Formula CAS

Forward

similarity

Reverse

similarity Probability

LRI

exp

LRI

lit

1tR
(min:s)

2tR
(s) Reference

123 15 Alkylated hydrocarbons Hyd 1309 33:33 0.7

124 20 40 Alkylated hydrocarbons Hyd 1327 34:04 0.7

125 1 20 26 Alkylated hydrocarbons Hyd 1327 34:04 0.7

126 2 4 Tetradecane Hyd C14H30 629-59-4 840 864 3120 1400 1400* 36:09 0.7

127 3 28 1 Alkylated hydrocarbons Hyd 1401 36:09 0.7

128 35 14 Alkylated hydrocarbons Hyd 1411 36:25 0.7

129 24 Unknown 1454 37:34 0.9

130 3 5 2 Pentadecane Hyd C15H32 629-62-9 844 859 1010 1500 1500* 38:48 0.7

131 23 Unknown 1552 40:09 0.9

132 41 29 Alkylated hydrocarbons Hyd 1554 40:12 0.7

133 21 36 6 Unknown 1591 41:08 1.6

134 1 1 7 Hexadecane Hyd C16H34 544-76-3 819 828 1520 1601 1600* 41:24 0.8

135 22 Unknown 1636 42:15 0.7

136 30 8 33 Alkylated hydrocarbons Hyd 1642 42:23 0.7

137 32 Unknown 1701 43:50 0.9

138 24 29 Unknown 1715 44:10 0.9
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The most highly discriminatory volatile metabo-
lites (top 20%, corresponding to 35 features) were
retained and used to predict to which class samples in
the validation set belonged. In total, 67 distinct volatile
metabolites were included across RF, linear SVM, and
PLS-DA, of which eight (12%)were common between
all three algorithms, 15 (22%) between SVM and RF
only, four (6%) between RF and PLS-DA only, and
three (4%) between SVM and PLS-DA only. The
remaining 39 (58%)were unique to a single algorithm
(figure 2(B)). Of note, while the most discriminatory
features identified from RF and SVM are similar in
feature importance rank, (e.g., features #127 and
#91, which ranked 1st and 2nd using linear SVM, and
3rd and 2nd using RF, respectively), the top five fea-
tures obtained using PLS-DA are not included in the
top 20% for either RF or SVM, with the exception of
#83, whichwas ranked 31st using RF.

The contribution of incubation time tomodel per-
formance was evaluated by considering the average
prediction accuracies for samples at each time points
(24, 49, 79 and 122 h) independently (supplementary
figure S3). A general descending trend over time can be
observed, with a median approximating 0.5 for all
three models at 122 h. PLS-DA yielded the highest

mean sample classification accuracy at 49 h with very
low variability, while RF yielded optimal classification
accuracy at 24 and 79 h. SVM showed large variability
at all time points but represented the optimal classifi-
cation model at 122 h. As with the cell cultures infec-
ted with RSV, the variability of prediction increased
for the last time point (122 h) for all algorithms, prob-
ably due to changes inmetabolite production linked to
cellular senescence and death.

The relative concentrations (Ainfected–Auninfected)
of the 67 selected discriminatory metabolites (puta-
tively identified through mass spectral matching) as a
function of time were again evaluated using k-means
clustering algorithm, and four main clusters were
extrapolated. In the first cluster, three volatile metabo-
lites (#2, #3, #4, all molecules not identified) were
included, whose relative abundance increased
between 24 and 72 h, before a decrease by 122 h
(figure 2(C)). The second cluster included three (#23:
acetone,#31: molecule not identified,#44: alkylated
hydrocarbon) that were detected at 49 h only, and not
detected at the remaining time points. The third clus-
ter included two (#35: not identified,#41: n-hexane)
that increased between 24 and 49 h then decreased at
79 h only to increase again by 122 h. The relative
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Figure 2.Differential production of volatilemetabolites by IAV-infected and uninfectedMLE-Kd cells. (A)ROCcurve for the
discrimination between infected and uninfected cells using random forest (RF, green line), support vectormachines with a linear
kernel (linear SVM, blue line), and partial least-squares discriminant analysis (PLS-DA, red line). *Optimal sensitivity and specificity
of each statisticalmodel are calculated at the given class prediction cutoff (ranging from0 to 1). (B)VennDiagramof the top 20%
features selected as themost discriminatory between IVA-infected cell line and uninfected control using RF. SVM, and PLS-DA
algorithm. (C)Most significant clusters obtained by k-Means Clustering analysis of the difference between infected and uninfected cell
cultures. Remaining cluster is reported in supplementary figure 4.# features codification as in table 1.
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concentrations of these latter features were negative
across all time points, indicating that they were more
highly abundant in uninfected controls. We therefore
hypothesize that they were related to cell line aging
rather than infection. Further studies are necessary to
explain this behavior. The fourth cluster included the
remaining 59 metabolites which demonstrated no
clear trend as a function of time (supplementary
figure S4).

3.3. Putative identifications of discriminatory
volatilemetabolites
Combining all the features selected from the different
models used for discriminating between cells infected
with virus (both RSV and IAV) versus uninfected cells,
a list of 138 metabolites (20 in common between the
two virally-infected cell lines) were generated and
tentatively identified according to the criteria reported
in the Materials and Methods. Sixty-five (47%) were
classified as hydrocarbons, nine (7%) as aldehydes,
eight (6%) as aromatic compounds, four (3%) as
alcohols, four (3%) as ketones, three (2%) as hetero-
cyclic compounds, two (1%) as sulfur-containing
compounds, two (1%) as esters, and finally 41 (30%)
as unknowns. It is interesting to note that hydrocar-
bons comprised a greater proportion of discrimina-
tory metabolites in the comparison of RSV-infected
versus non-infected HEp-2 cells relative to the com-
parison of IAV-infected versus non-infected MLE-Kd
cells (56 of 95 compounds (59%) for RSV, versus 18 of
67 (27%) in the IAV experiment). All other chemical
classes were similarly represented in the two set of
experiments.

Five compounds (i.e., acetone, 2-propanol,
o-xylene, benzaldehyde, and benzonitrile) have pre-
viously been reported in the headspace of cell cultures
infected with viruses (three of which in cells infected
with IAV, namely 2-propanol, o-xylene, and benzal-
dehyde) [31, 33, 34], while forty have been reported in
the headspace of cell cultures more generally (mostly
cancer cell cultures) (table 1) [33, 34, 46–58]. The rela-
tively minimal overlap between our study and prior
studies that have considered in vitro cells infected with
viruses is likely related to a number of factors, such as:
the low signal generated by this kind of sample, the dif-
ferent MOIs applied, differences in the cell lines used
and viral infection performed, as well as growth condi-
tions and media used, different SPME fiber phase
composition which affects the selectivity of the extrac-
ted compounds, differences in the analytical techni-
ques utilized, as well as the difficulty in assigning
precise identifications to alkylated hydrocarbons,
which are generally themost abundant chemical class.

Most of the volatile metabolites tentatively identi-
fied can be attributed to chemical classes related to the
lipid oxidation pathways, namely ketones, aldeheydes,
alcohols, and hydrocarbons. They have been reported
to originate largely from free radical oxidative

fragmentation of lipids due to oxidative stress [19, 59].
It has been shown that viral infection impairs the pro-
oxidant-antioxidant balance in favor of the former by
increasing the production of reactive oxygen species,
in part through aNAD(P)Hoxidase-dependentmech-
anism [60]. In particular, it has been shown that the
activity of superoxide dismutase enzymes increases
during viral infection, especially at a mitochondrial
level [60]. This increase in reactive oxygen species is
directly correlated with the formation of aliphatic
hydrocarbons, which can explain the high abundance
of hydrocarbons in our samples. However, these find-
ingsmainly refer to linear or iso-alkanes, while the ori-
gin of most of the alkylated hydrocarbons, which have
been identified both in vitro and in vivo is still unclear
[59]. An exogenous source for these compounds can
also be hypothesized even if a presently undefined
metabolic process cannot be excluded; further
research has to be carried out to unveil this spec-
ulative idea.

Nine aldehydes were also putatively identified (i.e.,
2-butenal, 2-propenal, 3-methyl-butanal, acet-
aldehyde, alkylated aldehyde, benzaldehyde, hexanal,
nonanal, and propanal). These compounds have been
related to lipid peroxidation during the inflammation
process, where it is hypothesized that they serve as sec-
ondary messengers in signal transduction, gene reg-
ulation, and cellular proliferation [59, 61]. Three furan
derivatives were found (i.e., furan, 2,3-dihydro-furan,
and tetrahydrofuran), which were previously identi-
fied in the headspace of cell culture and bacteria
[19, 59]. Two sulfur-containing compounds (i.e.,
methyl sulfone and bis[1-(methylthio)ethyl] disulfide)
were also identified. The formation of sulfur com-
pounds have been linked to the sulfur-containing
amino acids methionine and cysteine in the transami-
nation pathway, which is affected by an oxidative
stress, causing a depletion of such sulfur-containing
amino acids [62, 63].

3.4. RSV-infectedHEp-2 versus IAV-infectedMLE-
Kd cells
A direct comparison of the volatile metabolic signa-
tures produced by RSV and IAV infection was not
possible due to differences in the composition of
headspace volatiles at baseline (i.e., differences
between uninfected HEp-2 and MLE-Kd cells). We
attempted to identify a volatile metabolic fingerprint
that could discriminate between infected cells but not
discriminate between uninfected cells by using recur-
sive feature elimination coupled to RF (RFE-RF).
However, the differences at baseline were sufficiently
great such that it was not possible to effectively make
such a comparison. This may have resulted from
numerous factors, including: (1) the use of different
growth media across cell lines, (2) the comparison of a
human (HEp-2) and murine (MLE-Kd) lineages, and
(3) the comparison of transformed (HEp-2) versus
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non-transformed (MLE-Kd) lineages. RFE-RF
resulted in the identification of 10 volatile metabolites
that could differentiate between RSV-infected HEp-2
cells and IAV-infected MLE-Kd cells with approxi-
mately 74.9% accuracy, but which also differentiated
between uninfected HEp-2 cells and uninfected MLE-
Kd cells with 60.0% accuracy. Because of our inability
to discriminate between uninfected HEp-2 and MLE-
Kd cells, we elected to not report on those compounds
that were most highly discriminatory between RSV-
and IAV-infected cells, as differences in the produc-
tion of these metabolites may have resulted from
factors other than the type of virus used for infection.

However, we do note that 21 of the compounds
reported as discriminatory overall (table 1) were dis-
criminatory for both sets of experiments (i.e., RSV infec-
ted cells versus uninfected cells and IAV infected cells
versus uninfected cells). Amongst these 21 compounds,
we putatively identified seven hydrocarbons (2-methyl-
pentane, dodecane, and five generic alkylated hydro-
carbons), four aromatics (p-xylene, ethylbenzene,
toluene, and benzene), two heterocycles (2,3-dihy-
drofuran and tetrahydrofuran), two alcohols (ethanol
and 1-propanol), one aldehyde (acetaldehyde), and one
ketone (acetone). The identities of four compounds
remain unknown. Notably, ethanol, benzene, and dode-
cane represent the three metabolites that were identified
as discriminatory by two ormoremachine learning algo-
rithms inboth theRSVand IAVexperiments.

3.5. Study strengths and limitations
In the present study, we have evaluated the potential
ability of volatile metabolites for discriminating
between virally-infected and uninfected cells using
three different machine learning algorithms, demon-
strating the potential effectiveness of the approach.

The use of SPME coupled to GC×GC-ToFMS gen-
erated 216 and 177 features from the headspace of cells
infected with RSV and IAV, respectively. The GC×GC-
ToF MS system results in improvements in sensitivity
and identification ability compared to conventional GC.
The volatile profile obtained resulted, in part, from the
specific selectivity of the SPME fiber (PDMS/Car/DVB)
used, and do not necessarily mirror the real profile pre-
sent in the headspace of the sample. A relatively low
number of compounds herein identified have been pre-
viously reported in the literature, likely related to both
biological (different MOI, growth conditions, media,
and cell culture) and analytical (sample preparation and
analytical determinationmethods)differences.

The choice of host cells was based on their permis-
siveness to high levels of viral replication, and under
these conditions we were able to discriminate between
virally-infected and uninfected cells. However, these
findings do not necessarily allow for generalization to
other cell types. Moreover, the use of different cell linea-
ges for RSV and IAV infections did not allow for the
comparisonof infections causedbydifferent viruses.

4. Conclusions and future perspectives

Viral infection results in the alteration of numerous
biochemical pathways, a subset of which involve the
production of small molecules that can cross the cell
membrane and thus be detected in the headspace of
an infected cell culture. Here we show that volatile
compounds can be used to effectively discriminate
between infected (RSV and IAV) and uninfected
cells. The abundance of these discriminatory vola-
tiles can fluctuate over time according to the infec-
tion stage, but, irrespective of the sampling time
post-infection, an effective discriminatory predic-
tion was obtained, although a decreasing accuracy
was observed after 72 h or 122 h for RSV and IAV,
respectively.

Future work in this area should involve investigating
the utility of volatile metabolites to discriminate between
infections causedbydifferent viruses in a single cell line, as
well as generate insight into viral pathogenesis. Further-
more, the use of a common cell line for culturing both
viruses, specifically a non-transformed human lung epi-
thelial cell line, will be considered. In the present experi-
ments, different cell lines were chosen because of their
ability to optimize the replication of the viruses selected,
and this limited our ability to identify volatile metabolites
that could differentiate between viruses. Further studies
will be carriedout to answer this latterquestion.
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