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ABSTRACT Soil microorganisms, which intricately link to ecosystem functions, are piv-
otal for the ecological restoration of heavy metal-contaminated soil. Despite the impor-
tance of rare and abundant microbial taxa in maintaining soil ecological function, the
taxonomic and functional changes in rare and abundant communities during in situ
chemical stabilization of cadmium (Cd)-contaminated soil and their contributions to the
restoration of ecosystem functions remain elusive. Here, a 3-year field experiment was
conducted to assess the effects of five soil amendments (CaCO3 as well as biochar and
rice straw, individually or in combination with CaCO3) on rare and abundant microbial
communities. The rare bacterial community exhibited a narrower niche breadth to soil
pH and Cd speciation than the abundant community and was more sensitive to envi-
ronmental changes altered by different soil amendments. However, soil amendments
had comparable impacts on rare and abundant fungal communities. The assemblies of
rare and abundant bacterial communities were dominated by variable selection and sto-
chastic processes (dispersal limitation and undominated processes), respectively, while
assemblies of both rare and abundant fungal communities were governed by dispersal
limitation. Changes in soil pH, Cd speciation, and soil organic matter (SOM) by soil
amendments may play essential roles in community assembly of rare bacterial taxa.
Furthermore, the restored ecosystem multifunctionality by different amendments was
closely related to the recovery of specific keystone species, especially rare bacterial taxa
(Gemmatimonadaceae and Haliangiaceae) and rare fungal taxa (Ascomycota). Together,
our results highlight the distinct responses of rare and abundant microbial taxa to soil
amendments and their linkage with ecosystem multifunctionality.

IMPORTANCE Understanding the ecological roles of rare and abundant species in the
restoration of soil ecosystem functions is crucial to remediation of heavy metal-polluted
soil. Our study assessed the efficiencies of five commonly used soil amendments on re-
covery of ecosystem multifunctionality and emphasized the relative contributions of rare
and abundant microbial communities to ecosystem multifunctionality. We found great
discrepancies in community composition, assembly, niche breadth, and environmental
responses between rare and abundant communities during in situ chemical stabilization
of Cd-contaminated soil. Application of different soil amendments triggered recovery of
specific key microbial species, which were highly related to ecosystem multifunctionality.
Together, our results highlighted the importance of rare bacterial as well as rare and
abundant fungal communities underpinning restoration of soil ecosystem multifunction-
ality during the Cd stabilization process.
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Intense anthropogenic activities and rapid industrialization accelerate heavy metal
pollution in agricultural soil, leading to a great threat to global food security, ecosys-

tem, and human health. Cadmium (Cd), in particular, a nonessential toxic metal that
ranks 7th among 20 strong toxins, is one of the most concerned priority pollutants due
to its high risk of human exposure and long residence time in soil (1). At present, the
widespread occurrence of Cd contamination in agricultural soils has been reported in
many regions of the world, including Thailand, India, China, and Japan (2). In China,
approximately 1.3 � 105 ha of farmlands is contaminated by Cd, accounting for 20% of
the total farmland area (3).

With increasing calls for restoration of Cd-contaminated agricultural soil, research
efforts have been made to find sustainable and effective remedial solutions over the
past few decades (2–4). Compared to physical and biological remediation strategies
(e.g., soil mixing, electrokinetic, phytoremediation, and microbial remediation), in situ
chemical stabilization has been widely used in the remediation of Cd-contaminated
soils due to its efficiency and low-cost in decreasing Cd toxicity and bioavailability (5).
The choice and application strategies of Cd-stabilizing agents are of particular impor-
tance for Cd stabilization efficiency in situ since their properties and underlying stabiliz-
ing mechanisms vary greatly. Organic amendments (such as biochar, compost, and
straw) stabilize Cd and other metals in soil via forming stable organic ligand-metal
complexes (4). Liming materials (such as limestone and calcium hydroxide) can effec-
tively stabilize most metals in soil by increasing soil pH and negatively charged sorp-
tion sites of soil colloid and organic matter (6). The application of clay materials (such
as sepiolite and zeolite) to Cd stabilization is mainly based on their high surface areas
and excellent ion exchange capacities (7). Among various Cd stabilizing agents, lime-
stone (primarily CaCO3), biochar, and crop straw are highly recommended in previous
studies due to their multiple effects on soil restoration, including reducing Cd bioavail-
ability, alleviation of soil acidification, and enhancing soil ecological functions (8, 9). To
achieve a better performance, combinations of different amendments are also recom-
mended (10).

Diverse microorganisms in soil play critical roles in maintaining multiple ecosystem
functions simultaneously (“ecosystem multifunctionality” hereafter), including nutrients cy-
cling, organic matter decomposition, soil health, and crop productivity (11). In natural envi-
ronments, the abundance and distribution of species in microbial communities is uneven,
with a few abundant species and a large number of rare species (12). Traditional studies
mainly focus on the abundant members of microbial communities due to their contribu-
tions to biomass and nutrient cycling in ecosystems (13, 14). However, recent studies have
emphasized the ecological importance of rare taxa in maintaining microbial diversity and
ecosystem function (15, 16). As part of the microbial “seed bank,” rare species exhibit high
diversity and functional redundancy and, thus, serve as functional insurance in microbial
community (17). Both abundant and rare species interact intensively, either intra or inter-
kingdom and constitute complex ecological networks. Some species, regardless of their
abundance, occupy key positions (e.g., hubs and connectors) in the ecological networks
and are considered as keystone species essential for the stability of community structure
(18). Recently, network analysis-based approaches have been used to infer the potential
interactions, identify keystone taxa, and decipher the relationship between ecological clus-
tering and environmental factors in many ecosystems (19–21). The keystone species have
been shown to be closely pertinent to attributes or functional genes involved in multiple
ecological processes, including nutrient cycling, carbon turnover, and crop productivity
(19, 22). In particular, the rare taxa may function as keystone species responsible for the
maintenance of community structure and ecosystem multifunctionality (23).

The responses of abundant and rare species to environmental disturbances are not
always consistent (24, 25). Abundant species normally occupy a wider niche breadth
and can utilize more types of resources, which enable them to be more adaptive to
environmental changes than rare species (26). For instance, due to the discrepancy in
resistance to heavy metals, nearly all rare taxa in pristine soil were eliminated by heavy
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metal pollution, leading to a severe reduction of bacterial diversity (27). However, con-
tradictory results were also reported in other studies showing that the diversity and
community composition of rare taxa are more stable when suffering climate change
(25) and other disturbances, such as copper stress, heat shock, freezing-thawing, and
mechanical disturbance (28). These unaffected rare taxa might be dormant or
extremely slow growing but could be activated or become dominant when the envi-
ronment is favorable (28, 29). In addition, distinct assembly processes of abundant and
rare communities have been found in many ecosystems, likely due to their differential
responses to environmental changes (30, 31). During in situ chemical stabilization pro-
cess, applications of stabilizing amendments lead to multiple changes in soil proper-
ties, including metal speciation, soil pH, and available nutrients (32). These changes
may consequently alter the assembly and distribution patterns of abundant and rare
species in the microbial community, leading to unknown outcomes for ecosystem mul-
tifunctionality. Given that the abundant and rare species may differentially affect func-
tional attributes, distinguishing the roles of abundant and rare taxa in restoration of
ecosystem multifunctionality in Cd-contaminated soil is of importance but remains
largely unexplored.

We hypothesize that the rare community could be more sensitive to amendment-
induced changes in Cd bioavailability and soil properties than the abundant commu-
nity, and the recovery of rare taxa may play vital roles in restoration of soil ecosystem
multifunctionality. To test our hypothesis, we conducted a 3-year field experiment
applied with five soil amendments (CaCO3 as well as biochar and rice straw, individu-
ally or in combination with CaCO3). The impacts of amendments on composition shifts,
niche breadth, and assembly processes of microbial abundant and rare communities
were characterized to uncover microbial responses and the mechanisms underlying
amendment-induced effects on ecosystem multifunctionality. In particular, we aimed
to (i) compare the responses of abundant and rare taxa of bacterial and fungal com-
munities to different soil amendments, (ii) evaluate their contributions to soil ecosys-
tem multifunctionality, and (iii) identify keystone species of abundant and rare com-
munities, which are associated with soil ecosystem multifunctionality in different
stabilizing treatments.

RESULTS

Our result showed that the application of most soil amendments enhanced ecosystem
multifunctionality, and, among them, triple application of CaCO3 and CaCO3 together with
biochar/straw exhibited the greatest positive impacts (Fig. 1A). Spearman correlation anal-
ysis indicated that ecosystem multifunctionality was positively correlated with soil pH, total
carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC), total potassium (TK),
humic acid-bound Cd, and Fe-Mn oxide-bound Cd (P , 0.05) but had a negative correla-
tion with two labile fractions of Cd (water-soluble and exchangeable) and residual Cd
(P, 0.05; Fig. 1B). Despite the weak correlations, the Mantel test showed that the compo-
sitional changes of rare bacterial and abundant fungal communities were more correlated
with ecosystem multifunctionality compared to abundant bacterial and rare fungal com-
munities (P , 0.01; Fig. 1C). This result indicated that changes in microbial rare and abun-
dant communities may have differential impacts on soil ecosystem multifunctionality. To
further understand the roles of microbial rare and abundant communities, we explored
their responses to different amendments and the linkage with soil ecosystem multifunc-
tionality shown below.

Responses of microbial rare and abundant taxa to soil amendments. Rare bacte-
rial taxa accounted for the majority of total operational taxonomic units (OTUs) (99.5%)
and sequences (82.1%), while abundant bacterial taxa only comprised 0.4% of the total
OTUs and 15.8% of the total sequences (Fig. 2A). In contrast to bacteria, the fungal
community was dominated by abundant taxa. Although only less than 7.0% of all
OTUs were classified as abundant fungal taxa, these taxa accounted for 79.45% of total
sequences (Fig. 2A).
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Among 35 rare bacterial phyla, Proteobacteria, Actinobacteria, and Acidobacteria
were dominant, accounting for 58.5% of total sequences (Fig. 2B). Proteobacteria were
also dominant in the abundant community, accounting for 9.7% of total sequences
(Fig. 2C). The relative abundances of most rare phyla were quite stable, and only sev-
eral rare phyla were affected by soil amendments. For instance, rare Nitrospirae were

FIG 1 Ecosystem multifunctionality and its influencing factors. (A) The fold change of ecosystem multifunctionality in different
treatments relative to the control. (B) Spearman correlation between ecosystem multifunctionality and edaphic factors. (C) Mental
correlation between community dissimilarity and ecosystem multifunctionality. Significant correlations were labeled as follows: **,
P , 0.01; *, P , 0.05. Treatments include single application of biochar (C1), CaCO3 (L1), straw (S1), CaCO3 together with biochar
(CL1) and CaCO3 together with straw (SL1), and triple application of biochar (C3), CaCO3 (L3), straw (S3), CaCO3 together with
biochar (CL3), and CaCO3 together with straw (SL3).
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enhanced by triple application of CaCO3 and single application of CaCO3 with biochar,
while Bacteroidetes and Actinobacteria showed significantly higher relative abundances
in triple application of CaCO3 together with biochar/straw treatments than those in the
control (Fig. 2B). Conversely, abundant bacterial phyla were more susceptible to soil
amendments than the rare ones, with dramatic changes in the relative abundances of
abundant Actinobacteria, Firmicutes, Gemmatimonadetes, and Acidobacteria in different
amendments (Fig. 2C). Yet, consistent changes were observed for the abundant phyla
in single application of biochar and straw treatments, with a significant increase in
Firmicutes but a decrease in Gemmatimonadetes and Acidobacteria. Similar results were
also obtained in triple application of CaCO3 with biochar/straw treatments but with
additional enhanced effects on Actinobacteria (Fig. 2C). In addition, the mean values of
standardized effect size measure of the mean nearest taxon distance (SES.MNTD) were
significantly lower in the rare bacterial community than in the abundant community,
indicating a more closely phylogenetic clustering of the rare bacterial community (see
Fig. S1A in the supplemental material; P, 0.001)

Compared to bacteria, the responses of rare and abundant fungal taxa to soil amend-
ments were stable. The rare fungal community was dominated by class Sordariomycetes
(7.3%) and Dothideomycetes (2.5%) (Fig. 2D), which was similar to the abundant community,
with Sordariomycetes and Dothideomycetes accounting for 51.3% of total sequences
(Fig. 2E). We observed a significantly lower abundance of rare Saccharomycetes in single

FIG 2 Changes in microbial community composition of rare and abundant taxa by soil amendments. (A) Proportion of six categories of microbial taxa to
the overall OTU and sequence numbers. Relative abundance of rare (B) and abundant (C) bacterial phyla in different treatments. Only bacterial phyla with
the relative abundance of .0.5% were shown in the figure. Relative abundance of classes (.0.1% abundance) in rare (D) and abundant (E) fungal
communities. Bacterial phyla or fungal classes that were significantly different in relative abundances between treatment and control were identified using
DeSeq (a = 0.05) and illustrated in heatmaps. Phylum/class with significantly higher or lower abundance in treatment than control was colored in red or
blue, respectively. Treatments include single application of biochar (C1), CaCO3 (L1), straw (S1), CaCO3 together with biochar (CL1), and CaCO3 together
with straw (SL1) and triple application of biochar (C3), CaCO3 (L3), straw (S3), CaCO3 together with biochar (CL3), and CaCO3 together with straw (SL3).
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application of CaCO3 and triple application of CaCO3 with biochar treatments but a higher
abundance of rare Chytridiomycetes in single application of CaCO3 compared to that of the
control (Fig. 2D). For abundant fungal taxa, a single application of straw enhanced the rela-
tive abundances of Lecanoromycetes and Dothideomycetes. Eurotiomycetes also showed an
enhanced relative abundance in single application of CaCO3 together with straw treatment.
Only Sordariomycetes exhibited a significantly lower relative abundance in triple application
of biochar treatment than the control (P, 0.05; Fig. 2E). Similar to the bacterial community,
the mean values of SES.MNTD in the rare fungal community were significantly lower than
those in the abundant community (Fig. S1B; P, 0.05).

Environmental responses of microbial rare and abundant communities. Application
of most soil amendments did not alter the a-diversity of rare and abundant bacterial and
fungal communities. Only single application of CaCO3 with biochar and triple application
of straw treatments significantly decreased the Shannon index of the abundant bacterial
community (P , 0.05) (see Table S1 in the supplemental material). However, soil amend-
ments had a stronger influence on community similarity than a-diversity, especially on the
rare bacterial community (Fig. 3). The lower similarity of both the rare bacterial and fungal
communities than that of the corresponding abundant communities indicated that b-di-
versity of rare taxa was more susceptible to soil amendments (Fig. 3). Further, different soil
amendments showed distinct impacts on community similarity of rare and abundant taxa.
For instance, triple application of CaCO3 together with straw had the greatest impact on
community similarity of abundant bacterial taxa, while the impacts of a single application
of straw, triple application of CaCO3, and triple application of CaCO3 together with bio-
char/straw on the similarity of the rare bacterial community were stronger. In contrast to
bacteria, the similarities of both rare and abundant fungal communities varied largely with
soil amendments. The highest similarity for both rare and abundant fungal communities
was observed in single application of CaCO3 treatment.

To further identify the edaphic factors affecting rare and abundant communities, we
carried out a Monte Carlo permutation test. Both rare and abundant communities of bac-
teria and fungi were found to be significantly affected by soil pH, TN, TC, and exchange-
able Cd (Table 1; P , 0.05). Not surprisingly, soil pH was the most important attribute
affecting bacterial and fungal communities. Soil organic matter (SOM) showed significant
correlations with rare and abundant bacterial communities, while DOC was only signifi-
cantly correlated with the abundant fungal community (P, 0.05). Both rare and abundant
bacterial communities, as well as the abundant fungal community, were significantly corre-
lated with Cd speciation (Table 1; P , 0.05). Less correlation between Cd speciation and
rare fungal community suggested that rare fungal taxa may be more resistant to Cd stress.
This result was further confirmed by a broader niche breadth of rare fungal taxa to Cd spe-
ciation than the abundant one (see Fig. S2 in the supplemental material).

Assembly processes of microbial rare and abundant communities. The b-mean
nearest taxon index (bNTI) was used to assess the potential roles of deterministic and
stochastic processes in shaping bacterial and fungal community assembly during the
stabilization process. In the rare bacterial community, the bNTI value varied from 24.3
to 61.3, with only 30.8% of bNTIs being between 22 and 2, indicating a largely deter-
ministic assembly (Fig. 4A). By contrast, the bNTI value of abundant bacterial commu-
nity for all possible pairwise varied from 22.0 to 5.1, with 86.2% of bNTI values
between 22 and 2, suggesting that the stochastic process was dominant in the assem-
bly of abundant bacterial community (Fig. 4A). For fungal community, the bNTI values
of both rare and abundant communities varied from 22.3 to 5.8 and 21.5 to 4.1, with
86.6% and 93.9% of bNTIs between 22 and 2, respectively (Fig. 4B). These observa-
tions indicated that the assembly of rare and abundant fungal communities was domi-
nated by stochastic processes. We further quantified the relative contributions of major
ecological processes governing the assembly of the rare and abundant communities.
For the bacterial community, variable selection (65.34%) was pronounced in the rare
community, while the abundant community was more affected by undominated proc-
esses (37.88%) and dispersal limitation (29.36%) (Fig. 4C). In contrast, both rare and
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abundant fungal communities were dominated by dispersal limitation (82.77% and
91.86%, respectively) (Fig. 4D).

As variable selection dominated the assembly of the rare bacterial community, a
Mantel test was conducted to explore the major limited environmental factors for as-
sembly processes. Soil pH, TC, SOM, humic acid-bound Cd, and Fe-Mn oxide-bound Cd
were found to be significant predictors for assembly processes of the rare bacterial
community (see Table S2 in the supplemental material; P , 0.05). Except for humic
acid-bound Cd, these predictors showed significant and positive correlations with pair-
wise comparisons of bNTI values for the rare bacterial community (see Fig. S3 in the
supplemental material; P , 0.05), indicating that the relative influence of deterministic
assembly in the rare bacterial community increased with the increase in divergence of
these edaphic factors. It is worth noting that only bNTI of the rare bacterial community
had significant correlation with soil pH and humic acid-bound or Fe-Mn oxide-bound

FIG 3 Comparison of rare and abundant community similarities between different treatments. The pairwise similarity between communities in each
treatment and the control was calculated based on the Bray-Curtis metric. A greater value indicates higher similarity. Different letters represent significant
differences of Bray-Curtis similarity between treatments (P , 0.05). Treatments include single application of biochar (C1), CaCO3 (L1), straw (S1), CaCO3

together with biochar (CL1), and CaCO3 together with straw (SL1) and triple application of biochar (C3), CaCO3 (L3), straw (S3), CaCO3 together with biochar
(CL3), and CaCO3 together with straw (SL3).

TABLE 1 Impacts of edaphic factors on rare and abundant communities (Monte Carlo
permutation test)

Factor

Bacteria Fungi

Rare Abundant Rare Abundant

R2 P R2 P R2 P R2 P
pH 0.700 0.001 0.530 0.001 0.526 0.001 0.675 0.001
TN 0.234 0.020 0.256 0.006 0.432 0.001 0.347 0.001
TC 0.277 0.006 0.226 0.021 0.298 0.017 0.206 0.031
SOM 0.204 0.017 0.415 0.001 0.011 0.741 0.089 0.184
DOC 0.109 0.206 0.140 0.101 0.079 0.256 0.522 0.001
TP 0.015 0.808 0.040 0.538 0.081 0.279 0.069 0.358
TK 0.070 0.346 0.023 0.716 0.206 0.028 0.071 0.338
NO3

2-N 0.034 0.580 0.049 0.492 0.001 0.994 0.026 0.705
NH4

1-N 0.240 0.011 0.134 0.112 0.127 0.138 0.004 0.958
Water-soluble Cd 0.473 0.001 0.373 0.002 0.118 0.157 0.322 0.008
Exchangeable Cd 0.350 0.001 0.249 0.023 0.350 0.003 0.359 0.002
Carbonate-bound Cd 0.210 0.023 0.297 0.013 0.160 0.099 0.261 0.042
Humic acid-bound Cd 0.514 0.001 0.309 0.008 0.163 0.083 0.359 0.002
Fe-Mn oxide-bound Cd 0.506 0.001 0.285 0.010 0.320 0.003 0.454 0.001
Strong organic-bound Cd 0.028 0.668 0.130 0.136 0.109 0.142 0.156 0.088
Residual Cd 0.103 0.209 0.069 0.348 0.180 0.040 0.100 0.215
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Cd, suggesting that soil pH and Cd stress would affect the assembly process of the rare
bacterial community rather than the abundant community (Table S2).

Rare taxa play important roles in bacterial, fungal, and their co-occurrence
networks. In the bacterial network, rare and abundant OTUs accounted for 93.97%
and 6.03% of total nodes, respectively (Fig. 5A). The 7 identified keystone OTUs in the
bacterial network were rare OTUs (see Table S3 in the supplemental material). In the
fungal network, the proportion of rare OTUs accounted for 71.6% of total nodes with 4
rare and 2 abundant OTUs as keystones (Fig. 5A; see also Table S3). The co-occurrence
network of bacterial and fungal communities contained a total of 447 bacterial and
122 fungal nodes (Fig. 5A), among which 5.4% of bacterial and 34.4% of fungal nodes
were abundant OTUs. Among 20 keystone OTUs in the bacterial and fungal co-occur-
rence network, there were 16 bacterial and 4 fungal nodes with an abundant/rare
nodes ratio of 1/6 and 3/1, respectively.

Importantly, the types of soil amendment and application frequency altered the distri-
bution of keystone species (Fig. 5B). For instance, triple application of biochar yielded a
shift of 3 bacterial keystone species (from otu32009, otu388601, and otu191193 in control
to otu290067, otu412199, and otu394348 in triple application of biochar treatment) and
an enrichment of a fungal keystone OTU (otu4691). As such, different keystone OTUs were
enriched in the single application of straw, single and triple applications of CaCO3 with

FIG 4 Assembly processes of microbial rare and abundant communities. Boxplot showing bNTI patterns of all pairwise bacterial (A) and fungal (B)
communities between different treatments. The proportion of different assembly processes in rare and abundant communities of bacteria (C) and fungi (D).
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straw, and triple application of CaCO3 treatments. Spearman correlation analysis identified
9 keystone OTUs, which were significantly correlated with ecosystem multifunctionality
(P , 0.05). Keystone OTUs, such as otu394348 in triple application of biochar, otu2303,
otu168256, and otu174626 in triple application of CaCO3 showed significantly positive cor-
relations with ecosystem multifunctionality. These keystone OTUs may play crucial roles in
enhancing ecosystem multifunctionality. Other keystone OTUs, including otu388601 and
otu191193 in control, otu505 in single application of CaCO3, otu158185 in single applica-
tion of straw, and otu5165 in triple application of straw, were negatively correlated with
ecosystem multifunctionality, suggesting their nonessential roles in improving soil ecosys-
tem multifunctionality.

DISCUSSION
Distinct responses ofmicrobial rare and abundant communities to soil amendments.

Understanding the taxonomic and functional changes of rare and abundant communities
in response to soil amendments is of great importance for disentangling microbial proc-
esses during in situ chemical stabilization. Consistent with previous studies (24, 33), the

FIG 5 Keystone OTUs and their relationship with environmental variables and ecosystem multifunctionality. (A) Keystone OTUs were identified from
bacterial, fungal, and bacterial-fungal cooccurrence networks. Light and dark blue nodes represent rare and abundant bacterial OTUs, while light and dark
orange nodes represent rare and abundant fungal OTUs, respectively. Node size is proportional to the number of connections (degree), and the keystone
OTUs are represented by square nodes. The blue edges indicate positive interactions between two nodes, and red edges indicate negative interactions. (B)
Bubble plot showing the relative abundance (depicted by size) and taxonomy (depicted by color) of the keystone OTUs in each treatment. The names of
rare OTUs are marked in black, while the abundant OTUs are red. Spearman correlations between keystone OTUs and ecosystem multifunctionality (EMF)
and edaphic factors are shown in the heatmap. The colors in heatmap represent Spearman’s correlation coefficient (r), with red being more positive and
blue being more negative. Significant correlations were labeled as follows: **, P , 0.01; *, P , 0.05. Treatments include single application of biochar (C1),
CaCO3 (L1), straw (S1), CaCO3 together with biochar (CL1), and CaCO3 together with straw (SL1) and triple application of biochar (C3), CaCO3 (L3), straw
(S3), CaCO3 together with biochar (CL3), and CaCO3 together with straw (SL3).
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a-diversity of both rare bacterial and fungal communities was obviously higher than abun-
dant communities (see Table S1 in the supplemental material). However, the application
of various amendments did not affect a-diversity but markedly altered the community
structure of both rare and abundant taxa (Fig. 3). The greater variations in community sim-
ilarity of rare bacterial taxa between different treatments confirmed our hypothesis that
the rare bacterial community was more sensitive to soil amendments than the abundant
community (Fig. 3). This result is in line with previous studies showing greater variations in
b-diversity of rare bacterial community than those of the abundant community under
environmental disturbances (34, 35). The sensitivity of the rare bacterial community could
be explained by their narrow environmental breadths to environmental changes (36). In
this study, soil pH and Cd speciation exerted greater impacts on the rare bacterial commu-
nity than the abundant community (see Table S2 in the supplemental material). Further,
the environmental breadths of the rare bacterial community were narrower to soil pH and
Cd speciation (see Fig. S2 in the supplemental material). The critical roles of soil pH in regu-
lating microbial community have been emphasized in many previous studies (37, 38).
During the stabilization process, changes in soil pH are highly related to Cd availability in
soil, and the latter has also been reported to affect soil microorganisms (39). However, our
observations demonstrated that regulations of soil pH and Cd speciation on rare bacterial
taxa were stronger than the abundant taxa.

In contrast to bacteria, the impacts of soil amendments on rare and abundant fun-
gal communities were comparable. Triple application of CaCO3 together with biochar
yielded the greatest variations in rare and abundant fungal communities, which could
be also due to the changes in soil pH and Cd speciation. This explanation was sup-
ported by a Monte Carlo permutation test between edaphic factors and fungal com-
munities, showing that abundant fungal community was more affected by soil pH and
Cd speciation (Table 1). Importantly, a broader environmental breadth of rare fungal
taxa to labile Cd fractions suggested that rare fungal taxa were more resistant to Cd
stress and could act as a seed bank to sustain ecological functions in Cd-contaminated
soils (15). A similar result has been reported in a previous work documenting that rare
fungal taxa are more stable than abundant taxa under different fertilization practices
(40). In addition to soil pH and Cd speciation, the abundant fungal community was
also more sensitive to DOC (Table 1; Fig. S2). It is reasonable since many fungi prefer
soil rich in nutrients and organic matter (41).

Environmental filtering structured the assembly of rare bacterial community.
Quantifying the relative contributions of deterministic and stochastic processes to mi-
crobial community assembly is a key issue to understand forces structuring community
composition (42). In this study, we found that deterministic assembly was dominant in
the rare bacterial community, while stochastic processes primarily governed the abun-
dant bacterial community (Fig. 4C). Similar observations have been documented in ag-
ricultural fields (43) and coastal wetlands (31). The distinct assembly processes
between rare and abundant bacterial communities could be due to discrepancies in
response and niche breadth to environmental disturbances. It is possible that the rare
and abundant taxa occupy distinct ecological niches, which determine their different
responses to environmental disturbances (35). Rare bacterial taxa are more likely to be
eliminated by environmental filtering due to their narrow niche breadth, while the
abundant taxa occupying a broad niche breadth are more resistant to environmental
changes (44). Therefore, a narrower niche breadth of rare bacterial community to soil
pH and Cd speciation may explain our observation that variable selections govern the
assembly of the rare bacterial community (Table S2; Fig. S2). Despite increasing knowl-
edge on the importance of soil pH and organic matter in bacterial community assem-
bly processes (38, 45), our study highlighted that the assembly of the rare bacterial
community is more affected by soil pH and Cd speciation, while SOM is crucial for
abundant and rare bacterial community assembly processes. Moreover, the signifi-
cantly lower SES.MNTD values of the rare community indicated a closer phylogenetic
clustering by environmental filtering than the abundant community (see Fig. S1A in
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the supplemental material; P , 0.05). Taken together, application of soil amendments
altered soil pH, Cd speciation, and organic matter and could further influence commu-
nity assembly of rare and abundant bacterial taxa.

In line with previous studies showing that the fungal community demonstrates a
stronger dispersal limitation than the bacterial community (46, 47), here, we found
that the assembly of both abundant and rare fungal communities was dominated by
dispersal limitation (Fig. 4D). This is because fungi are more likely to be limited in long-
distance dispersal compared to the smaller-sized bacteria, as body size of organisms
influences their dispersal ability and spatial aggregation (46). However, our result was
in contrast to a previous study showing that assembly of rare fungal community was
dominated by deterministic process in the agricultural ecosystem (43), possibly due to
the differences in habitats and geography.

Relative importance of rare and abundant microbial taxa in ecosystem
multifunctionality. Restoration of soil ecological function is of importance when
assessing the efficiency of in situ stabilization strategies (48). In the present study, the
evidence from the field trial revealed that repeated application of soil amendments
(such as CaCO3 and mixture of CaCO3 with biochar/straw) promoted the recovery of
soil ecosystem multifunctionality (Fig. 1A). Spearman correlation showed that ecosys-
tem multifunctionality had a positive correlation with soil pH and strongly negative
correlations with labile Cd fractions. These findings suggested that alleviation of soil
acidification and Cd toxicity by soil amendments might contribute to the enhanced
ecosystem multifunctionality (Fig. 1B). Considering distinct responses of microbial rare
and abundant communities to soil pH and Cd toxicity, we further investigated their rel-
ative contributions to ecosystem multifunctionality. Compared to the abundant bacte-
rial community, the rare bacterial community showed a stronger correlation with eco-
system multifunctionality (Fig. 1C). Likewise, a high proportion of rare bacterial
keystone species in network analysis further implied the importance of rare taxa
(Fig. 5; see also Table S3 in the supplemental material). Meanwhile, we found that both
rare and abundant fungal communities were crucial to maintain ecosystem multifunc-
tionality. It is reasonable because fungal species are normally more resistant to heavy
metal pollution and play important roles in regulating the ecological functions of con-
taminated soils (49).

In contrast to previous studies showing that ecosystem multifunctionality is highly
related to soil microbial diversity (17, 50), we found that the enhanced ecosystem multi-
functionality by soil amendments was not assigned to changes in microbial diversity
(Spearman correlation, P , 0.05) but due to successions of certain key microbial species.
As shown in the distribution of keystone species in different treatments, applications of
soil amendments triggered recovery of specific keystone species (Fig. 5B). For instance, tri-
ple application of CaCO3 induced enrichment of three rare keystone OTUs, including
otu2303 and otu174626 belonging to Gemmatimonadaceae and otu168256 belonging to
Haliangiaceae, which were positively correlated with ecosystem multifunctionality.
Enrichment of members of Gemmatimonadaceae in soil amended with limestone (primar-
ily CaCO3) has been reported (51), which are vital species contributing nitrogen cycling
and soil respiration in the soil ecosystem (52). Further, the abundances of these three key-
stone OTUs showed significantly positive correlations with soil pH but a negative correla-
tion with labile Cd fractions. Together, these results suggest that triple application of
CaCO3 altered soil pH and labile Cd and thereby triggered enrichment of keystone OTUs,
which were related to ecosystem multifunctionality. In contrast to CaCO3 treatment, appli-
cation of straw decreased Cd availability via ligand exchange of organic matter rather than
changing soil pH. Consequently, an enrichment of otu5165 (Ascomycota) was observed in
triple application of straw treatment. Members in Ascomycota are well known for their abil-
ity to degrade lignin and plant residues (53).

In conclusion, this study demonstrated the distinct responses of rare and abundant mi-
crobial communities to soil amendments and their relative contributions to ecosystem
multifunctionality. Rare bacterial community exhibited greater sensitivity to soil amend-
ments than the abundant community, while the impacts of soil amendments on rare and
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abundant fungal communities were similar. Soil amendments induced changes in soil pH
and Cd speciation and, thereby, influenced the assembly of the rare bacterial community
but had limited impacts on the assembly of the abundant bacterial and fungal commun-
ities. Furthermore, recovery of specific keystone species by soil amendments may play cru-
cial roles in the restoration of ecosystem multifunctionality in Cd-contaminated soil.

MATERIALS ANDMETHODS
Site description and soil sampling. A 3-year field experiment for in situ stabilization of Cd-contami-

nated soil was conducted in abandoned agricultural land at the Wangci Village of Daye, Hubei, China
(30°039 N, 114°489 E). The experimental field is close to a historical mining area and exposed to Cd pollu-
tion from mining and smelting operations for centuries (54). Soil in the field is an Alfisol with a silty clay
loam texture (82). The total contents of heavy metals in the soil (0 to 20 cm) are as follows: 2.84 mg kg21

Cd, 72.88 mg kg21 copper, 94.62 mg kg21 zinc, 31.48 mg kg21 arsenic, 15.36 mg kg21 cobalt, 51.84 mg
kg21 chromium, 27.01 mg kg21 nickel, and 68.65 mg kg21 lead. Prior to the experiment, a full plow till-
age was performed at a 20-cm depth after removing herbaceous vegetation grown on the field. A total
of 48 plots (10 m2 each) with 0.3-m isolation ridges between plots were initially established for Cd stabi-
lization by chemical agents and biological immobilization (see Fig. S4 in the supplemental material). To
ensure homogeneous mixture of amendments with soil, a depth of 20 cm soil in plots was dug up and
mixed evenly with amendments by harrowing repeatedly. In February 2015, all plots received amend-
ments and were kept for 2 months to ensure that all treatments have achieved a stable condition. To
evaluate the effects of Cd stabilization by soil amendments, lettuces (Lactuca sativa L.) were annually
sowed in April and harvested in July according to the local growing season. The yield of lettuce har-
vested in 2017 was used to calculate ecosystem multifunctionality.

To evaluate the efficiency of different chemical agents, we only included chemical-stabilizing treat-
ments and the control treatment in this study (n = 33, 11 treatments � 3 replicates). Specifically, the
chemical stabilizing treatments were composed of (i) single application of biochar (C1), CaCO3 (L1), rice
straw (S1), mixture of biochar and CaCO3 (CL1), or mixture of rice straw and CaCO3 (SL1) in February
2015; and (ii) triple application of above-mentioned agents yearly from 2015 to 2017 (C3, L3, S3, CL3,
SL3). All treatments with 3 replicates were randomly distributed in separated plots as illustrated in the
scheme of field experiment (see Fig. S4). The amounts of chemical agents were set according to our pre-
vious studies on the stabilization of Cd-contaminated agriculture soil (55, 56).

In October 2017, five soil cores (12 cm in depth and 7 cm in diameter) were collected from each plot
and pooled together into a sterile ziplock bag. All samples were placed on ice and immediately trans-
ported to the laboratory. After removing visible stones, plant residues, and fine roots, soil samples were
sieved (2 mm) and mixed homogeneously. The sieved soil samples were divided into two subsamples:
one was air-dried and stored at room temperature for soil physicochemical analysis, and the other was
freeze-dried and stored at 280°C for DNA extraction and enzyme assay.

Analysis of soil properties. Soil pH was measured by a pH meter (PHS-3E; INESA, China) with a soil-
water ratio of 2.5:1 (wt/vol). Total carbon (TC) and total nitrogen (TN) contents were determined by a
Vario Max element analyzer (Elementar, Germany). Soil organic matter (SOM) content was measured
using the potassium dichromate oxidation method (57). Dissolved organic carbon (DOC) was extracted
at a soil/water ratio of 1:5 (wt/vol) and measured by a total organic carbon analyzer (multi N/C 2100;
Jena, Germany). Inorganic N (NH4

1-N and NO3
2-N) was extracted using 2.0 mol liter21 KCl and deter-

mined by a continuous flow analyzer (AA3; SEAL, Germany). Total phosphorus (TP) was determined col-
orimetrically by the molybdenum blue method after soil digestion using H2SO4 and HClO4 (58). Total po-
tassium (TK) was determined by a flame photometer (M410; Sherwood, England).

The mixture of HF-HClO4-HNO3 was used to digest soil for the determination of total Cd content
(57). Cd speciation was determined using the sequential extraction procedure reported by Tessier with a
modification (55, 59). Briefly, the selected extracts were obtained by shaking 2.0 g of soil samples with
the following reagents, separately: 20 ml double-distilled water (ddH2O) (pH 7.0) for the water-soluble
Cd (WS-Cd); 20 ml of 1 M MgCl2 (pH 7.0) for the exchangeable Cd (E-Cd); 20 ml of 1 M NaOAc (pH 5.0) for
the carbonate-bound Cd (CA-Cd); 40 ml of 1 M Na4P2O7�10H2O (pH 10.0) for the humic acid-bound Cd
(HS-Cd); 40 ml of 0.25 M NH2OH-HCl for the iron-manganese oxide-bound Cd (Fe-MnOx-Cd); 40 ml of
the mixtures of 0.02 M HNO3, 30% H2O2, and 3.2 M NH4OAc-HNO3 for the strong organic-bound Cd (SO-
Cd); and 20 ml HNO3-HCl-HClO4 for the residual Cd (RES-Cd). The concentration of Cd in each fraction
was measured using an atomic absorption spectrophotometer (AAS) (AA240FS; Varian, Australia). Details
on changes of soil physicochemical properties and Cd speciation in different treatments have been
described previously (60). The main changes included a significant increase of soil pH in CL1, L3, CL3,
and SL3 treatments compared to that of the control (P , 0.05), a notable decrease of water-soluble Cd
observed in CL1, SL1, L3, and CL3 treatments (P , 0.05), and a significant decline of carbonate-bound
Cd in all treatments (P, 0.05).

Quantification of ecosystem multifunctionality. Ecosystem multifunctionality is defined as the
ability of an ecosystem to provide multiple functions and services simultaneously (11). To better reflect
the influence of soil amendments on multiple soil processes, 18 ecosystem functions related to nutrient
cycling and organic matter turnover were assessed for quantification of the ecosystem multifunctionality
using the averaging approach (61). All ecosystem functions were grouped into four categories (11, 17),
including (i) plant production—lettuce yield (lettuce harvested in July 2017); (ii) soil conditions—soil pH;
(iii) nutrient cycling—TC, TN, ratio of C/N, potential ammonia oxidation (PAO), nitrogen-cycle enzyme

Xu et al.

September/October 2021 Volume 6 Issue 5 e01040-21 msystems.asm.org 12

https://msystems.asm.org


(urease), phosphorus-cycle enzyme (phosphatase), functional gene abundance (nitrification genes, deni-
trification genes, phosphorus cycling genes, and sulfur cycling genes); and (iv) turnover of organic mat-
ter—soil basal respiration (SBR), carbon-cycle enzyme (b-glucosidase, b-D-cellulosidase, N-acetyl-b-glu-
cosaminidase), and function gene abundance (carbon-fixation and carbon-degradation genes). The
ecosystem functions were normalized with Z-score transformation by SPSS v20.0 (SPSS IBM Corp) and
averaged to obtain the ecosystem multifunctionality index (EMF) (61).

SBR was determined by gas chromatography (GC-7890 A; Agilent, USA) after incubation of fresh soil
(equivalent to 10 g dry mass) in closed 100-cm3 soil jars at 25°C. PAO was determined using the chlorate
inhibition method (62). The activities of soil extracellular enzymes, including b-glucosidase, b-D-cellulo-
sidase, N-acetyl-b-glucosaminidase, and phosphatase were measured fluorometrically by a microplate
reader (Spark; Tecan, Switzerland) using 4-methylumbelliferone (MUB)-linked substrates (63). Soil urease
activity was measured using the indophenol colorimetry with urea as the substrate (64). Detailed meth-
ods on PAO and enzyme activities were described in Text S1 in the supplemental material. The abundan-
ces of functional genes involved in carbon fixation, carbon degradation, nitrification, denitrification,
phosphorus, and sulfur cycling were measured by GeoChip5.0 (60). The values of 18 ecosystem functions
and ecosystem multifunctionality were present in Table S4 in the supplemental material.

Soil DNA extraction and high-throughput sequencing. Soil DNA was extracted from 0.5 g soil
using the phenol-chloroform method with the FastPrep system (FastPrep-24; MP, USA) (65). Humic acid
was removed by DNA-EZ reagents M Humic acid-Be-Gone B (Sangon Biotech, China). DNA concentration
and quality were measured by a NanoDrop spectrophotometer (NanoDrop Technologies, USA). PCR
amplifications of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) genes were performed
using the primer pairs of 338F/806R (66) and ITS5-1737F/ITS2-2043R (67), respectively. Paired-end
sequencing was performed by the Illumina MiSeq PE250 platform (Shanghai Personal Biotechnology
Co., Ltd, Shanghai, China). Paired-end reads were assembled using FLASH (68). Quality control and
sequence analysis were conducted on the QIIME (v1.8.0) pipeline (69). The criteria for quality control
were set as follows: (i) minimum length of 150 bp, (ii) no ambiguous bases, (iii) 59 end primer mismatch
base number , 1, and (iv) the minimum mononucleotide repeats of 8 bp. After removing chimera by
UCHIME (70), operational taxonomic units (OTUs) of bacterial and fungal sequences were identified
using the UCLUST algorithm with a similarity of 97% (71). Taxonomic classification was conducted based
on the Greengenes database 13.8 for bacteria (72) and UNITE database 5.0 for fungi (73). Sequences
were rarefied to the minimum sequencing depth at 18,203 for bacteria and 35,883 for fungi.

Definition of rare and abundant taxa. To assess the responses of rare and abundant communities to
stabilizing treatments, all OTUs were defined and classified into the following 6 categories according to the
criteria used in recent studies (25, 74): (i) always abundant taxa (AAT)—OTU with a relative abundance of
$1% in all samples; (ii) conditionally abundant taxa (CAT)—OTU with a relative abundance of $1% in some
samples and never ,0.01%; (iii) always rare taxa (ART)—OTU with a relative abundance of ,0.01% in all
samples; (iv) conditionally rare taxa (CRT)—OTU with a relative abundance of ,1% in all samples
and ,0.01% in some samples; (v) moderate taxa (MT)—OTU with a relative abundance between 0.01% and
1% in all samples; and (vi) conditionally rare and abundant taxa (CRAT)—OTU with a relative abundance
ranging from rare (,0.01%) to abundant ($1%). We combined AAT, CAT, and CRAT as abundant taxa and
combined ART and CAT as rare taxa for further analyses according to previous studies (74).

Statistical analysis. The a-diversity indices of rare and abundant microbial communities were calculated
using the “vegan” package in R (version 3.6.3). One-way analysis of variance (ANOVA) with a Student-Newman-
Keuls test was performed to test the significance of the differences in microbial a-diversity using the SPSS
v20.0. The Bray-Curtis dissimilarity was calculated for rare and abundant communities of bacteria and fungi
using the vegdist function in the “vegan” package, with “1-dissimilarity” being used to calculate community
similarity (75). The fold change of ecosystem multifunctionality in treatments relative to the control was calcu-
lated (n = 3). Mantel correlation was employed to measure the relationship between the Bray-Curtis dissimilar-
ity of each community and the Euclidean distance of ecosystem multifunctionalities (76). To identify microbial
taxa with significant changes in abundance between treatments and control, differential abundance analyses
were carried out using the “DESeq2” package (77). A Monte Carlo permutation test was used to evaluate corre-
lations between edaphic factors and dissimilarity of rare/abundant community for bacteria and fungi using the
“vegan” package (permutations = 999; P , 0.05). Threshold indicator taxa analysis was used to calculate the
threshold values of rare and abundant taxa in response to each environmental variable using the “TITAN2”
package (78). The standardized effect size measure of the mean nearest taxon distance (SES.MNTD) was calcu-
lated to evaluate the phylogenetic clustering of abundant and rare taxa by the “picante” package (permuta-
tions = 999) (79), and the Student’s t test was used to compare the means between the rare and abundant
groups (n = 66). Network analysis was performed to study connections within and between bacterial and fun-
gal taxa using the molecular ecological network analyses (MENA) pipeline with default settings (80) and visual-
ized by Gephi 0.9.2. The keystone OTUs in each network were determined based on the within-module con-
nectivity (Zi) and among-module connectivity (Pi), including network hubs (Zi . 2.5 and Pi . 0.62), module
hubs (Zi. 2.5 and Pi, 0.62), and connectors (Zi, 2.5 and Pi. 0.62) (22).

Ecological null modeling was performed to evaluate assembly processes of rare and abundant commun-
ities (permutations = 999) (81). b-nearest taxon index (bNTI) quantifies the phylogenetic turnover (phyloge-
netic b-diversity) and the magnitude and direction of deviation between an observed bMNTD value and
the null bMNTD distribution (42). bNTI together with the Raup-Crick metric (RCbray) were used to determine
contributions from the selective and deterministic ecological processes (81). bNTI was calculated between
pairs of communities to estimate the importance of stochasticity and selection using the “picante” package
in R. Stochastic or deterministic ecological processes were identified based on the following criteria: (i)
bNTI . 2 represents the community assembly driven by variable selection; (ii) bNTI , 22 indicates that
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homogeneous selection takes a leading role in community assembly; and (iii) jbNTIj , 2 means that the
community is mainly assembled by stochastic processes. RCbray was further used to distinguish observed sto-
chastic processes using the “ecodist” package. jbNTIj , 2 and RCbray . 0.95 indicate that the community
assembly is dominated by dispersal limitation, jbNTIj , 2 and RCbray , 20.95 indicate that homogenizing
dispersal is the dominant assembly process, and jbNTIj , 2 and jRCbrayj , 0.95 suggest an undominated
process (81). After identifying the important edaphic factors correlated with bNTI of abundant and rare
communities via Mantel test, regression analysis was used to assess the variation in community assembly
processes along the gradients of the derived environmental variables. Permutational multivariate analysis of
variance, Monte Carlo permutation test, and Mantel test were conducted using the “vegan” package in R.

Data availability. The data sets generated and analyzed during the current study are available in
the NCBI SRA database (www.ncbi.nlm.nih.gov/sra) under accession numbers PRJNA601828 for bacteria
and PRJNA718172 for fungi.
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