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Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex
(ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated
polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed
used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol
(MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent
brain and, depending on the timing of systemic administration, induces persistent
developmental abnormalities of the cortex, hippocampus, cerebellum, and retina.
Whereas administration of MAM prenatally or postnatally can produce animal models of
epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect
on brain structure or function. The neurotoxic effects of MAM administered to rats
during cortical brain development (specifically, gestation day 17) are used to model
the histological, neurophysiological and behavioral deficits of human schizophrenia,
a condition that may precede or follow clinical onset of motor neuron disease in
subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from
communities impacted by ALS/PDC indicate the degenerative brain disorder may
be acquired in juvenile and adult life, a proportion of indigenous cases shows
neurodevelopmental aberrations in the cerebellum and retina consistent with MAM
exposure in utero. MAM induces specific patterns of DNA damage and repair that
associate with increased tau expression in primary rat neuronal cultures and with brain
transcriptional changes that parallel those associated with human ALS and Alzheimer’s
disease. We examine MAM in relation to neurodevelopment, epigenetic modification,
DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry
and cellular senescence. Since the majority of neurodegenerative disease lacks a solely
inherited genetic basis, research is needed to explore the hypothesis that early-life
exposure to genotoxic agents may trigger or promote molecular events that culminate
in neurodegeneration.

Keywords: neurodevelopment, genomic instability, cell-cycle re-entry, schizophrenia, amyotrophic lateral
sclerosis, atypical parkinsonism, Alzheimer’s disease, Huntington’s disease
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DEVELOPMENTAL ORIGINS OF
NEURODEGENERATIVE DISEASE

A developmental origin for neurodegenerative disorders,
including amyotrophic lateral sclerosis with frontotemporal
dementia (ALS/FTD), Huntington’s disease (HD), Parkinson’s
disease (PD), Alzheimer’s disease (AD), and mild cognitive
impairment (MCI), has been considered for many years
(Gardener et al., 2010; Kovacs et al., 2014; Arendt et al., 2017;
Ruzo et al., 2018; Wiatr et al., 2018; Kiernan et al., 2019;
Starr, 2019; Lulé et al., 2020; Wang Z. et al., 2020), and recent
clinical, genomic and molecular studies have uncovered evidence
linking neurodevelopmental changes and neurodegenerative
diseases. The onset of amyotrophic lateral sclerosis (ALS)
may be related to neonatal dysfunction due to imbalances in
excitation and inhibition (Kiernan et al., 2019), perhaps arising
from the mutation of genes involved in neurodevelopment
(i.e., C9orf72) (Yeh et al., 2018). Asymptomatic carriers of the
C9orf72 mutation in ALS/FTD exhibit white matter structural
changes and cognitive decline that precede symptomatic disease
onset, suggesting this is a neurodevelopmental disorder (Lulé
et al., 2020). The fetal HD brain shows cortical malformations
characterized by misaligned neurons, immature neurons, altered
connectivity, multinucleated neurons and mitotic changes
with altered cell-cycle progression likely due to chromosomal
instability that occurred during fetal neurogenesis (Ruzo
et al., 2018; Barnat et al., 2020). Neurodevelopmental changes
in HD are responsible for age-related declines in cognitive
function in children and adolescents (Schultz et al., 2021).
Recent studies of neurons from subjects with familial and
sporadic AD indicate that developmental processes are also
consistently perturbed. Evidence from induced pluripotent
stem cell-derived neurons from AD subjects indicates that
diseased nerve cells develop features of de-differentiation
reminiscent of a progenitor-like fate; they show reactivation
of a cell-cycle phenotype, and they lack the resiliency of
mature neurons (reviewed in Mertens et al., 2021). Collectively,
recent studies of progressive neurodegenerative disorders
suggest that genomic instability (i.e., mutations) during
early brain development contributes to the pathogenesis of
adult-onset neurodegeneration. Although familial progressive
neurodegenerative diseases have provided clues about the role
of toxic species of misprocessed peptides and proteins caused
by specific mutations, sporadic forms of neurodegenerative
disorders without clear evidence of a genetic etiology comprise
the majority of cases. This suggests that environmental
factors with potential developmental genotoxicity should be
considered in the etiology and pathogenesis of sporadic forms of
neurodegenerative diseases.

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis;
ALS/FTD, amyotrophic lateral sclerosis/frontotemporal dementia; ALS/PDC,
amyotrophic lateral sclerosis and Parkinsonism-dementia complex; ASD, autism
spectrum disorder; DDR, DNA damage response; DMH, 1,2-dimethylhydrazine;
FCD, focal cortical dysplasia; GADD, growth-arrest and DNA-damage/binding
protein; GD, gestational day; G-D, Guam dementia; GSK3β, glycogen synthase
kinase 3β; HD, Huntington’s disease; HDAC, histone deacetylase; HTT, Huntingtin
gene; hNPC, human neuroprogenitor cell; iPSC, induced pluripotent stem

This review examines evidence that neuronal genome
instability in the developing brain is impaired in sporadic forms
of progressive neurodegenerative diseases. Particular focus is
placed on the Western Pacific amyotrophic lateral sclerosis
and Parkinsonism-dementia complex (ALS/PDC), a prototypical
neurodegenerative disorder that finds clinical expression as
ALS, atypical parkinsonism, dementia comparable to AD, and
phenotypic mixtures thereof (Steele et al., 2010). Seven decades
of research on ALS/PDC, principally on Guam where the
disease was hyperendemic before slowly disappearing with post
World War II modernization, have revealed in many cases
fingerprints of disrupted brain development associated with
exposure to specific genotoxic chemicals (Kisby and Spencer,
2011; Spencer et al., 2020a). A common theme among ALS/PDC
and related neurodegenerative disorders is that cell-cycle changes
and genomic instability occurring during brain development lead
to the appearance and progression of brain disease in adulthood.

BRAIN DEVELOPMENT AND
ENVIRONMENTAL CHEMICALS

Evidence is accumulating to indicate that early-life exposure to
certain environmental chemicals is associated with neurological
disorders (Grandjean and Landrigan, 2014). Exposure of the
developing human brain to chemicals has been associated with
a number of neurodevelopmental disorders, including epilepsy
and schizophrenia. The timing of exposure (i.e., prenatal vs.
postnatal) and the type of toxicant are two important factors
that determine whether chemical exposure perturbs human brain
development (Kisby et al., 2013; Heyer and Meredith, 2017;
Bennett et al., 2019; Grandjean et al., 2019). There is experimental
support for chemical-induced subthreshold perturbation of
nigrostriatal neurons during vulnerable stages of neurogenesis,
neuronal development and neuronal migration that bears on the
susceptibility to PD in adult life (Barlow et al., 2007; Charlton,
2013; Schaefers and Teuchert-Noodt, 2016).

The prenatal period is characterized by the rapid expansion
of proliferating neural stem/progenitor cells and the production
and migration of immature neurons, whereas the postnatal
period leads to the generation of glial progenitor cells and
the maturation of neurons (Stiles and Jernigan, 2010). The
prenatal period of human brain development, especially the
first and second trimesters, is more vulnerable to environmental
chemicals than the postnatal period (Heyer and Meredith, 2017;
Fritsche et al., 2018) because neural progenitor cells are more
sensitive to toxicants than glial cells or mature neurons (Druwe
et al., 2015). Analysis of ALS/PDC has provided insight into
how exposure to genotoxins (notably methylazoxymethanol,
MAM) during critical periods of brain development may

cells; KEGG, Kyoto encyclopedia of genes and genomes; MAPK, mitogen-
activated protein kinase; MCD, malformations of cortical development; MCI, mild
cognitive impairment; MGMT, O6-mG methylguanine methyltransferase; MMR,
mismatch DNA repair; NFT, neurofibrillary tangle; NPC, neuroprogenitor cell;
NSC, neural stem cell; O6-mG, O6-methylguanine DNA adduct; PD, Parkinson’s
disease; PND, postnatal day; PNH, periventricular nodular heterotopia; PSP,
progressive supranuclear palsy; pRb, tumor suppressor protein retinoblastoma;
TLS, translesion synthesis repair; TSC, tuberous sclerosis protein complex.
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set the stage for latent neurodegenerative disease. Guided
by observations from related neurodegenerative disorders, we
examine prenatal, juvenile and young-adult exposure to MAM
in regard to epigenetic modification, DNA damage/replicative
stress, genomic instability, somatic mutation, cell-cycle reentry
and cellular senescence.

ENVIRONMENTAL ETIOLOGY OF
AMYOTROPHIC LATERAL SCLEROSIS
AND PARKINSONISM-DEMENTIA
COMPLEX

Western Pacific ALS/PDC is a progressive neurodegenerative
disease with multiple clinical phenotypes that has been
highly prevalent in the island communities of the southern
Marianas (Guam and Rota), Honshu, Japan (Kii Peninsula),
and New Guinea (Papua, Indonesia). Given its often familial
nature, inherited risk factors were first proposed, but with
temporal decline in prevalence, some combination of genetic
risk and environmental exposure was entertained. As disease
rates continued to drop (Rodgers-Johnson et al., 1986), the
dominant clinical presentation changed over time from ALS to
parkinsonism-dementia (P-D) to Guam dementia (G-D), and
the age of onset increased. It became increasingly clear that the
decline of ALS/PDC on Guam was most probably associated
with a disappearing environmental exposure associated with the
acculturation of Chamorros to a Western lifestyle. Now that ALS
has essentially disappeared from Guam, it is clear that the etiology
of this formerly hyperendemic disease was primarily if not
exclusively exogenous in origin (Giménez-Roldán et al., 2021).

Reduction in the incidence of ALS/PDC in all three
geographic foci of the disease was associated with declining
traditional use of a neurotoxic plant for food and/or medicine,
specifically seed of the genus Cycas. The poisonous seed of
Cycas spp. formerly served as a traditional food source for
native Guamanians (Chamorros), an oral tonic and folk medicine
in Kii-Japan, and a topical medicine for the treatment of
open wounds in Papua-Indonesia, all of which have been
linked to the subsequent development of ALS/PDC (Whiting,
1963, 1988; Kurland, 1972; Spencer et al., 1986, 1987a,b, 2005,
2020a,b,c; Spencer, 1987). Studies have shown that preference
for traditional Chamorro food was significantly associated with
an increased risk of P-D on Guam (Reed et al., 1975). Picking,
processing and eating of cycad seed in young adulthood were
consistently elevated and significant for dementia, MCI, and
P-D on Guam (Borenstein et al., 2007). Additional information
about the relationship between human exposure to cycads and
ALS/PDC has been previously presented (Spencer et al., 2020a;
Giménez-Roldán et al., 2021).

While Cycas seed contains a formidable mixture of chemicals,
the two most studied are the neurotoxic amino acid β-N-
methylamino-L-alanine (L-BMAA) and MAM, the aglycone of
the plant glucoside cycasin (i.e., MAM-β-D-glucopyranoside).
Analysis of cycad flour prepared Chamorro-style demonstrated
the presence of cycasin and ten-fold-equivalent lower

concentrations of L-BMAA (Kisby et al., 1992). Cycasin,
but not L-BMAA, significantly correlated with the average
annual age-adjusted incidence rates for ALS and P-D among
Guamanian males and females (Román, 1996; Zhang et al.,
1996). Cycasin also induces a motorsystem disease in ruminants
that, in nature, results from eating young Cycas leaves (Shimizu
et al., 1986; Spencer and Dastur, 1989). Cycasin is metabolized
by β-glucosidases in plant and various tissues of animals and
humans to MAM, a potent genotoxin and developmental
neurotoxin that induces DNA damage both by oxidative stress
(i.e., 8-oxoG) and the alkylation of guanine (i.e., O6-mG, N7-
mG) (Kisby et al., 1999). Thus, MAM produces both oxidation-
and alkylation-induced DNA damage, a property that might
explain how human exposure to this genotoxin induces cell-cycle
changes and genomic instability that lead to neurodevelopmental
changes reported in ALS/PDC.

Evidence of exposure to a toxin early in development is
suggested by the presence of ectopic, multinucleated, Purkinje-
like cells in the cerebellum of Guam and Kii-Japan subjects
who died of ALS/PDC in middle or late life (Shiraki and
Yase, 1975; Yase and Shiraki, 1991; Morimoto et al., 2018).
Guam ALS/PDC neurons with tau inclusions also contained
mitotic markers (Husseman et al., 2000); such changes result
from disruption of neuronal development, as seen in rodents
treated with cycasin or MAM (Ferguson, 1996; Chevassus-au-
Louis et al., 1999; Schwartzkroin and Wenzel, 2012; Kisby et al.,
2013; Luhmann, 2016). While the age of ALS/PDC acquisition
is unknown, exposure to cycads during childhood or young
adulthood is a risk factor for G-D and PDC (Borenstein et al.,
2007). These include retinal dysplasia (Spencer, 2020), hallmarks
of which persist in adult life and predict the onset of ALS/PDC
(Steele, 2008). Comparable lesions are produced in ferrets by
single perinatal treatment with MAM (Haddad and Rabe, 1980).

CELL-CYCLE CHANGES IN
DEVELOPMENT, AGING AND
NEURODEGENERATIVE DISEASES

Cell-cycle dysregulation has been implicated in the pathogenesis
of neurodevelopmental disorders (e.g., schizophrenia) (Benes,
2011), as well as neurodegenerative disorders like ALS, PD, and
AD (Joseph et al., 2020; Zhang et al., 2021). Aberrant cell-cycle
activation of post-mitotic neurons is a key molecular mechanism
in AD, HD, ALS/PDC, and other human neurodegenerative
disorders (Husseman et al., 2000; Lee et al., 2009; Fernandez-
Fernandez et al., 2010; Moh et al., 2011). The cell cycle
is a tightly orchestrated series of cellular events that leads
to the duplication of genetic material. Preparation for cell
division (G1 phase) is followed by DNA duplication (S
phase), organization and condensation of genetic material
(G2 stage), and cell division (M phase). Once mitosis is
complete, neural cells exit the cell cycle and migrate to their
respective positions in the developing brain. A balance of
cellular proliferation and cell death mechanisms ensures cell
and tissue homeostasis is maintained throughout human brain
development. Disruption of this intricate network may result
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in a defective cell cycle that causes not only developmental
changes but also neurodegeneration in later life (Park et al., 2007;
Barrett et al., 2021).

Cell-cycle regulatory proteins in post-mitotic neurons are
required for axonal migration, maturation and regulation of
synaptic plasticity (Frade and Ovejero-Benito, 2015). While the
post-mitotic neuron has exited the cell cycle (G0 phase) and
undergone terminal differentiation, cell-cycle proteins can be
reactivated in pathological states. However, instead of inducing
cellular proliferation, neuronal reactivation results in aberrant
cell-cycle reentry that culminates in protracted cell death (Xia
et al., 2019). The expression of cell-cycle proteins is upregulated
in post-mitotic neurons subjected to acute insults, such as growth
factor deprivation, activity withdrawal, DNA damage, oxidative
stress and excitotoxicity. After insult, neurons undergo abortive
cell-cycle re-entry that is characterized by upregulation of cyclin-
D-CDK4/6 activity and deregulation of E2F transcription factors
that lead to neuronal apoptosis.

When subjected to stress, terminally differentiated neurons
are susceptible to reactivation of their cell cycles and thereby
become hyperploid. Several studies have noted that cell-cycle
reentry in neurons leads to increased DNA levels (i.e., neuronal
hyperploidy) (Frade and Ovejero-Benito, 2015) that is known
to precede and recapitulate the classical neuropathological signs
of AD (Yang et al., 2001; Arendt et al., 2010; Frade and López-
Sánchez, 2017). Neuronal hyperploidy affects around 2–3% of
neurons in AD (Mosch et al., 2007; López-Sánchez et al.,
2017), a proportion that increases to around 8% when specific
neuronal subtypes are evaluated (López-Sánchez et al., 2017).
More than 30% of neurons become hyperploid in the middle
stages of AD (Arendt et al., 2010) indicating that the fate of
neuronal hyperploidy is delayed cell death (Yang et al., 2001;
Arendt et al., 2010).

Neurons in the aging brain can also undergo cell-cycle re-entry
that leads to DNA synthesis, with affected neurons remaining
viable but with four complete chromosomes comprising double
the normal DNA content (i.e., tetraploidy) (Frade and López-
Sánchez, 2017). Injured nerve cells thus can actively re-enter
the cell cycle, replicate their DNA, and survive as tetraploid
neurons. Genetic instability associated with neuronal aneuploidy
(more than diploid DNA content) also appears very early in the
pathogenesis of AD, and these cells selectively die during the
neurodegenerative process (Arendt et al., 2010). Forcing neurons
to re-enter the cell cycle either by overexpressing an oncogene
(Park et al., 2007; Barrio-Alonso et al., 2018; Barrett et al., 2021),
or by treatment with a DNA-damaging agent (Zhang et al., 2020),
is followed by hyperploidy, delayed death of neurons and/or
induction of tau and amyloid pathology.

Remarkably, cell-cycle events can be maintained in vivo in
affected neurons for weeks to years prior to apoptosis (which is
regulated by E3 ubiquitin ligase Itch), suggesting that activation
of the DNA-damage response (DDR) might be able to hold cell
cycle-induced death (apoptosis) in check for prolonged periods
(Lee et al., 2009; Ye and Blain, 2010; Chauhan et al., 2020). Cell-
cycle dysregulation and misaligned neurons also occur in the fetal
HD brain implying that these early events play a critical role
in the ensuing pathogenesis of this neurodegenerative disorder

(Barnat et al., 2020). Neuroprogenitor cells developed from iPSCs
of ALS/FTD patients with the C9orf72 mutation spontaneously
re-express cyclin D after 3 months of differentiation into neurons,
suggesting that cell-cycle re-entry (without apoptosis) plays
an important role in the neuronal dysfunction in ALS and
frontotemporal dementia (Porterfield et al., 2020). Thus, evidence
of neuronal cell-cycle re-entry is commonly seen in age-related
neurodegenerative diseases.

Many downstream factors of the DDR pathway promote cell-
cycle re-entry in response to damage and appear to protect
neurons from apoptotic death (Fielder et al., 2017). Post-
mitotic neurons that survive the endogenous or exogenous
DNA damage exhibit a persistent DNA-damage response,
and they become senescent (Jurk et al., 2012; Fielder et al.,
2017; Vazquez-Villaseñor et al., 2020). Instead of reacting to
cellular/DNA damage by proliferation or apoptosis, senescent
cells survive in a stable cell-cycle-arrest state (Sah et al., 2021).
Senescent cells simultaneously contribute to chronic tissue
degeneration by secreting deleterious molecules that negatively
impact surrounding cells. It appears that cell-cycle re-entry,
persistent DNA damage, and neuronal senescence are linked in
age-related neurodegenerative diseases.

The ALS/PDC brain, like that of other tauopathies (AD, PSP,
FTD linked to chromosome 17, Corticobasal Degeneration, Pick
disease, Niemann Pick disease type C), shows markers of cell-
cycle reactivation in neurons with tau pathology destined for
degeneration (Husseman et al., 2000; Wang et al., 2009; Stone
et al., 2011). The mitotic cdc2 kinase and its activator and cyclin
B1 are found in degenerating neurons (tau phosphorylated at
Thr231), as well as the cellular accumulation of phosphorylated
MAP kinases (MAPK) that are known indices of cdc2 activity
(Husseman et al., 2000). Hyperphosphorylated retinoblastoma
protein (pRb), a cell-cycle G1-to-S phase checkpoint protein,
is also elevated in Guam ALS/PDC neurons with and without
neurofibrillary tangles (NFTs) (Stone et al., 2011). In non-
dividing cells, the tumor suppressor protein pRb binds to E2F1,
keeping it in an inactivated state (Zhang et al., 2020). One
critical function of pRb is the control of the G1-to-S phase
checkpoint of the cell cycle. In the hypophosphorylated state,
the protein suppresses the activity of E2F transcription factors
thereby inhibiting transcription of cell cycle-promoting genes.
Upon phosphorylation, primarily by cyclin-dependent kinases,
phosphorylated pRb dissociates from E2F and permits cell-cycle
progression (Stone et al., 2011).

Evidence of cell-cycle perturbation early in development, in
the form of hyperploid (i.e., bi- and tri-nuclear) and misaligned
neurons, is evident in the cerebellum of both Guam and Kii-
Japan ALS/PDC brains (Shiraki and Yase, 1975; Morimoto
et al., 2018). Six of ten Japanese ALS/PDC patients had
misaligned and multinucleated Purkinje cells in the molecular
layer, and some of the misaligned Purkinje cells were positive
for phosphorylated tau (serine 202/threonine 205). None of
the controls had misaligned or multinucleated Purkinje cells.
Moreover, in Japanese ALS/PDC brains, there is reduced
expression of growth-arrest and DNA-damage/binding genes
(e.g., GADD-45 and GADD-153) (Morimoto et al., 2020).
GADD-45 proteins have been associated with numerous cellular
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mechanisms including cell-cycle control, DNA-damage sensing
and repair, genotoxic stress, neoplasia, and molecular epigenesis
(Sultan and Sweatt, 2013). The misaligned and multinucleated
neurons in the brains of Guam and Japanese subjects with
ALS/PDC are consistent with aberrant cell-cycle re-entry during
early brain development. Identification of predominant oxidative
and nitrative DNA damage in Japanese ALS/PDC (Hata et al.,
2018) is consistent with early-life exposure to a genotoxin.
Collectively, these findings suggest that cell-cycle changes
and DNA damage contribute to the underlying pathogenic
mechanisms in ALS/PDC, possibly through a senescence
type of mechanism.

CYCAD GENOTOXINS AND
NEURODEVELOPMENT

Exposure to cycad genotoxins during early human brain
development might be an important driver of the ensuing
pathological features of ALS/PDC, comparable to HD where a
mutant gene (Htt) perturbs neurodevelopment that results in
age-related decline in cognitive function (Ruzo et al., 2018; van
der Plas et al., 2019; Barnat et al., 2020; Hickman et al., 2021;
Schultz et al., 2021).

Long-term feeding (10 months) of a young (6-month-old)
primate with chapati (baked pancakes) prepared from cycad
flour provided by Guam residents resulted in weight loss, loss
of hair, and anorexia by the 7th month, and liver damage
(elevated liver enzymes) and severe weakness and wasting of
muscles of one arm by the 9th month. The young primate also
developed degeneration of motor neurons in both the motor
cortex and spinal cord (Dastur, 1964; Dastur and Palekar, 1974).
These neuropathological features were not observed in older
primates that were similarly fed cycad-derived chapati. The liver
of cycad-fed primates developed ‘large, irregular shaped bi- and
trinucleated hepatocytes’ an indication that a genotoxin in cycad
flour had disrupted liver cytokinesis (Shalakhmetova et al., 2009;
Deng et al., 2011; Mukherjee et al., 2013) and, possibly, neuronal
cytokinesis (vide infra).

Cytokinesis is the final step in the cell cycle by which
dividing cells physically separate into two cells following mitotic
sister chromatid segregation. Multinucleation (the process of
generating more than one nucleus) is a feature of neoplastic cells
and reportedly due to abnormal cytokinesis or acytokinetic cell
division through chronic activation of Akt, p53 loss, reduced
expression of DNA repair genes or non-genetic aneuploidy
(Mukherjee et al., 2013). Multinucleated cells are also commonly
observed in the liver and brain of MAM-treated rodents (Jones
et al., 1972; Zedeck et al., 1974; Borenfreund et al., 1975;
Sullivan-Jones et al., 1994), and they can be experimentally
induced in rodents by mutating genes “coding for proteins” that
regulate cytokinesis (e.g., citron kinase, flathead, diaphanous)
(Mitchell et al., 2001; Anastas et al., 2011; Harding et al.,
2016) or by forcing cell-cycle re-entry in post-mitotic neurons
(Walton et al., 2019); the latter results in hallmarks of AD,
including neurofibrillary tangles, Aβ peptide deposits, gliosis,
cognitive loss, and neuronal death (Barrio-Alonso et al., 2018,

2020). These phenotypic changes (i.e., multinucleation) are also
characteristic features of the chromosomal instability observed
in neurodegenerative diseases, which can result from defects
in many aspects of the mitotic apparatus or unresolved DNA
damage (Ruzo et al., 2018). Thus, it is reasonable to conjecture
that cycad exposure of the young primate (vided supra)
induced neuronal genomic instability and disrupted cytokinesis
comparable to that observed in the brains of Guam and Kii
Peninsula ALS/PDC subjects (Husseman et al., 2000; Stone et al.,
2011; Morimoto et al., 2018).

The brains of some Japanese and many Guamanian subjects
with ALS/PDC have multinucleated and ectopic Purkinje-like
neurons in the cerebellum, with comparable developmental
abnormalities of vestibular nuclei, occipital gyri and other areas
of the brain (Yase, 1972; Shiraki and Yase, 1975; Yase and
Shiraki, 1991; Morimoto et al., 2018). Comparable cerebellar
dysplasia developed in early postnatal rodents following a
single intraperitoneal injection of (the acetate form of) MAM
(Shimada and Langman, 1970; Jones et al., 1972; Rabié et al.,
1977; Lai et al., 1978; Haddad and Rabe, 1980; Bejar et al.,
1985; Chen and Hillman, 1986, 1988, 1989; Yamanaka and
Obata, 2004; Kisby et al., 2005, 2006, 2009, 2013). MAM
disrupted cell division and migration that resulted in tissue
disorganization featured by ectopic and misplaced Purkinje
and granule cells (Shimada and Langman, 1970; Yamanaka
and Obata, 2004). Neonatal administration of MAM perturbed
cerebellar development in rodents such that, at 21 days of
age, granule cells were mixed with Purkinje neurons instead of
forming layers (Yamanaka and Obata, 2004; Schwartzkroin and
Wenzel, 2012). Ectopic (heterotopic) neurons were also found
in the hippocampus of neonatal rats following administration of
MAM during fetal development (Singh, 1977). Based on human
cerebellar development (Laure-Kamionowska and Maślińska,
2011), migrating granule and Purkinje cells would be at risk
for MAM-induced disruption from the human second trimester
onwards (Spencer, 2020).

Cycasin and MAM reproducibly induce pronounced changes
in rodent brain that vary with the neurodevelopmental stage
(Ferguson, 1996; Ferguson et al., 1996; Cattabeni and Di
Luca, 1997; Colacitti et al., 1999). Rat pups treated with
MAM on gestational day 15 (GD-15) or GD-17 develop
neuropathological and behavioral changes consistent with focal
cortical dysplasia (Paredes et al., 2006; Wong, 2009; Kim
et al., 2017) or schizophrenia (Moore et al., 2006; Lodge
and Grace, 2009; Du et al., 2020; Sonnenschein and Grace,
2020), respectively. A cortical dysplasia animal model can
also be produced by administering MAM to pregnant ferrets
(GD-33) resulting in reduced migration of cortical neurons
(Schaefer et al., 2008) and increased GABAA receptor expression
(Abbah et al., 2014). Studies by Schaefer et al. (2008)
suggest that the effect of MAM on the migration of cortical
neurons in the GD-33 ferret model is due to reductions
in reelin, a gene that undergoes epigenetic regulation and
encodes a protein with an important role in the migration
of cortical neurons in the brains of subjects with various
psychiatric disorders (e.g., schizophrenia) (Ibi et al., 2020).
Focal cortical dysplasia (FCD) leads to intractable epilepsy
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due to malformations of cortical development (Jesus-Ribeiro
et al., 2021). Malformations of cortical development (MCD)
result from the perturbation of different critical stages of
human corticogenesis characterized by progenitor proliferation,
neuronal migration, and connectivity (Subramanian et al., 2020).
The neurodevelopmental changes in FCD are characterized
by abnormal cortical structures and heterotopias caused by
disruption of neuronal migration by somatic mutations of
genes that encode proteins in the PI3K-AKT/mTOR pathway
(Guerrini and Barba, 2021). Heterotopias are a common feature
in both the GD-15 and GD-17 MAM animal models, and
these pathological changes are comparable to the individual
ectopic neurons reported in the brains of Guam and Kii
ALS/PDC subjects (Shiraki and Yase, 1975; Morimoto et al.,
2018) and HD (Hickman et al., 2021). Additionally, genome-
wide association studies show that schizophrenia is associated
with ALS (McLaughlin et al., 2017; Restuadi et al., 2021; Spencer
and Kisby, 2021a), and diagnosis of schizophrenia prior to
onset of motorsystem disease has been reported in ALS/PDC
(Yase et al., 1972).

The MAM animal model of schizophrenia replicates changes
both in mesolimbic dopamine function, which may contribute
to the positive symptoms of schizophrenia, and to altered
frontal cortical–limbic circuits thought to be associated with
changes reminiscent of the negative and cognitive impairments
of the human disorder (Jones et al., 2011). Schizophrenia-
like deficits develop in the juvenile offspring of pregnant mice
and rats treated with a carefully timed (GD-16 and GD-17,
respectively) single dose of MAM (Lodge and Grace, 2009;
Lodge, 2013; Dibble et al., 2016; Hu et al., 2018; Takahashi
et al., 2019). This is accompanied by a reduced volume/weight of
the hippocampus, entorhinal, parietal and prefrontal cortex and
dorsal striatum, the first abnormalities associated with deficits in
glutamatergic transmission and dopamine dysregulation in the
prefrontal cortex and associated cognitive deficits (Featherstone
et al., 2007; Matricon et al., 2010; Chin et al., 2011; Hradetzky
et al., 2012; Lodge and Grace, 2012; Chalkiadaki et al., 2019;
Takahashi et al., 2019). At 4 months of age, GD-17 MAM-
treated rats develop schizophrenia-like features as indicated
by enlarged lateral ventricles and altered cerebral blood flow
(Drazanova et al., 2019), much like that observed in human
schizophrenia (Kempton et al., 2010) and the frontal or temporal
lobes of Kii ALS/PDC brains (Shindo et al., 2014). Larger
lateral ventricular volumes have been associated with reductions
in subcortical gray matter volume in schizophrenia (Horga
et al., 2011). Adult rats exposed in utero to MAM also
exhibit a significant reduction in neuronal spine density, as
well as impaired working memory, changes that are blocked
by treatment with a glycogen synthase kinase 3β (GSK3β)
inhibitor during the juvenile period (Xing et al., 2018). GSK-
3β (tau protein kinase 1) is implicated in the aggregation of
hyperphosphorylated tau proteins into paired helical filaments
that form NFTs in several neurodegenerative disorders, including
ALS/PDC (Takashima, 2006; Kihira et al., 2009; Ma et al.,
2017). In sum, there are links between prenatal exposure to
MAM and the latent onset of abnormal brain structure and
function. For humans, the second trimester is a period of

risk for brain changes that result in childhood schizophrenia
(Lodge and Grace, 2009).

EPIGENETIC CHANGES AND CYCAD
TOXINS

Epigenetic modification can participate in many molecular
biological processes, including gene expression, protein–protein
interactions, cell differentiation, and embryonic development
(Hwang et al., 2017; Berson et al., 2018). Histone modification,
DNA methylation, and non-coding RNAs are three main
epigenetic players that act on the PI3K-AKT-mTOR signaling
pathway (Fattahi et al., 2020). The PI3K-AKT-mTOR pathway
also plays an important role in cell-cycle re-entry and in
blocking autophagy. If the epigenetic changes occur during
critical periods of human brain development, they may lead
to neurodegenerative disease. There is increasing evidence
for the critical role of epigenetic changes in HD that are
characterized by genome-wide DNA methylation and histone
modification (Hyeon et al., 2021). Epigenetic modifications are
also increasingly recognized to play a role in the etiology
of schizophrenia (Khavari and Cairns, 2020; Bacon and
Brinton, 2021; Richetto and Meyer, 2021) and progressive
neurodegenerative diseases (Berson et al., 2018).

Prenatal administration of MAM to timed-pregnant rats
(GD-17) disrupts epigenetic methylation of cytosine (i.e., DNA
methylation) (Perez et al., 2016; Neary et al., 2017) during fetal
development and, during postnatal life, alters the methylation
of histone proteins (i.e., H3K4me3, H3K9me3, H3K27me3)
and reduces the acetylation (i.e., H3K9ac) of histones in the
prefrontal cortex of adults (Maćkowiak et al., 2014; Gulchina
et al., 2017; Bator et al., 2018). In juvenile rats (PND-60) of
the GD-17 MAM animal model of schizophrenia, Ingenuity
pathway analysis revealed DNA methylation differences in
hippocampal genes, changes in cell signaling, development
and morphology that overlap with Neurological Diseases,
Psychological Disorders and Developmental Disorders (Perez
et al., 2016). Our KEGG pathway analysis of the differentially
methylated genes in the hippocampus of these MAM-treated
PND-60 rats revealed alterations in the PI3K-AKT/mTOR
signaling pathway and pathways in cancer, similar to the DNA
damage-anchored pathways seen in the whole brain of adult
mice treated with a single systemic dose of MAM (Kisby
et al., 2011). Since PI3K-AKT/mTOR regulates the cell cycle
and cell proliferation/growth, its dysregulation is considered
to have an important role in several neurodevelopmental
diseases (e.g., microcephaly, schizophrenia, and epilepsy)
(Wang et al., 2017) and in the neuronal cell-cycle changes
observed in neurodegenerative disorders (Majd et al., 2019).
Histone demethylation (H3Kme2) is also significantly reduced
in the prefrontal cortex of neonatal (PND-15 and PND-45)
rats treated with MAM on GD-17 (Maćkowiak et al., 2014),
whereas histone trimethylation and histone acetylation are
reduced the frontal cortex of adult animals (PND-60 and -70)
that also had reduced expression of the gene encoding glutamic
acid decarboxylase (Gad1) (Bator et al., 2018). Abnormal
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histone-mediated epigenetic silencing of the Grin2b gene is
associated with N-methyl-D-aspartate receptor hypofunction
in the premotor cortex of juvenile rats treated gestationally
on day GD-17 with MAM, changes that may be related to
cognitive impairment (Gulchina et al., 2017). Cell-cycle (DP-1
and 2, CDK4, CDK6, RB, ORC6) and chromatin-modifying
genes (HDAC4, HDAC9, HDAC11, JAR1D2, SMYD3) are also
differentially methylated in immature cortical neurons derived
from human iPSCs following acute treatment (24 h) with
100 µM MAM (Spencer et al., 2020a). Furthermore, histone
deacetylase (HDAC) I and II activity is significantly reduced
in a concentration-dependent manner after acute treatment
of human neuroprogenitor cells (hNPCs) with MAM. Thus,
these studies demonstrate that, whereas histone acetylation is a
late event, DNA methylation and histone methylation are early
events following in utero treatment with MAM. Perhaps these
epigenetic mechanisms explain how gestational exposure to
MAM in the GD-17 rat induces postnatal, age-dependent GSK3β

hyperactivity associated with significant reduction in dendritic
spines, deficient long-term potentiation and facilitation of
long-term depression in prefrontal cortical pyramidal neurons,
together with working memory deficits (Xing et al., 2016).

GENOMIC INSTABILITY AND CYCAD
TOXINS

The genomic stability of neurons is important for their
development and maturation. Recent studies of HD provide clues
about how early changes during in utero brain development
impact the latent degeneration of neurons in this progressive
genetic neurodegenerative disorder (Barnat et al., 2020).
Examination of the brain of human fetuses (13 weeks
of gestation) carrying mutant Huntingtin (mHTT) revealed
abnormalities in the developing cortex caused by defects in
neuroprogenitor cell polarity and differentiation, and changes in
mitosis and cell-cycle progression. Barnat et al. (2020) also found
that mHTT, in the 13-week-old human fetal brain and 13.5-day-
old mouse embryonic brain, impaired the interkinetic nuclear
migration of progenitors that caused premature commitment
of neuronal precursors to their differentiated cell fate. These
cortical malformations result from disruption at different
critical stages of human corticogenesis—progenitor proliferation,
neuronal migration, and connectivity (Subramanian et al., 2020).
This developmental HD phenotype is characterized by giant
multinucleated cortical neurons that are directly proportional
to the length of the characteristic CAG trinucleotide repeat
sequences, chromosomal instability and failed cytokinesis over
multiple rounds of DNA replication during the neurogenesis of
human cortical neurons (Ruzo et al., 2018).

The mammalian target of the rapamycin (mTOR) pathway has
been strongly linked with the underlying pathogenesis of these
cortical malformations (Querfurth and Lee, 2021). The inhibition
of the tuberous sclerosis protein complex (TSC), or activation
of PIK3CA or AKT3, hyperactivates the mTOR pathway
leading to dysregulated cell growth (Querfurth and Lee, 2021).
Early alteration of the mTOR pathway also occurs in various

proteinopathies (e.g., MCI, AD) (Tramutola et al., 2015).
Such early neurodevelopmental and molecular changes may
be important triggers of the neurodegeneration of HD and
other latent progressive neurodegenerative diseases. The adult
HD brain also shows various developmental malformations,
including periventricular nodular heterotopia (PNH) (most
frequent) and immature neuronal populations. PNH is
characterized by altered neural migration and is usually
associated with drug-resistant epilepsy and various psychiatric
disorders (Fry et al., 2013; Jamuar et al., 2014; Alcantara et al.,
2017; Ho et al., 2019). Interestingly, PNH can be experimentally
reproduced following in utero injection of a genotoxin such
as MAM or carmustine (Moroni et al., 2013; Luhmann, 2016)
suggesting that early-life exposure to environmental genotoxins
may be able to trigger similar molecular and neurodevelopmental
changes. Heterotopias in the HD brain appear to be due to altered
migration of cortical precursors through somatic mutations of
migratory genes (Hickman et al., 2021). A mutation in HTT not
only leads to a disruption of protein synthesis and progressive
neurodegeneration, but these latent events are preceded by
neurodevelopment changes during fetal brain development
that disrupt the cell cycle, which can also be experimentally
reproduced in utero by treatment of animals with genotoxic
chemicals (Modgil et al., 2014; Koufaris and Sismani, 2015;
Godschalk et al., 2020). As described above, cycad genotoxins
are considered etiological agents of the prototypical progressive
neurodegenerative disorder Western Pacific ALS/PDC (Spencer
et al., 2020a). In sum, therefore, early life molecular and
neurodevelopmental changes may be important triggers of latent
progressive neurodegenerative disease (Figure 1).

DNA Damage
While the role of cycasin/MAM, or its metabolites (such as
formaldehyde) are individually, together, or with other factors,
plausibly responsible for triggering ALS/PDC, it appears highly
probable that these cycad toxins work primarily through the
induction of genomic instability. MAM is widely known as a
potent genotoxin that induces alkyl and oxidative DNA lesions
(O6-mG, N7-mG, 8-oxoG) in many murine organs, including the
brain (Inagake et al., 1995; Sohn et al., 2001; Kisby et al., 2011;
Álvarez-González et al., 2015; Steullet et al., 2017). The oxidative
DNA lesions (8-oxoG) observed in the brain of adolescent
rats in the MAM GD-17 rat model most likely occurs via
hydroxyradicals formed during autooxidation in the presence
of metals such as iron (see Kuhnlein, 1980) or by inhibiting
antioxidant enzymes (Azizi et al., 2018). While both DNA lesions
occur in neurodevelopmental disorders and neurodegenerative
diseases, interest focuses on O6-mG and 8-oxoG DNA lesions
because they are pro-mutagenic for cycling cells and appear to be
pro-cytotoxic in non-cycling cells, notably neurons (Larsen et al.,
2006; Spencer et al., 2012).

Human and murine O6-alkyl lesions are subject to direct
repair by O6-mG methyltransferase (MGMT) (Srivenugopal
et al., 1996) or indirect repair by translesion synthesis repair
(TLS) (Du et al., 2019). MGMT is effective at removing small
alkyl groups from the O6-position of guanine (e.g., O6-mG),
whereas repair of more bulky lesions relies on nucleotide

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 752153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-752153 November 27, 2021 Time: 10:27 # 8

Kisby and Spencer Environmental Genotoxin Triggers Neurodegenerative Disease

FIGURE 1 | Human exposure to environmental genotoxins (e.g., methylazoxymethanol, MAM) during brain development (fetal/post-natal, childhood) may induce
genomic/epigenomic instability that leads to sequential molecular changes culminating in later-life progressive neurodegenerative disease.

excision repair. These lesions are highly mutagenic during
cell replication and exclusively direct G to A mutations with
participation by DNA polymerase pol eta and pol gamma
(error-prone bypass) of the small alkyl lesions, whereas pol
kappa incorporates the correct base (i.e., dCMP) opposite the
lesion. DNA polymerases and replication factor c, which are
involved in TLS (i.e., pol kappa, pol delta), are among the
genes differentially methylated in the hippocampus of MAM-
treated adolescent rats (see Supplementary Table S1 in Perez
et al., 2016). Failure to repair O6-mG lesions in cells undergoing
division increases the risk of mispairing with thymine during
DNA replication, resulting in GC:AT transitions and frameshift
mutations in bacteria (Hoffmann et al., 2002). MGMT enzyme
activity is especially required during cell division but, in post-
mitotic nerve cells, activity appears to be very low, such that
neurons should be highly susceptible to MAM. Given the
low capacity of brain vs. liver tissue to repair O6-mG lesions
(Kleihues and Bucheler, 1977; Wiestler et al., 1984; Silber et al.,
1996), repeated exposure to alkylating agents such as MAM
would result in mounting DNA damage and genomic instability
(Kisby et al., 1999, 2011).

Oxidative DNA damage (i.e., 8-oxoG) has also been observed
in the brain of rodents following early-life exposure to MAM
(Steullet et al., 2017); this type of DNA damage is also repaired
by TLS, which results in the correct insertion of a C opposite the
8-oxoG (Markkanen et al., 2012). These studies demonstrate that
MAM indirectly induces oxidative DNA damage in neural tissues
through a transition metal-catalyzed mechanism (see Kuhnlein,
1980) or by reducing antioxidant enzymes (Azizi et al., 2018).

Recent studies show that the DNA damage induced by
genotoxins in post-mitotic neurons maps to hotspots of DNA
repair across the genome (Reid et al., 2021; Wu et al., 2021),
with repair sites predominantly located in neuronal enhancers
at sites of CpG DNA methylation (Wu et al., 2021). Such
mechanisms may explain the elevated levels of DNA damage
and epigenetic changes that occur in the prefrontal cortex of the
MAM animal model of schizophrenia (Maćkowiak et al., 2014;
Perez et al., 2016; Gulchina et al., 2017; Steullet et al., 2017)
and the neurodegenerative phenotype that develops in inherited
DNA-repair disorders (Tiwari and Wilson, 2019; Ainslie et al.,
2021; Gupta et al., 2021).

DNA Replicative Stress
In response to endogenous or exogenous DNA damage, cells
rapidly activate DNA damage response (DDR) mechanisms to
remove and repair lesions by specific DNA-repair pathways and
coordinate these events with cell-cycle progression and apoptosis
(Ciccia and Elledge, 2010; Polo and Jackson, 2011; Iyama and
Wilson, 2013). DDR is achieved through the simultaneous
collaborative actions of multiple checkpoint and repair proteins
that detect the damage and remodel the chromatin coordinating,
the repair with cell-cycle progression, inducing apoptosis,
autophagy, or senescence if the damage is left unrepaired (Harper
and Elledge, 2007; Soria et al., 2012). During neurodevelopment,
maintaining the integrity of DNA is critical for preventing
DNA damage, mutations and faithfully transferring epigenetic
information (Tsegay et al., 2019). If DNA damage occurs
during brain development, it can alter the accuracy of DNA
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replication (e.g., cell-cycle changes), integrity and epigenetic
features, resulting in DNA-replication stress and genome and
epigenome instability (Fielder et al., 2017; Wezyk et al., 2018).

Several exogenous and endogenous agents induce replication
stress, including DNA lesions or adducts caused by chemical
compounds, ultraviolet or ionizing radiation, reactive oxygen
species, byproducts of cellular metabolism, nucleotide pool
imbalance or a shortage of replication factors (Mazouzi
et al., 2014; Zeman and Cimprich, 2014). DNA damage-
induced replication stress reportedly plays an important role
in neurodevelopmental disorders (Wang M. et al., 2020) and
neurodegenerative disease (Wilhelm et al., 2020). DNA damage is
observed in several genes vulnerable to replication stress in neural
progenitor cells derived from patients with autistic spectrum
disorder (ASD) (Wang M. et al., 2020). Neuroprogenitor
cells (NPCs) derived from induced pluripotent stem cells of
these patients exhibit accelerated S-phase progression (cell-
cycle changes), increased DNA replication stress, and chronic
DNA damage when compared to NPCs derived from control
subjects. DNA replication stress attenuates gene expression
involved in adherens junctions, apical polarity, cell migration
and other NPC functions. Exome sequencing of ASD hNPCs
reveals mutations in several genes in the canonical Wnt pathway,
cell-cycle regulation, mitotic checkpoints, and DNA repair,
as well as in genes that maintain genomic stability (ATM,
BRACA1 CDK7, ERCC4). These recent studies indicate that
DNA damage-induced replication stress is a key underlying
mechanism of autism and possibly other neurodevelopmental
disorders (Charlier and Martins, 2020). DNA damage-induced
replication stress might also be an important mechanism to
explain how early-life exposure to environmental genotoxins
induces long-term effects that lead to neurodegenerative disease.

Cellular Senescence
How does human exposure to the cycad genotoxins
cycasin/MAM induce a progressive neurodegenerative disorder
like ALS/PDC? The answer may lie in the ability of these
genotoxins to induce cellular senescence in neurons; this is
reportedly caused by epigenetic changes, teleomere attrition,
DNA damage and mitochondrial dysfunction that culminate
in dysfunction of nutrient signaling and proteostasis (Sherman
et al., 2011; Fielder et al., 2017; Vazquez-Villaseñor et al., 2020;
Gillispie et al., 2021). The most widely accepted phenotype
of a senescent cell is a change in cell fate that accompanies
cell-cycle arrest, like that seen in human neuroprogenitor cells
treated with MAM (Spencer et al., 2020a). Another characteristic
feature of a senescent neuron is that it develops morphological
and functional changes, notably increased cell size and altered
nuclei that are either enlarged (karyomegaly) or multinucleated.
These features are also characteristic of neurons or non-neuronal
rodent cells (e.g., liver) after treatment with MAM (Zedeck et al.,
1974; Borenfreund et al., 1975; Sullivan-Jones et al., 1994).

A senescent phenotype in rodent and human neural stem cells
(NSCs) has been observed in response to chemical carcinogens
(Dong et al., 2014; Daniele et al., 2016). NSCs exist primarily in
a quiescent state by lowering metabolic activity and cell division
to minimize damage to DNA, proteins, and mitochondria, which

can lead to tumorigenesis, senescence and depletion of the
stem cell pool. Senescence may protect NSCs from becoming
cancerous in response to a carcinogen (Campisi, 2013) through
activation of this stress response to promote short-term health
and survival. Mouse and human NSCs treated with the genotoxin
hydroxyurea show a senescent like phenotype that includes
reduced proliferation, p21, p16, and increased DNA damage
via p53. A reduction in apoptosis in hydroxyurea-treated NSCs
derived from rats is also characterized by the activation of NF-
kB and other cell signaling pathways (i.e., p38/MAPK, ERK1/2)
(Dong et al., 2014) that are also targeted by MAM and anchored
to DNA lesions in mice (Kisby et al., 2011). Cellular senescence is
emerging as a potentially important pathway for understanding
the long-term effects of genotoxin-induced DNA damage on both
neurodevelopment and neurodegeneration.

Senescent neurons are also characterized by the co-expression
of cell-cycle mediators in the absence of apoptotic markers
(Sah et al., 2021). In response to injury (or DNA damage-
induced stress), mitotically competent cells may proliferate (e.g.,
tumorigenesis) whereas post-mitotic cell-cycle re-entry triggers
a degenerative process. Cell-cycle re-entry has been estimated
to occur in ∼11.5% of post-mitotic cortical neurons via DNA
content variation and 20% expression of post-mitotic neurons
in AD through both DNA content variation and expression of
cyclin B. These data indicate an important link between neuronal
cell-cycle activity, neuronal dysfunction and neurodegenerative
disease. The cycad genotoxins cycasin/MAM induce genomic
instability most likely through DNA damage and epigenetic
mechanisms that cause stable cell-cycle arrest in neurons.

Somatic Mutations
Another important question is whether the cycad genotoxins
cycasin/MAM can induce persistent neuronal DNA damage that
could lead to an increased mutational burden of nerve cells.
We have shown that alkyl DNA damage (i.e., O6-mG) remains
elevated in brain tissue of MAM-treated young adult mice when
levels in the liver have declined, a result indicating that the
DNA damage persists in the rodent brain because of inefficient
repair (Kisby et al., 2011). Oxidative DNA lesions produced by
MAM have also been shown to persist in the brain of DNA
repair (xeroderma pigmentosum A, XPA)-deficient mice (Mori
et al., 2019). XP-A patients have the most severe and earliest
forms of the neurological disorder with premature aging features
of peripheral neuropathy, progressive sensorineural hearing and
neurodegeneration (Rizza et al., 2021). The lack of predominant
neuronal cell death in the face of elevated alkyl DNA damage
in the brain of MAM-treated mice is consistent with their
persistence and inefficient removal by rodent brain DNA-repair
processes (Margison and Kleihues, 1975; Buecheler and Kleihues,
1977; Kleihues and Bucheler, 1977; Kleihues et al., 1980).
Moreover, the 60 genes that were anchored to the MAM-induced
DNA lesions (p53, NFk-B, MAPK) reported by Kisby et al. (2011)
play an important role in DNA damage-induced senescence in
neurons (Dong et al., 2014). Therefore, the alkyl and oxidative
DNA lesions produced by the cycad genotoxin MAM have been
shown to accumulate in the brain of rodents, which suggests their
persistence in neurons could lead to somatic mutations.
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The increased dependency on DNA-repair synthesis at specific
sites of the genome also increases the mutational burden in long-
lived neurons (Lodato et al., 2018). Three mutational signatures
are found in long-lived human neurons: a post-mitotic, clock-
like signature of aging, a possible developmental signature that
varies across brain regions, and a disease- and age-specific
signature of oxidation and defective DNA-damage repair (termed
genosenium). It is possible that mutations could accrue at
sites of recurrent DNA-repair synthesis within the neuronal
genome that could lead to aberrant gene expression, resulting
in neurological dysfunction and progressive neurodegeneration.
A common thread between neurodevelopmental disorders and
neurodegenerative disease is that long genes are prone to somatic
mutations (Larsen et al., 2016; Gozes, 2021; Soheili-Nezhad
et al., 2021). Long genes are also more prone to DNA damage
because DNA repair appears to be less efficient for neuronal
genes above 500K bp (Reid et al., 2021). Therefore, efficiency
of DNA repair is essential for maintaining genomic stability
and preventing genotoxin-induced mutations in neurons during
brain development (McKinnon, 2017). The cycad genotoxin
MAM might induce somatic mutations in the developing brain
through a similar mechanism (Spencer and Kisby, 2021a).

The association between mutational spectra and their
underlying mutagenic processes is complicated as mutations arise
from various DNA lesions, which are repaired by numerous
and partially redundant DNA-repair pathways (Volkova et al.,
2020). As neurons age, the activity of DNA-repair mechanisms
declines, leading to an increase in somatic mutations and the
accumulation of unrepaired lesions (Maynard et al., 2015).
Hence, there are at least two unknowns that contribute to
a mutational spectrum: DNA damage and DNA repair. The
fact that these counteracting processes jointly shape genotoxin-
induced mutagenesis is perhaps best exemplified by the interplay
of nucleotide misincorporation by replicative DNA polymerases
and mismatch repair (MMR) (Volkova et al., 2020). MMR
operates downstream of the replication fork and repairs many
mismatches caused by misincorporated nucleotides, often in a
base-specific way. If polymerase fidelity is compromised, MMR
provides a backstop and observed mutations stem from those
lesions (e.g., O6-mG, 8-oxoG) that escaped MMR or were
incorrectly repaired; the full spectrum of replication errors only
becomes visible under MMR deficiency. Both of these processes
are involved in repairing the DNA lesions produced by MAM
(Volkova et al., 2020).

Somatic mutations arising from the brain have recently
emerged as significant contributors to neurodevelopmental
disorders, including focal cortical dysplasia, cortical
malformations and schizophrenia (Baldassari et al., 2019;
Kim et al., 2021). Using advanced genetic tools and sequencing
coverage, surgical brain tissue that was isolated from patients
with FCD showed that 60% of them had brain somatic mutations
in the mTOR pathway, a pathway that plays an important role in
cortical migration (Baldassari et al., 2019; Guerrini and Barba,
2021) and is targeted by MAM in the GD-17 animal model of
schizophrenia (Perez et al., 2016).

The mutational signatures for 79 genotoxic chemicals were
recently evaluated in human iPSC cultures after controlling
for mutagenesis by reactive oxygen species (Kucab et al.,

2019); alkylating agents showed similar and unique mutational
signatures. 1,2-Dimethylhydrazine (DMH) and temozolamide
are two genotoxins with a MAM-like DNA lesion profile
that were evaluated for mutational signatures. DMH was
incubated with S9 liver extract to convert the substance
into MAM, its mutagenic metabolite (Fiala, 1975, 1977).
DMH produced de novo single substitution mutations and
deletions in human iPSC cells (Kucab et al., 2019). The DMH
de novo substitutions were due to alkylation of guanines
to O6-mG (i.e., ApG sites) whereas the deletions (loss
of T) were due to ‘slippage’ following replication of a
G > A substitution. The C > G deletions by DMH are
likely due to slippage by mismatch DNA repair, which
commonly occurs in colorectoral carcinomas (Kunkel and
Erie, 2005). Despite these mutational changes, there was
high chromosomal stability due to efficient DDR and cell-
cycle checkpoint activity in the human iPSCs subclones.
Since these studies utilized normal human iPSCs, they might
not reflect the mutational signatures in neural cells derived
from genotoxin-derived iPSCs. Such studies could reveal
the importance of early genotoxin-produced mutations (i.e.,
timing of exposure) on neurodevelopment as well as the
neurodegenerative disease process.

SUMMARY AND CONCLUSION

Among the plethora of neurodegenerative disorders, Western
Pacific ALS/PDC is uniquely important for several reasons
(Spencer et al., 2020a): (a) its etiology is primarily or exclusively
exogenous; multiple studies have failed to reveal any consistent
genetic component; (b) a large body of clinical and experimental
data point to an etiologic role for genotoxins, notably cycasin
and its active metabolite MAM; (c) traditional use on Guam of
cycad-derived food products containing cycasin/MAM indicates
that exposure would have occurred at all stages in life, including
in utero; (d) animal studies show that perinatal MAM treatment
induces cerebellar and retinal dysplasia, clinical studies show
that the anatomical hallmarks of retinal dysplasia predict risk
for ALS/PDC, and neuropathological examination of some cases
reveals evidence of ectopic and multinucleated Purkinje cells,
which corresponds to neurodevelopmental changes that occurred
in the second half of pregnancy. Unknown is whether, in
these cases, the developmental changes time the trigger for
onset of the pathological process that culminates in ALS/PDC.
Epidemiological and migration studies reveal cases that acquired
risk for ALS/PDC as children or young adults, although clinical
evidence of disease may not appear until many decades later.
ALS usually appeared in younger adults, P-D at later ages,
and AD-like dementia (G-D) in the oldest Guamanians, a
phenotypic sequence suggestive of a dose-response pattern, the
highest exposure to cycad toxins resulting in ALS and the lowest
in Guam Dementia.

While MAM may induce neuronal changes prior to and
following terminal cell division, of critical importance is that
neurons do not undergo apoptotic cell death but rather show
evidence of progressive disease. Guam ALS/PDC neurons with
tau inclusions contain mitotic markers (Husseman et al., 2000;
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Stone et al., 2011) indicative of abnormal neuronal development,
as occurs in neonatal rodents treated with cycasin or MAM
(Sullivan-Jones et al., 1994; Ferguson, 1996; Kisby et al.,
2013). These findings are consistent with emerging evidence
indicating that neurons in the brains of HD, AD and
other neurodegenerative diseases exhibit features of genomic
instability, notably binucleation, cell-cycle disturbances, and
aneuploidy (Lee et al., 2009; Fernandez-Fernandez et al., 2010;
Moh et al., 2011).

Work on the etiology of Western Pacific ALS/PDC and
related tauopathies raises some important questions. Is the
developing brain more vulnerable to cycad genotoxins (cycasin,
MAM) than the mature brain? Do the changes induced by
cycad genotoxins (e.g., DNA damage-induced replicative stress,
senescence, somatic mutations) in the developing brain herald
the onset of changes that culminate in neurodegenerative disease?
Similar ideas have been discussed in relation to other progressive
neurodegenerative disorders, such as AD (Vincent et al., 2003;
Bajić et al., 2009). Answers to these questions are likely to provide
further insight into the underlying mechanisms of ALS/PDC and
related progressive neurodegenerative diseases.

Finally, as discussed elsewhere, the molecular mechanisms
utilized by MAM are shared by other genotoxic chemicals,

including nitrosoureas, nitrosoamines, and hydrazines
(Spencer and Kisby, 2021b), exposure to which has also
been associated with neurodegenerative disease, notably
sporadic ALS (Spencer, 2019; Lagrange et al., 2021). This
should encourage intense study of the lifetime exposure
history of subjects with non-inherited neurodegenerative
disorders that, like ALS/PDC, may be triggered by
environmental genotoxins.
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