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Abstract

Helicobacter pylori is a well-known pathogen involved in the development of peptic ulcer, gastric adenocarcinoma and
other forms of gastric cancer. Recently, there has been more considerable interest in strain-specific genes located in
plasticity regions with great genetic variability. However, little is known about many of these genes. Studies suggested that
certain genes in this region may play key roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. JHP933,
a conserved putative protein of unknown function, is encoded by the gene in plasticity region of H. pylori strain J99. Here
we have determined the structure of JHP933. Our work demonstrates that JHP933 is a nucleotidyltransferase superfamily
protein with a characteristic abababa topology. A superposition demonstrates overall structural homology of the JHP933 N-
terminal fragment with lincosamide antibiotic adenylyltransferase LinA and identifies a possible substrate-binding cleft of
JHP933. Furthermore, through structural comparison with LinA and LinB, we pinpoint conservative active site residues
which may contribute to divalent ion coordination and substrate binding.
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Introduction

Helicobacter pylori is one of the most widespread bacterial

pathogens of humans, which infects approximately 50% of the

world’s population. H. pylori infection induces chronic gastric

inflammation progressing to a variety of diseases ranging in

severity from mild gastritis to peptic ulcers and some forms of

gastric cancer [1,2].

The complex pathology for various clinical outcomes has not

been fully elucidated. It has been proposed that genetic variability

may underlie the host adaptation differences of various H. pylori
strains, which is reflected in distinct disease severities [3,4].

Genome sequence comparisons in first fully sequenced H. pylori
strains J99 and 26695 revealed plasticity zones in which nearly half

the strain-specific genes of H. pylori are located [5]. With more

complete genome sequence of H. pylori strains determined, the

comparative analyses indicated that most strain-specific genes are

preferentially localized to either plasticity regions or potential

genome rearrangement sites [6]. Recently, there has been

considerable interest in the strain-specific genes found in these

plasticity regions. Studies have suggested that some genes are

associated with the pathogenesis of H. pylori related diseases [7–9].

However, little is known about the function of many of the genes

within the plasticity regions; thus, further studies are necessary to

elucidate their roles in pathogenesis.

Many previous studies have focused on the plasticity region

genes in H. pylori strain J99 (jhp914–jhp961) [10]. As studied,

jhp947 is significantly associated with duodenal ulcer and gastric

cancer; therefore jhp947 could be a good candidate marker for

gastroduodenal diseases [7]. Another pathogenicity associated

gene in the plasticity regions is dupA (jhp917–jhp918), which

encodes homologues of the VirB4 ATPase and is involved in both

an increased risk for duodenal ulcer and reduced risk for gastric

cancer [11]. Type IV secretion systems (T4SS) play important

roles in DNA transfer contributing to bacterial genetic variability.

Tfs3 and tfs4 have been successively identified and characterized

as T4SS apparatus located in two different plasticity zones of H.
pylori [6,9,12,13].

Jhp933 is one of the genes located in the plasticity region in J99

[14]. Analysis of H. pylori strains including strains 26695, J99 and

HPAG1, jhp933 has a prevalence rate of 51% [12]. The

examination of plasticity region open reading frames (ORFs) in

a small sample of gastritis and peptic ulcer patients revealed that

the jhp933 gene was found with a prevalence rate of 23.8% (5 of

21 patients) and 28.6% (4 of 14 patients), respectively [15].

The molecular details regarding the function of JHP933 are

unknown due to the lack of sequence similarity with other well-

characterized proteins. A BLAST search revealed that this protein

is well conserved in some Helicobacter [Table S1 and Fig. S1] and
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closely related species. A conserved domain search indicated that

JHP933 might be classified into the nucleotidyltransferase (NTase)

superfamily, which constitutes a highly diverse superfamily of

proteins with various important biological functions; including

chromatin remodeling, RNA polyadenylation, RNA editing, DNA

repairing, protein activity regulation, and antibiotic resistance

[16–18]. Therefore, the specific biological function of JHP933

remains to be elucidated.

Here we have determined the crystal structure of JHP933 and

revealed that JHP933 possesses a characteristic nucleotidyltrans-

ferase superfamily protein fold with a distinct, but conserved,

active site. This structural description should contribute signifi-

cantly to further uncovering the role of JHP933 in H. pylori
pathogenesis.

Materials and Methods

Protein expression, purification, and crystallization
The gene encoding the full-length JHP933 from Helicobacter

pylori strain J99 (NP_223650, 267 amino acids) was cloned into

the modified pET15b vector (Novagen) and over-expressed as

selenomethionyl protein in the E. coli strain BL21(DE3) using

methionine pathway inhibition at 293 K. Bacterial cells were lysed

by ultrasonication on ice in a buffer containing 50 mM Tris

(pH 8.0), 300 mM NaCl, 5 mM b-mercaptoethanol, 0.1% Triton-

X100 and 5% glycerol. Soluble N-terminally decahistidine-tagged

JHP933 was bound to nickel-sepharose affinity resin. The eluted

protein was further purified with size exclusion chromatography at

25 mM Tris (pH 8.0), 200 mM NaCl, 5 mM b-mercaptoethanol,

5% glycerol. The N-terminal histidine tag was removed by

cleavage with TEV protease. Purified JHP933 was concentrated to

12 mg/mL without buffer exchange. SDS polyacrylamide gel

electrophoresis of purified protein showed one major band at an

approximate molecular weight of about 31 kDa, indicating pure

full-length protein. Crystals were obtained with the sitting drop

vapour-diffusion method at 293 K with 2 mL of protein mixed

with 2 mL of a mother liquid solution containing 32% PEG4K, 0.1

M Potassium Sodium tartrate at 0.1 M HEPES (pH 7.5) buffer.

Table 1. Data collection and refinement statistics.

Data collection SeMet

Space group P 62

Cell parameters

a, b, c (Å) 90.06, 90.06, 70.87

a, b, c (u) 90, 90, 120

Resolution (Å) 2.1

Rmerge (%) 0.143 (0.756)

I/ I 18.04 (2.40)

Completeness (%) 99.7 (100)

Redundancy 7.5 (7.4)

Wilson B-factor (Å2) 36.33

Refinement

Resolution (Å) 2.100–38.005

No. reflections 18941 (1829)

Rwork/Rfree (%) 20.43/23.08

No. atoms

Protein 1867

Water 76

R.m.s.d bonds (Å) 0.008

R.m.s.d angles (u) 1.137

Ramachandran plot

Favored (%) 96.96

Allowed (%) 3.04

Outliers (%) 0.00

Rotamer outliers (%) 0.00

Numbers in parentheses refer to the highest-resolution shell.
doi:10.1371/journal.pone.0104609.t001

Figure 1. Overall structure of JHP933. Ribbon diagram of the JHP933 structure, N-terminal core domain is colored in lime and C-terminal tail
domain in cyan. a-helices are labelled with a, b-strands are labelled with b, and 310 helices are labelled with g.
doi:10.1371/journal.pone.0104609.g001
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Crystals were flash-frozen in liquid nitrogen with a mother liquid

containing 25% PEG400 as cryoprotectant.

Data collection, structure determination and refinement
The selenomethionyl single wavelength anomalous dispersion

(SAD) dataset for JHP933 were collected at a wavelength of

0.9792 Å at 100 K on the BL17U1 beamline of the Shanghai

Synchrotron Radiation Facility (SSRF) to a diffraction limit of

2.1 Å. Diffraction images and the anomalous data set were

processed and scaled with HKL2000 [19]. SAD data processing

statistics are summarized in Table 1. The locations of 6 selenium

atoms were determined and an initial model built using the

AutoSolve program of the Phenix suite [20]. The model was

manually rebuilt with Coot [21] and further refined in Phenix.

The final model contains residues 11–243, with refinement

statistics summarized in Table 1. The Ramachandran statistics

were calculated with Procheck [22]. Structure superimpositions

were complemented by CCP4 LSQ superposion [23]. Figures

were produced with Pymol (www.pymol.org). Multiple sequence

alignments were generated manually or by using ESPript [24].

Accession Numbers. Coordinates and structure factors have

been deposited in the Protein Data Bank with accession number

4O8S.

Results and Discussion

The gene encoding the full-length JHP933 from H. pylori strain

J99 was subcloned from genomic DNA, and the recombinant

protein expressed as selenomethionyl protein in E. coli and

purified using standard methods. Diffracting protein crystals were

obtained and SAD diffraction data was used to solve the structure

in the space group P62. The final crystal structure of JHP933,

containing residues 11–243, was refined at a resolution of 2.1 Å

with a Rwork and Rfree of 20.43% and 23.08%, respectively.

The overall structure of JHP933 consists of two domains: an N-

terminal core domain and a C-terminal tail domain [Fig. 1]. The

N-terminal core domain covers residues 11–170 and contains 5 a-

Figure 2. The superposition of JHP933 and LinA/Lincomycin
complex (4E8J) structures. Ribbon diagram of JHP933/LinA, with
JHP933 is colored in lime and LinA in magenta, and substrate
lincomycin of LinA is shown in ball-and-stick representation.
doi:10.1371/journal.pone.0104609.g002

Figure 3. Sequence and secondary structure comparison of JHP933 with structurally related LinA. The secondary structures of JHP93
(top row) are labeled in lime and LinA from S. haemolyticu (bottom row) in magenta. The conserved active site motifs involved in catalysis
([DE]h[DE]h, h[DE]h) and substrate binding (hG) of NTase superfamily are shadowed in gray.
doi:10.1371/journal.pone.0104609.g003
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helices (a1–a5) and 7 b-strands (b1–b7). A 310 helix (g1) connects

b-strands b5 and b6. The C-terminal tail domain is formed by a-

helices a6–a7 followed by an extended a-helix (a8). The two

domains are connected by another 310 helix (g2) between a-

helices a5 and a6.

The N-terminal core domain of JHP933 has an abababa
topology formed by a1-b1-a2-b2-a3-b5-a4, which is coincident

with the common a/b-fold structure of nucleotidyltansferase

(NTase) fold proteins (Fig. S2) [16]. For most NTase fold proteins,

the core structure is usually decorated with various additional

structural elements. In the JHP933 structure, the N-terminal core

domain contains a seven-stranded, mixed b-sheet flanked by 4 a-

helices, b1 and b2 forming antiparallel b-sheet, b2 and b5 forming

parallel b-sheet, b5 forming antiparallel b-sheet with additional b-

strands b3 and b4, and a stranded small b-sheet b6–b7 making a

big turn linked to a-helices a4–a5 [Fig. 1 and S2].

A Dali search for structural homology identified lincosamide

antibiotic adenylyltransferase LinA as the closest related structure

with a Z-score of 9.6. LinA (pdb code: 4E8J) shares 16% sequence

identity with JHP933 and superimposes with a Ca root-mean-

square deviation (rmsd) of 2.7 Å over the N-terminal domain

[Fig. 2 and 3]. The superposition of these two structures

demonstrates a surprisingly high overall homology of the core

structural elements including b-stands b1–b5 and the flanking a-

helices a1–a4 in the N-terminal domain. The structural homology

is highest in the core structure while significant differences can be

seen in the addition of accessory structural elements and the loops

which connect core elements [Fig. 2]. By comparison to the active

site of LinA complex structure, a conservative large cleft is

identified as a possible active site for substrate binding at the N-

terminal core domain of JHP933. This substrate-binding cleft is

surrounded mainly by b-strands b1, b2, b5 and a-helices a4, a2

with a size of around 13620620 Å [Fig. 4]. As LinA is a member

of NTase superfamily, this high structural similarity further

indicates that JHP933 should belong to the same superfamily.

Through sequence analyses of distinct members of NTase

superfamily, a common sequence motif of active site residues has

been noted: h[G/S], [D/E]h[D/E]h and h[D/E]h (h indicates a

hydrophobic amino acid) [17]. The corresponding residues are

G39, D55hD57 and E113 in JHP933; with G39 at the connection

of b1 and a2, D55 and D57 located on b2, and E113 is placed on

b5 structurally adjacent to b2 [Fig. 5]. To further clarify the active

site and molecular mechanism for JHP933 substrate binding, we

compared the structure of JHP933 N-terminal fragment with the

LinA/lincomycin complex, in addition to another NTase fold

protein LinB complexed with Mg2+, AMPCPP and clindamycin

(pdb code: 3JZ0) [Fig. S3] [25]. The structural superpositions

reveal that not only is the fold conserved but also position of

catalytic residues. According to the superimposed structure of

JHP933, the sites of G39, D55/D57 and E113 are strictly

conserved 3-dimensionally [Fig. 5]. Conservation of the catalytic

residues likely indicates a similar mechanism of action. Therefore,

with reference to the structural conservation of these NTase

superfamily proteins, the conserved G39 should play a crucial role

in binding of substrates, and D55/D57 and E113 likely are

involved in the coordination of divalent ions such as Mg2+, which

Figure 4. Putative substrate binding site of JHP933. Ribbon
diagram and surface representation of JHP933 are colored in lime, the
modelled substrate lincomycin of the superimposed LinA/lincomycin
complex is shown in ball-and-stick representation and colored in
magenta (LinA protein not shown).
doi:10.1371/journal.pone.0104609.g004

Figure 5. Active site conservation and substrate binding of JHP933, LinA and LinB. The C atoms of active site residues are shown in ball-
and-stick representation and distinctively colored: lime for JHP933, magenta for LinA (4E8J), and cyan for LinB (3JZ0). The substrate Mg2+ ions, as cyan
spheres, AMPCPP and clindamycin, in yellow, are from LinB complex structure.
doi:10.1371/journal.pone.0104609.g005
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chelates the phosphates of a nucleoside triphosphate substrate and

plays a crucial role in activation of the second substrate’s hydroxyl

group [16,25]. However, residues responsible for second substrate

binding of LinB or LinA are not conserved in JHP933, likely

reflecting differences in identity and structure of second substrates.

However, the overall structure clearly confirms that JHP933

belongs to the NTase superfamily with the characteristic structural

features well maintained.

In summary, the crystal structure of JHP933 of H. pylori strain

J99 described here presents precise evidence to confirm JHP933 as

a member of the nucleotidyltransferase superfamily. The structural

information demonstrates that JHP933 conserves the overall fold

of NTase superfamily proteins with an abababa topology and

catalytic residues for substrate binding within conservative active

site. Interestingly, from this large superfamily, we can observe that

the proteins take a common core conformation though they

display little sequence similarity and play diverse physiological

roles.

Most NTase fold proteins can transfer nucleoside monophos-

phate (NMP) from substrate nucleoside triphosphate (NTP) to the

hydroxyl group of their second substrate, such as a small molecule,

nucleic acid or protein [17]. It is also worth noting that the overall

fold of JHP933 and LinA is highly similar, which leads us to

consider a role for JHP933 in lincosamide antibiotic resistance. A

study of primary clindamycin resistance reported a prevalence rate

of 13.1% in H. pylori strains from dyspeptic patients [26]. To date,

mutations in the 23S rRNA gene are a clinically reported

mechanism of resistance to lincosamide antibiotics in H. pylori
[27]. However, for many bacteria, producing enzymes to modify

antibiotics is a common mechanism of resistance for a number of

classes of antibiotics. Given its structural similarity to LinA, it is

possible that JHP933 may represent a, yet unobserved, mechanism

of resistance; using the nucleotidyl transfer to modify antibiotics

and inhibit their activity. However, this hypothesis needs further

investigation as the putative substrate for JHP933 remains

unknown. For a thorough understanding of JHP933’s role in

pathogenesis of H. pylori related diseases, this structural model

represents a critical step in the description of JHP933 function.

Supporting Information

Figure S1 A sequence alignment of JHP933 from strain J99 and

the 20 closest orthologs (corresponding accession number see

Table S1) found in other H. pylori.
(TIF)

Figure S2 Comparison of secondary structures of JHP933 and

other nucleotidyltransferase fold proteins. JHP933 structure (top

row) noting secondary structure elements and additional domains

aligned with some representative NTase fold proteins of known

structure (inside the frame and marked with pdb code, UniProtKB

ID, and source organism). JHP933’s secondary structure elements

and the positions of conserved active site motifs involved in

substrate binding (hG) and catalysis ([DE]h[DE]h, h[DE]h) are

marked.

(TIF)

Figure S3 The sequence alignment for NTase superfamily core

fragment of JHP933, LinA (UniProtKB ID: P06107, from S.
haemolyticu) and LinB (UniProtKB ID: Q9WVY4, from Entero-
coccus faecium) from the top row to the bottom row. The

secondary structural elements of JHP933 are illustrated.

(TIF)

Table S1 A BLAST search of JHP933 (marked with accession

number) in fully sequenced H. pylori genomes.

(DOCX)
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