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Introduction
Lung adenocarcinoma (LUAD) is the most com-
mon subtype of non-small cell lung cancer 
(NSCLC).1 Currently, treatment decisions for 
individual LUAD patients are based mainly on 
patient- and cancer-specific factors, such as 
tumour-node-metastasis (TNM) staging and dif-
ferentiation grade. However, the predictive power 
and accuracy for prognosis are often insufficient. 
Thus, reliable predictors that can accurately esti-
mate prognosis would bring tremendous value in 
guiding the management of LUAD.2 For exam-
ple, better classification of early-stage LUAD after 
surgery should be used because several large rand-
omized studies suggested that most patients who 
were sectioned as pathological stage I (p-stage I) 

and received adjuvant therapy showed no overall 
survival benefit among unselected patients.3,4 The 
5-year overall survival remains unfavourable in 
patients with p-stage I, with a rate ranging from 
73% in Ia to 58% in Ib.5 Therefore, in addition to 
traditional strategies, there is an urgent need to 
seek more accurate predictors for early-stage 
LUAD to discriminate high-risk subsets that 
could benefit from systemic treatment.

Hypoxia, or lack of oxygen, is a feature of most 
solid tumours.6 The hypoxic environment in 
tumours is a result of an imbalance between 
decreased oxygen supply and increased oxygen 
demand, which is widely considered to be associ-
ated with resistance to therapies, advanced 
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aggressiveness and poor clinical outcomes.7–9 
Although several studies have indicated that 
intratumoural hypoxia and increased hypoxia-
inducible factor 1-alpha (HIF1A) expression are 
firmly associated with cancer progression and 
poor survival in lung adenocarcinoma,10–12 no 
hypoxia-based method is available that can be 
used to identify high-risk patients in early stages.

In this study, we not only identified hypoxia 
among the various hallmarks of cancer as a domi-
nant risk factor for overall survival in relatively 
early-stage (p-stage I and II) LUAD but also com-
bined different methods to screen for robust bio-
markers and establish a hypoxia-related gene 
signature for prognosis. In addition, we validated 
the prognostic value of the gene signature in four 
independent cohorts. Finally, an integrated model 
based on the gene signature and clinicopathologi-
cal features was developed to improve the predic-
tive power and accuracy.

Material and methods

Dataset preparation and data processing
A total of 1461 stage I–II LUAD patients with 
clinical annotations and follow-up information 
were included in our study across different plat-
forms. The microarray dataset GSE72094 was 
downloaded from GEO (http://www.ncbi.nlm.
nih.gov/geo/) and was used as the training  
set. This dataset was produced by a Rosetta/
Merck Human RSTA Custom Affymetrix 2.0 
microarray and contained 321 stage I–II LUAD 
patients meeting the criteria. Datasets GSE31210, 
GSE30219, GSE37745, GSE50081 and 
GSE29013 from the same chip platform 
(Affymetrix HG-U133 Plus 2.0 Array) were inte-
grated into a new cohort and were used as the first 
validation set, which contained a total of 548 I–II 
LUAD patients meeting the criteria. All raw CEL 
files from the five datasets were downloaded and 
normalized using a robust multichip average 
(RMA) algorithm.13 Moreover, the RNA-Seq by 
Expectation-Maximization (RSEM) normalized 
RNA-seq data of 389 stage I–II LUAD patients 
were accessed from The Cancer Genome Atlas 
(TCGA) and were used as the second validation 
set. In addition, 111 LUAD patients from 
GSE42127 (Illumina HumanWG-6 v3.0 expres-
sion beadchip) and 92 LUAD patients from 
GSE13213 (Agilent-014850 Whole Human 
Genome Microarray 4 × 44K G4112F) were used 
as another two independent validation cohorts. 

The stage distribution in each cohort is shown in 
Supplemental Table S1. All microarray and 
RNA-seq data included in our study were nor-
malized and log2 transformed. 

Candidate selection and signature 
establishment
In brief, the performances of cancer hallmarks in 
the training set were quantified by a single-sample 
gene set enrichment analysis (ssGSEA) algorithm 
(R package ‘gsva’) based on transcriptome profiling 
data and hallmark gene sets from the Molecular 
Signatures Database (MSigDB).14,15 A univariate 
Cox proportional-hazards (Cox-PH) regression 
model was used to evaluate the significance of dif-
ferent cancer hallmarks in early-stage LUAD using 
the R package ‘survival’. The package ‘wgcna’ 
(weighted gene co-expression network analysis) was 
used to construct a scale-free co-expression net-
work and identify the module that was most corre-
lated with hypoxia based on transcriptome profiling 
data and ssGSEA scores.16 Gene significance (GS) 
quantified the association of individual genes with 
hypoxia ssGSEA score, and module membership 
(MM) represented the correlation between module 
eigengenes and gene expression profiles. With a 
threshold of the p value of GS <0.0001 and the p 
value of univariate Cox regression <0.01, 211 can-
didates from the ‘hypoxia module’ were identified. 
Subsequently, a least absolute shrinkage and selec-
tion operator (LASSO) Cox regression model was 
used to further screen for the most robust prognos-
tic markers.17 A hypoxia-related risk score (HRS) 
was established by including normalized gene 
expression values weighted by their LASSO Cox 
coefficients as follows:

HRS Coefficient mRNA

Expression mRNA

i i

i

= ∑

×

( )
( ).

Bioinformatic and statistical analyses
GSEA18 was performed to validate the hypoxic sta-
tus in the high-HRS group with the gene set of 
hypoxia from MSigDB. IBM SPSS Statistics 20 
(IBM Corp., Armonk, NY, USA), GraphPad 
Prism 8.0 (GraphPad Software Inc, San Diego, 
CA, USA), Stata 12 (StataCorp LLC, TX, USA) 
and R software (version 3.5.2, http://www.r-pro-
ject.org) were used to analyse data and plot graphs. 
The Z-score method was used to normalize 
ssGSEA scores and HRS when necessary. The 
Kaplan–Meier method was used to draw survival 
curves, and the log-rank test was used to evaluate 
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differences. A Cox proportional-hazards regres-
sion model was used to evaluate the significance  
of each parameter to overall survival. Time-
dependent receiver operating characteristic 
(tROC) analysis was performed to measure the 
predictive power with the R package ‘survival-
ROC’,19 and the areas under the curve at different 
time points [AUC(t)] of all the variables were 
compared. Meta-analysis (I2 > 30%, random-
effects model) was performed to evaluate the prog-
nostic value in the pooled cohort. Non-negative 
matrix factorization (NMF) consensus clustering 
was used to divide one cohort without a full-scale 
gene signature expression pattern into different 
clusters according to the best k value with the R 
package ‘nmf’.20 Recursive partitioning analysis 
(RPA) was performed to construct a decision tree 
for risk stratification with the R package ‘rpart’.21 A 
nomogram and a calibration curve were plotted 
using the R package ‘rms’.22 Codes for important 
methods and algorithms involved in this study 
have been integrated and uploaded as a supple-
mental file. A webtool GSCALite (http://bioinfo.
life.hust.edu.cn/web/GSCALite/) was used to ana-
lyse the relationships between IC50 data of differ-
ent molecules and the gene signature expression 
profile in lung adenocarcinoma cell lines.23 
Student’s t test or one-way analysis of variance was 
used to analyse differences between groups in vari-
ables with a normal distribution.

Results

Schematic diagram of the study design
First, hypoxia was identified as the primary risk 
factor for overall survival in early-stage LUAD 
patients among various cancer hallmarks (Figure 
1A). Then, WGCNA, univariate Cox regression 
analysis and the LASSO algorithm were combined 
to screen for promising candidates and establish a 
robust hypoxia-related gene signature to predict 
survival (Figure 1B). Subsequently, the prognos-
tic value of the gene signature was evaluated in the 
training and four independent validation cohorts. 
In addition, meta-analysis was performed to fur-
ther validate its prognostic power, and response to 
therapies was evaluated to investigate whether the 
gene signature is a promising marker for treatment 
outcome (Figure 1C). Finally, a decision tree was 
constructed to improve risk stratification for sur-
vival, and a nomogram was built based on HRS 
and other clinicopathological variables to quantify 
risk assessment and survival probability for indi-
vidual patients (Figure 1D).

Hypoxia is identified as the primary risk factor 
for overall survival in early-stage LUAD
Based on ssGSEA scores of cancer hallmarks and 
overall survival information in the training set, the 
Cox coefficient of each hallmark was calculated 
and ranked. Compared with other cancer hall-
marks, such as the cell cycle, signalling pathways, 
epithelial–mesenchymal transition, angiogenesis, 
apoptosis, etc., hypoxia exhibited the most pow-
erful effect on survival (Figure 2A). Figure 2B 
shows that Z-scores of the hypoxia ssGSEA were 
significantly elevated in dead patients compared 
with living patients during follow up. In the train-
ing set, 321 patients were divided into two equal 
parts according to the median, and the high-Z-
score group exhibited worse overall survival com-
pared with the lower group, with hazard ratio 
(HR) = 2.474 and p = 0.0001 (Figure 2C).

Establishment of a hypoxia-related gene 
signature for prognosis
WGCNA was performed with whole-transcrip-
tome profiling data and hypoxia ssGSEA 
Z-scores in the training set. With a power of β = 4 
as the optimal soft threshold to ensure a scale-
free co-expression network (Supplemental 
Figure S1), a total of 47 non-grey modules were 
generated (Figure 3A). Among these modules, 
the red module depicting the highest correlation 
(r = 0.67, p = 5e−42) was considered the most 
correlated with hypoxia (Figure 3B). With a 
threshold of p value for GS of <0.0001, hub 
genes extracted from the red module were sub-
mitted to univariate Cox regression analysis. 
With a threshold of p value for uni-Cox of <0.01, 
211 promising candidates (91 protective and 
120 risk markers) were identified (Figure 3C). 
Subsequently, the LASSO Cox regression model 
was used to identify the most robust markers for 
prognosis. Ten-fold cross-validation was applied 
to overcome over-fitting, with the optimal λ 
value of 0.0617 selected (Figure 3D). An ensem-
ble of 16 genes (PPARD, PACS1, IGFL2, 
GRIN2D, S100A2, PIN4, KDM6A, ELAC1, 
INPP5J, NR0B2, BCMO1, DNAJC28, PDIK1L, 
LRRC31, TXLNG, WDSUB1) remained with 
their individual nonzero LASSO coefficients 
(Figure 3E), and the distribution of LASSO 
coefficients of the gene signature is shown  
in Figure 3F and Supplemental Table S2. Finally, 
the HRS formula was established as follows:  
∑i Coefficient (mRNAi) × Expression (mRNAi).  
The expression level of each gene was log2 
normalized.
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Figure 1. Schematic diagram of the study design. (A) Hypoxia was identified as the primary risk factor for 
overall survival in early-stage LUAD patients among various hallmarks of cancer. (B) Combined methods were 
used to establish a robust hypoxia-related gene signature for prognosis. (C) The prognostic value of the gene 
signature was validated in different cohorts. (D) Clinical application.
Cox-PH, Cox proportional-hazards; LASSO, least absolute shrinkage and selection operator; LUAD, lung adenocarcinoma; 
ssGSEA, single-sample gene set enrichment analysis; tROC, time-dependent receiver operating characteristic; WGCNA, 
weighted gene co-expression network analysis.
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HRS serves as a risk factor for overall survival 
in each cohort
In the training set, five risk markers were shown to 
positively correlate with HIF1A expression, while 
the other 11 protective markers exhibited negative 
correlations with HIF1A (Figure 4A). With the 
gene set of hypoxia from MSigDB, GSEA con-
firmed the hypoxic status in the high-HRS group 
compared with the low-HRS group (Figure 4B). 
Compared with living patients, the risk score was 
significantly elevated in patients who died during 
follow up (Figure 4C). Kaplan–Meier analysis 
revealed that patients with higher HRS exhibited 
worse prognosis than those with lower scores 
(HR = 4.887, p < 0.0001, Figure 4D). Among var-
ious clinicopathological variables, multivariate 
Cox regression modelling demonstrated that 
AJCC TNM stage (HR = 1.8732, p = 0.011) and 
HRS (HR = 4.302, p < 0.001) were two independ-
ent risk factors for overall survival in the training 
cohort (Figure 4E). Furthermore, tROC analysis 

showed that HRS was the most accurate predictor 
for overall survival (Figure 4F).

To confirm the prognostic robustness of the 
hypoxia-related gene signature in different series, 
it was further validated in four independent exter-
nal cohorts, which were described in the previous. 
Similarly, in the validation I and II cohorts, 
hypoxic status was confirmed in the high-HRS 
group with the hypoxia gene set using GSEA 
(Figure 5A, E), and HRS was significantly ele-
vated in dead patients compared with living ones 
(I: p < 0.0001, Figure 5B; II: p = 0.0242, Figure 
5F). Kaplan–Meier analysis demonstrated that 
high HRS predicted worse overall survival than 
lower HRS (I: HR = 3.510, p < 0.0001, Figure 
5C; HR = 2.098, p < 0.0001, Figure 5G). 
Moreover, HRS acted as an independent risk fac-
tor for overall survival in multivariate Cox regres-
sion analysis (I: HR = 4.219, p < 0.001, Figure 
5D; II: 1.874, p = 0.002, Figure 5H). In the 

Figure 2. Hypoxia is identified as the primary risk factor for survival. (A) Univariate Cox regression analysis indicated that hypoxia 
was the primary risk factor among various hallmarks of cancer. (B) Hypoxia ssGSEA scores were significantly elevated in patients 
who died during follow up. (C) Kaplan–Meier analysis showed that patients with higher ssGSEA scores of hypoxia exhibited worse OS.
EMT, epithelial–mesenchymal transition; IFN, interferon; OS, overall survival; PI3-Akt-mTOR, phosphatidylinositol-3-kinase-Akt-mammalian target 
of rapamycin; ssGSEA, single-sample gene set enrichment analysis; TGF, transforming growth factor.
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validation III and IV cohorts, some genes included 
in the gene signature were missing due to the dif-
ferences in platforms. Thus, NMF consensus 
clustering was used to divide one cohort into dif-
ferent groups according to the best k value based 
on the remaining expression pattern of the gene 
signature (Figure 5I, K). As shown in Figure 5J 
and L, overall survival differed between NMF-
derived groups. Moreover, stage frequency in dif-
ferent signature groups or clusters in each cohort 
was shown in Supplemental Figure S2.

HRS acts as an indicator of worse prognosis in 
the pooled cohort and a promising marker of 
therapeutic resistance
Meta-analysis was performed to analyse the prog-
nostic value of the hypoxia-related gene signature 
in the pooled cohort integrating the training 

cohort and three validation cohorts, which were 
divided into two groups. As shown in Figure 6A, 
meta-analysis demonstrated that among the 1369 
patients, those with higher HRS exhibited worse 
prognosis than those with lower HRS (pooled 
HR = 3.11, 95% CI 2.16–4.48). Then, 1096 
patients with detailed TNM stage (Ia, Ib, IIa or 
IIb) and HRS were extracted for further investi-
gation. HRS Z-scores were significantly elevated 
in those patients who died during follow up, espe-
cially in the shorter-survival groups (Figure 6B). 
HRS also discriminated high-risk patients with 
poor prognosis in different subgroups, including 
different clinicopathological features (sex, age 
and p-stage) and epidermal growth factor recep-
tor (EGFR) mutation status (Figure 6C–F).

Considering tumour hypoxia always promotes 
resistance to therapy, we investigated whether the 

Figure 3. Establishment of a hypoxia-related gene signature. (A) WGCNA was performed with whole-transcriptome profiling data 
and hypoxia ssGSEA Z-scores. (B) A total of 47 non-grey modules were identified. The red module depicting the highest correlation 
(r = 0.67, p = 5e−42) was considered the most correlated with hypoxia. (C) A total of 211 promising candidates were identified among 
hub genes extracted from the red module. (D–E) The LASSO Cox regression model was used to identify the most robust markers, 
with an optimal λ value of 0.0617. (F) Distribution of LASSO coefficients of the hypoxia-related gene signature.
LASSO, least absolute shrinkage and selection operator; ssGSEA, single-sample gene set enrichment analysis; WGCNA, weighted gene co-expression 
network analysis.
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gene signature is a marker of therapeutic resistance. 
As shown in Figure 7A, GSEA predicted that 
higher HRS is significantly associated with resist-
ance to different therapies, including chemother-
apy, radiotherapy and targeted therapy in the 
training set. A landscape plot was generated by 
GSCALite to depict the relationships between drug 
responses and gene signature expression (Figure 
7B). The bubble heatmap showed that some genes 
exhibited significant correlations with IC50 data in 
LUAD cell lines. In detail, S100A2, PACS1 and 
PPARD conferred drug resistance, while PDIK1L, 
TXLNG and ELAC1 exhibited drug sensitivity, 
which were consistent with the results in Figure 3F. 
Subsequently, treatment information and clinical 
outcomes from TCGA were used to validate the 
prediction. After initial treatment of surgery, the 
ratio of the status of progressive disease and partial 
remission or stable disease in higher HRS group 

was greatly elevated compared with lower HRS 
group (Figure 7C). Moreover, patients with higher 
HRS exhibited worse overall survival among those 
who received adjuvant therapies, including 
chemo(radio)therapy (HR = 2.334, p = 0.0049; 
Figure 7D) and targeted therapy (HR = 2.480, 
p = 0.0162; Figure 7E).

Combination of the hypoxia signature and 
clinicopathological features improves risk 
stratification and survival prediction
A total of 1096 patients with four parameters 
available, age (>70 or ⩽70), sex (male or female), 
TNM stage (Ia, Ib, IIa or IIb) and HRS (low or 
high), were used to construct a decision tree to 
improve risk stratification for overall survival. As 
shown in Figure 8A, only TNM stage and HRS 
remained in the decision tree, with three different 

Figure 4. The gene signature predicts worse survival in the training set. (A) Correlations of the gene signature with HIF1A 
expression. (B) GSEA confirmed the hypoxic status in the high-HRS group. (C) HRS was significantly elevated in patients who 
died during follow-up. (D) Kaplan–Meier analysis showed that patients with higher HRS exhibited worse OS. (E) Multivariate Cox 
regression analysis demonstrated that HRS was an independent risk factor for OS. (F) tROC analysis showed that HRS was an 
accurate variable for survival prediction.
GSEA, gene set enrichment analysis; HR, hazard ratio; HRS, hypoxia-related risk score; OS, overall survival; tROC, time-dependent receiver operating 
characteristic.
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risk subgroups identified. Interestingly, we 
observed that HRS replaced TNM staging in the 
node of stage I. As shown in the Kaplan–Meier 
curve in Figure 8B, overall survival differed mark-
edly between the three risk subgroups. Among 
stage I patients, HRS was the most important pre-
dictor of overall survival in the multivariate Cox 
regression model (Figure 8C).

With the goal of quantifying the risk assessment 
and survival probability for individual LUAD 
patients in the early stage, a nomogram was built 

with HRS together with other clinicopathological 
features (Figure 8D). In the calibration analysis, 
the prediction line (red line and pink area) of the 
nomogram for 3-year survival probability was 
extremely close to the ideal performance 
(45-degree dotted line) (Figure 8E), suggesting a 
high level of accuracy of the nomogram. When 
compared with other features, the nomogram 
exhibited the most powerful and stable ability for 
survival prediction, with an average AUC above 
0.7, much better than the pathological TNM 
staging (Ia, Ib, IIa and IIb) (Figure 8F).

Figure 5. Validation of the gene signature in different series. (A, E) GSEA confirmed the hypoxic status in the validation I and II 
cohorts. (B, F) HRS was significantly elevated in deceased patients in the validation I and II cohorts. (C, G) Patients with higher HRS 
exhibited worse prognosis in the validation I and II cohorts. (D, H) Multivariate Cox regression analysis demonstrated that HRS was 
an independent risk factor for overall survival in the validation I and II cohorts. (I, K) The best k value was chosen for NMF consensus 
clustering in the validation III and IV cohorts. (J, L) Survival differed greatly in NMF-derived clusters based on the expression pattern 
of the gene signature.
GSEA, gene set enrichment analysis; HR, hazard ratio; HRS, hypoxia-related risk score; NMF, non-negative matrix factorization); OS, overall survival.

https://journals.sagepub.com/home/tam


J Sun, T Zhao et al.

journals.sagepub.com/home/tam 9

Discussion
Hypoxia, a hallmark of solid tumours, is a result of 
an imbalance between insufficient oxygen supply 
and increased oxygen demand associated with 
high proliferative rates.24 Tumour hypoxia has 
wide-ranging effects, causing various biological 
processes, such as metabolic alteration, angiogen-
esis, and metastasis.25–27 Significant crosstalk 
between hypoxia and other cancer hallmarks in 

solid cancer contributes to malignant progression 
and attenuated antitumour responses, leading to 
resistance to therapies and poor clinical out-
comes.28,29 These observations indicate why 
hypoxia has prognostic value and why hypoxia has 
become an attractive therapeutic target.30–32 To 
date, some hypoxia gene signatures for prognosis 
have been developed in different cancer types, 
such as head and neck,33 breast,34 prostate,35 and 

Figure 6. The gene signature serves as a valuable marker for poor survival in the pooled cohort and subgroups. (A) Meta-analysis. 
(B) HRS Z-scores were significantly elevated in deceased patients, especially in shorter-survival groups. (C–F) HRS discriminated 
high-risk patients in different clinicopathological including p-stage, gender, age and EGFR status subgroups.
EGFR, epidermal growth factor receptor; HR, hazard ratio; HRS, hypoxia-related risk score; NMF, non-negative matrix factorization; OS, overall 
survival.
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Figure 7. The gene signature serves as a promising marker of resistance to different treatments. (A) GSEA predicted that the gene 
signature was associated with therapeutic resistance. (B) A landscape plot was generated to depict the relationships between IC50 
data of different molecules and the gene signature expression profile in LUAD cell lines. (C) The ratio of worse outcomes after 
surgery is greatly elevated in higher HRS group. (D, E) Patients with higher HRS exhibited worse OS among those who received 
adjuvant therapies including chemo(radio)therapy and targeted therapy.
CR, complete remission; GSEA, gene set enrichment analysis; HR, hazard ratio; HRS, hypoxia-related risk score; IC50, half maximal inhibitory 
concentration; LUAD, lung adenocarcinoma; NMF, non-negative matrix factorization; OS, overall survival; PD, progressive disease; PR, partial 
remission, SD stable disease.

bladder cancer.36 However, unavoidable deficien-
cies have marred previous studies. First, some of 
these hypoxia-related gene signatures were roughly 
established based on some literature-reported 
individual ‘hypoxia genes’, ignoring the fact that 
hypoxia is a cancer hallmark involving gene net-
works. Second, few established hypoxia-related 
molecular signatures have been integrated with 
the traditional prognostic system to optimize the 
clinical routine.

In this study, among various hallmarks of cancer, 
we identified hypoxia as the primary risk factor 

for overall survival using ssGSEA and Cox-PH 
regression models in relative early-stage (p-stage I 
and II) LUAD, which lacks reliable predictors for 
prognosis. WGCNA was performed to identify 
hypoxia-related gene modules based on transcrip-
tome profiling data, and a univariate and LASSO 
Cox regression model was used to screen robust 
prognostic biomarkers to establish a hypoxia-
related gene signature. The risk score derived 
from the hypoxia-related gene signature is called 
the HRS in our study. Subsequently, the prog-
nostic value of the gene signature was validated  
in four independent cohorts across different 
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platforms. In the meta-analysis and subgroup 
analysis, HRS still had the capacity to discrimi-
nate high-risk patients, suggesting it can serve as 
a reliable risk factor in pooled populations and 
similar-stage subgroups. In addition, in the adju-
vant therapy groups, patients with higher HRS 
exhibited worse survival compared with lower-
HRS patients, which might have resulted from 
the gene signature-derived resistance to therapies, 

indicating the gene signature also serves as a 
promising marker of therapeutic resistance in 
early-stage LUAD patients.

A decision tree was constructed to improve risk 
stratification in combination with clinicopathologi-
cal features. In the decision tree, TNM staging still 
served as the major determinant. However, in the 
p-stage I node, the decision tree indicated that the 

Figure 8. Combination of the hypoxia signature and clinicopathological features improves risk stratification 
and survival prediction. (A) A decision tree was constructed to improve risk stratification. (B) Performance 
of the decision tree. (C) Among p-stage I patients, HRS was the most important risk factor for OS. (D) A 
nomogram was constructed to quantify risk assessment for individual patients. (E) Calibration analysis 
indicated a high accuracy of survival prediction. (F) tROC analysis demonstrated that the nomogram was the 
most stable and powerful predictor for OS among all the clinical variables.
HR, hazard ratio; HRS, hypoxia-related risk score; OS, overall survival; tROC, time-dependent receiver operating 
characteristic.
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risk stratification would be improved if the Ia/Ib 
staging was replaced with HRS. Moreover, in the 
pooled p-stage I cohort, the multivariate Cox 
regression analysis showed that HRS exhibited a 
considerable power of risk prediction for overall 
survival, even more significant than age and p-stage 
(Ia or Ib). The decision tree and multivariate Cox 
results jointly suggest that the hypoxia gene signa-
ture truly serves as a powerful risk factor for overall 
survival in early-stage LUAD patients, especially 
in p-stage I. To quantify the risk assessment for 
individual patients, a nomogram was generated 
including HRS with other clinicopathological fea-
tures. Calibration analysis revealed that the nomo-
gram exhibited an accurate prediction that was 
extremely close to actual survival. In addition, 
compared with any other single variable, tROC 
analysis demonstrated that the nomogram had the 
most stable and powerful ability for survival pre-
diction at different time points during follow up.

Some biomarkers involved in our gene signature 
have been studied in many cancers, but most of 
them are rarely investigated in tumour hypoxia. For 
example, PPARD, a biomarker with the largest risk 
coefficient in our study, has been widely studied in 
various cancers, with comprehensive oncogenic 
functions to promote tumourigenesis, proliferation 
and metastasis.37–39 S100A2 induces metastasis in 
NSCLC and was reported as a prognostic marker 
for patients with stage I NSCLC.40,41 KDM6A, a 
histone demethylase, served as a protective bio-
marker in our study. KDM6A directly senses oxy-
gen to control chromatin and cell fate,42 and loss of 
KDM6A contributes to the malignant phenotype 
by amplifying PRC2-regulated transcriptional 
repression in bladder cancer and conferring drug 
resistance in acute myeloid leukaemia.43,44 In sum-
mary, the biological functions associated with 
tumour hypoxia of the novel gene signature still 
require further investigation in LUAD.

Some limitations to our study should be acknowl-
edged. First, this is a retrospective study, so the 
prognostic robustness and clinical usefulness of 
the hypoxia-related gene signature need further 
validation in larger prospective trials. Second, 
further experimental studies are needed to eluci-
date tumour hypoxia-related biological functions 
underlying the gene signature in LUAD.

Conclusion
In summary, we established a novel hypoxia-
related gene signature to discriminate high-risk 

patients with early-stage LUAD. Integrating this 
with clinicopathological features, we constructed 
a decision tree to optimize risk stratification for 
overall survival and a nomogram to quantify risk 
assessment for individual patients. The hypoxia 
gene signature-based model could be a useful tool 
to select high-risk early-stage patients who may 
benefit from adjuvant therapies and thus to facili-
tate personalized management of LUAD.
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