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Current perspectives

Neutrophils in respiratory syncytial virus infection: A target
for asthma prevention
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Utrecht, The Netherlands
Lower respiratory tract infections by respiratory syncytial
virus (RSV) are the foremost cause of infant hospitalization
and are implicated in lasting pulmonary impairment and the
development of asthma. Neutrophils infiltrate the airways of
pediatric patients with RSV-induced bronchiolitis in vast
numbers: approximately 80% of infiltrated cells are
neutrophils. However, why neutrophils are recruited to the
site of viral respiratory tract infection is not clear. In this
review we discuss the beneficial and pathologic contributions
of neutrophils to the immune response against RSV infection.
Neutrophils can limit viral replication and spread, as well as
stimulate an effective antiviral adaptive immune response.
However, low specificity of neutrophil antimicrobial
armaments allows for collateral tissue damage. Neutrophil-
induced injury to the airways during the delicate period of
infant lung development has lasting adverse consequences for
pulmonary architecture and might promote the onset of
asthma in susceptible subjects. We suggest that pharmacologic
modulation of neutrophils should be explored as a viable
future therapy for severe RSV-induced bronchiolitis and
thereby prevent the inception of subsequent asthma. The
antiviral functions of neutrophils suggest that targeting of
neutrophils in patients with RSV-induced bronchiolitis is
best performed under the umbrella of antiviral treatment.
(J Allergy Clin Immunol 2015;136:838-47.)
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Respiratory syncytial virus (RSV) is a ubiquitous seasonal
human pathogen that, on infection of the upper respiratory tract,
causes cold-like symptoms in most healthy adults and children.
At 2 years of age, nearly all children will have been infected with
RSVat least once. Lower respiratory tract infections (LRTIs) by
RSVare amajor cause of morbidity andmortality among infants.
Annual RSV-associated mortality is estimated at a quarter
million deaths per year, of which 99% occur in developing
countries, and it accounts for approximately 7% of deaths among
infants younger than 1 year of age.1 In the developed world 1% to
2% of infants are admitted to the hospital with RSV-induced
bronchiolitis; therefore it is the foremost cause of infant hospi-
talization during thewinter season.2,3 Severe RSV-induced bron-
chiolitis in infancy is linked to impaired lung function in
adulthood and causally implicated in the onset of recurrent
wheezing and asthma.4-7

Massive pulmonary neutrophil infiltration is observed in
pediatric patients with RSV-induced bronchiolitis.8-10 In the
lower airways neutrophils account for a median of 76% of infil-
trated cells and a median of 93% in the upper airways, as
measured in bronchoalveolar lavage fluid and nasopharyngeal as-
pirates, respectively.9 Similarly, postmortem histopathologic ana-
lyses of fatal RSV-related LRTI cases reveal extensive neutrophil
infiltration of the airway wall and lumen, as well as the alveoli.11

This begs the question of why neutrophils are recruited en masse
to the site of viral respiratory tract infection. Awide variety of in-
flammatory stimuli purposefully attract neutrophils to the lungs,
such as to clear invading bacteria, apoptotic debris, or foreign sub-
stances. Could neutrophils also function protectively during RSV
infection?
NEUTROPHILS AND RSV-INDUCED
BRONCHIOLITIS DISEASE SEVERITY

Neutrophils, the most abundant leukocytes in human
circulation, are classically portrayed as unsophisticated,
first-line foot soldiers with a role limited to the engulfment
and subsequent elimination of invading extracellular bacteria
and fungi. In this view lung-infiltrated neutrophils seem out
of place during RSV infection. The promiscuous cytotoxicity
of neutrophil antimicrobial armaments might even potentiate
virus-induced lung injury.12 Indeed, the degree of neutro-
philic inflammation correlates with disease severity in
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patients with RSV-induced bronchiolitis.13 Moreover, a common
single nucleotide polymorphism just upstream of the IL-8–
encoding gene that is tentatively associated with increased pro-
duction of IL-8, a potent neutrophil chemoattractant, is more
frequent among infants with severe RSV-induced bronchiolitis,
in particular among infants who lack other known risk factors.14

Increased IL-8 levels in the airways of patients with bronchiolitis
are linked to increased disease severity, as measured based on
oxygen saturation, Silverman score, and respiratory rate.15,16

Genes related to neutrophil function, such as those encoding
a-defensin-1 and elastase, are overexpressed in the blood of
patients with RSV-induced bronchiolitis, and expression levels
positively correlate with disease severity.17 Thus neutrophils are
thought to contribute to lung injury in patients with severe
RSV-induced bronchiolitis, but their exact role in pathogenesis
is still unclear.
CLINICAL LINK BETWEEN RSV-INDUCED
BRONCHIOLITIS AND ASTHMA INCEPTION

A large body of epidemiologic evidence, including prospective
case-control and cohort studies, implicates RSV-induced bron-
chiolitis during infancy in the inception of recurrent wheeze and
lasting lung function impairment.5-7,18-31 However, the associa-
tion between wheeze and a history of RSV-induced bronchiolitis
during infancy partially subsides with age.7,32 It is not clear to
what extent RSV-induced bronchiolitis is related to increased
risk of asthma at school age or beyond. Nonetheless, nearly half
of children with severe RSV-induced bronchiolitis present with
asthma at 6 years of age.5 Estimates indicate that early-life
RSV-induced bronchiolitis is responsible for up to 13% of child-
hood asthma cases.24 Moreover, smoking adults with RSV-
induced bronchiolitis during infancy, but not those without LRTIs
in early life, have an increased risk of persistent asthma.26 How-
ever, association does not necessarily imply causation. Severe
RSV-induced bronchiolitis could occur mainly in infants with
pre-existing susceptibility to asthma development. Common ge-
netic and/or environmental factors appear to underlie predisposi-
tion to both diseases.21

We recently addressed the issue of causality in a random-
ized, double-blind, placebo-controlled clinical trial with RSV
immunoprophylaxis of healthy preterm infants, in which we
demonstrated a causal relationship between RSV-induced
bronchiolitis and the development of recurrent wheeze.4

Although wheezing in early life is a strong risk factor for
asthma in (early) adulthood,33 asthma trials are needed to
provide conclusive evidence that RSV disease is causally
related to persistent asthma.
NEUTROPHILIC LUNG INFLAMMATION AND
ASTHMA INCEPTION

Neutrophils play an important role in asthma exacerbations by
inducing mucus hypersecretion and airway remodeling, which
result in acute reversible and progressive irreversible airway
obstruction, respectively.34,35 Although neutrophils are thought to
affect lung function decrease, their role in asthma inception dur-
ing viral bronchiolitis is understudied. Nonetheless, the severity
of infant bronchiolitis shows a dose-response relationship with
the risk and morbidity of childhood asthma,22 and as discussed
above, the degree of neutrophilic inflammation correlates with
the severity of RSV-induced bronchiolitis.13,15,16 Therefore se-
vere neutrophilic lung inflammation during infancy could tenably
predispose children to subsequent wheezing and onset of asthma.
Indeed, a functional IL-8 polymorphismmore frequent among in-
fants with severe RSV-induced bronchiolitis is also overrepre-
sented in infants who had postbronchiolitis wheezing compared
with patients with bronchiolitis who did not have wheezing after-
ward.14,36 Neutrophilic inflammation–induced collateral tissue
damage and airway sensitization could mediate the development
of asthma susceptibility.

Transient damage to development of infant lungs can have far-
reaching and lasting adverse consequences for pulmonary
anatomy and function; this is particularly true if the critical
process of alveolar multiplication by septation is disrupted.37

Elastin fibers, which are present in alveolar duct and septal walls,
provide elasticity to the lungs and transmit cues of mechanical
stress to stimulate alveolarization. Neutrophil elastase, which is
released on neutrophil recruitment to the lungs, degrades elastin
fibers and thereby demolishes lung tissue structure.38 Through
elastase release and other lung-damaging mechanisms discussed
below, themassive pulmonary neutrophil infiltrate of pediatric pa-
tients with RSV-induced bronchiolitis might thus cause irrepa-
rable disruption of lung development that predisposes these
infants to subsequent asthma inception (Fig 1). In addition to
inducing airway remodeling through collateral tissue damage,
neutrophils might sensitize the airways to asthma through mast
cell recruitment. IL-9 is detected in the bronchoalveolar lavage
fluid of patients with RSV-induced bronchiolitis, and airway-
infiltrated neutrophils are the principal producers.39 In response
to pulmonary expression of IL-9, long-lived mast cells migrate
to and accumulate in lung tissue.40,41 Lung-resident mast cells,
specifically those located in the bronchial smoothmuscle bundles,
contribute to airway hyperresponsiveness and are considered
crucial to the pathogenesis of (allergic) asthma (Fig 1).42

Dampening excessive neutrophilic inflammation during RSV-
induced bronchiolitis might protect lung function, curtail airway
sensitization, and reduce the risk of recurrent wheezing and
asthma. A proof-of-concept, randomized, double-blind, placebo-
controlled trial of macrolide treatment in patients with RSV-
induced bronchiolitis provides tentative clinical support in favor
of dampening neutrophilic inflammation.43 Macrolides have anti-
neutrophilic activities in vitro and attenuate neutrophilic airway
inflammation in patients with refractory asthma and during
RSV infection in mice.44-46 In comparison with placebo-treated
patients, macrolide-treated patients with RSV-induced bronchio-
litis showed reduced nasal lavage IL-8 levels, experienced fewer



FIG 1. Schematic representation of the tentative relationship between neutrophil-induced lung damage and

airway sensitization during RSV-induced bronchiolitis and subsequent susceptibility to asthma.

FIG 2. Protective and lung-injurious roles of neutrophils during respiratory tract viral infection. Neutrophil-

induced mucus production limits access of viral particles to the epithelium but obstructs airflow.

Degranulation releases antimicrobial mediators that are also cytotoxic to host cells. Phagocytosis of

(opsonized) viral particles and virus-infected cells limits viral spread. NETs capture and deactivate viral

particles but also damage healthy bystander cells. ECM, Extracellular matrix; PRMs, pattern recognition

molecules.
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days after bronchiolitis with respiratory symptoms, tended toward
fewer subsequent wheezing episodes, and exhibited a delayed
third wheezing episode.43

RSV immunoprophylaxis is costly and available only to high-
risk infants, for whom it reduces RSV-related hospitalization by
approximately 50%.47 For patients, supportive care is the sole
treatment regimen available. Clearly, new treatment options for
severe RSV-induced bronchiolitis are required to ameliorate dis-
ease and reduce sequelae, asthma in particular. The prominent
neutrophilic inflammation in patients with RSV-induced bron-
chiolitis represents a promising target.

Below, we examine the role of neutrophils in patients with RSV
infection and discuss the relevance thereof for therapy and asthma
prevention. Because studies performed with RSV in this regard
are scarce, we will also draw information from the literature on
other viruses, in particular influenza virus, infections with which
also exhibit severe pulmonary neutrophil infiltration.

NEUTROPHIL-INDUCED LUNG INJURY
Neutrophils can injure the lungs in multipleways: (1) release of

proteolytic enzymes, including elastase, into the microenviron-
ment through degranulation; (2) production of reactive oxygen
species (ROS); (3) formation of neutrophil extracellular traps
(NETs) by the cell death program known as NETosis; and (4)
stimulation of mucus production (Fig 2).

Neutrophil migration into the airways during influenza infec-
tion in mice depends on the neutrophil tertiary granule-expressed
matrix metalloproteinase (MMP) 9, which digests extracellular



J ALLERGY CLIN IMMUNOL

VOLUME 136, NUMBER 4

GEERDINK ET AL 841
matrix. MMP9-mediated neutrophil influx into the airways is
required for the control of influenza virus replication in mouse
lungs.48 However, excessive MMP9 proteolytic activity in
response to high viral loads exacerbates pathology.48 Pulmonary
inflammation caused by noninfectious agents, such as cigarette
smoke, implicate other neutrophil proteolytic enzymes, including
cathepsin G, neutrophil elastase, and proteinase 3, in lung tissue
destruction as well.49

The inflammatory milieu in the lungs during RSV infection
induces the neutrophil oxidative burst.50 The abundantly
produced ROS indiscriminately oxidize biomolecules, which
compromises their function. Therefore ROS are potently antimi-
crobial but also damage host cellular structures. Oxidative
stress during RSV infection promotes lung injury.51,52 Thus
neutrophil-derived ROS are likely to contribute to lung damage
in patients with RSV infection.

NETs are DNA-based meshes decorated with histones and
granular antimicrobial proteins and peptides, including elastase,
myeloperoxidase (MPO), and a-defensins. By trapping microbes
in NETs, microbial spread can be minimized and microbe killing
optimized by high local concentrations of antimicrobial proteins
and peptides.53 Exposure of neutrophils to RSV particles in vitro
induces NET formation through specific interaction of RSV
fusion (F) protein with neutrophil-expressed Toll-like receptor
(TLR) 4.54 Data on the in vivo antiviral activity of NETs are con-
flicting.55 Genetic ablation of peptidylarginine deiminase 4,
which is required for NET formation, did not affect viral replica-
tion or mortality in mice infected with influenza virus.56 Instead,
NETs are located in areas of alveolar damage in the lungs of influ-
enza virus–infected mice.57 In vitro NETs directly damage alve-
olar epithelial and endothelial cells. The histone component of
NETs is chiefly responsible for this cytotoxic effect.58 This sug-
gests that NETs induce lung injury rather than suppressing viral
replication. However, the absence of NETs in peptidylarginine
deiminase 4–deficient mice does not reduce lung pathology dur-
ing influenza infection either.56 In this mouse model of human
influenza virus infection, NETs appear to play neither a beneficial
nor a pathologic role. The contribution of NETs during viral
infection might be virus specific and depend on the degree of
NET induction.

In addition to directly damaging the respiratory tract, neutro-
phils can contribute to airway obstruction by inducing mucus
production. Mucus forms a protective barrier to viral infection by
limiting access of viral particles to the pulmonary epithelium.
However, excessive mucus production might cause airway
obstruction. Mouse neutrophils promote the expression of mucin,
the chief component of mucus, during RSV infection.59 Thus the
extensive neutrophil infiltration in the lungs might contribute to
the airway obstruction and resultant wheezing observed in pa-
tients with severe RSV-induced bronchiolitis.

Pulmonary IL-17 enhances neutrophil recruitment to the lungs
early in RSV infection by inducing IL-8 production in airway
epithelial cells.60 The amount of IL-17 in the lungs of pediatric
patients with RSV-induced bronchiolitis correlates to the degree
of subsequent pulmonary neutrophil influx.60 Additionally, IL-
17 induces the production of obstructive mucus in the airways.61

This suggests that IL-17 plays a pathogenic role during LRTIs by
RSV. The association of a polymorphism in the gene encoding IL-
17 with severe RSV-induced bronchiolitis supports this notion.62

Moreover, the response of TH17 cells, noted producers of IL-17, is
enhanced in infants with RSV-induced bronchiolitis.63 An RSV
mousemodel also links IL-17 and TH17 responses to RSV disease
severity: pulmonary neutrophil recruitment and lung pathology
are exacerbated in RSV-infected mice, which have increased
TH17 responses caused by genetic ablation of the IL-27 recep-
tor.64 Moreover, genetic ablation or antibody-mediated blocking
of IL-17 in RSV-infected mice reduces neutrophilic inflamma-
tion, mucus production, and viral loads and improves the cyto-
toxic T-cell response against RSV.65 Nonetheless, it is not clear
whether local IL-17 levels are protective or harmful. IL-17 re-
duces airway reactivity of RSV-infected mice presensitized
with ovalbumin,66 and mice that received a novel attenuated Bor-
detella pertussis vaccine were protected from RSV infection in an
IL-17–dependent fashion.67 It is possible that a limited IL-17
response is protective, whereas excessive IL-17 production in-
duces immune pathology through unrestrained neutrophil recruit-
ment. However, the early recruitment of neutrophils to the lungs
of patients with RSV-induced bronchiolitis is unlikely to be medi-
ated by an adaptive TH17 response because RSV antigen–driven
clonal expansion and differentiation of TH17 cells require several
days. Instead, there might be a role for natural TH17 cells that ac-
quire effector functions during thymic development and regulate
early-phase airway neutrophil responses.68,69 Thus (natural)
TH17 cells and IL-17 might promote a pathogenic neutrophil-
dominated response to RSV infection.
CONTROL OF VIRAL REPLICATION BY
NEUTROPHILS

The neutrophil antimicrobial arsenal, although damaging to
the lungs if deployed excessively, has also shown efficacy
against viruses in addition to its traditional bacterial and fungal
targets. Based on this, a contribution of neutrophils to antiviral
defense is suggested.55,70,71 Indeed, a beneficial role for neutro-
phils in patients with viral respiratory tract infections has been
reported for influenza virus.72-75 Neutrophil depletion in mice
by neutrophil-specific anti-Ly6G antibody treatment results in
enhanced viral replication and lung damage.72 Therefore neutro-
phil recruitment to the airways during RSV infection could also
be a protective response. Neutrophils mediate direct antimicro-
bial effects through, in essence, 3 known effector mechanisms,
namely (1) phagocytosis, (2) degranulation, and (3) NET forma-
tion (Fig 2 and Table I).76-86

By means of phagocytosis, neutrophils can eliminate RSV-
infected cells, thereby preventing further viral replication, and
engulf virions to limit infection of new cells. Blocking the
recognition and phagocytosis of apoptotic cells by local
Annexin Vadministration 1 day after influenza virus inoculation
increases mortality among mice.76 Both mouse macrophages
and neutrophils phagocytose influenza virus–infected apoptotic
cells in vivo.77 This process is amplified by TLR4,77 which rec-
ognizes RSV F protein expressed on the surfaces of virions and
infected cells.87 Moreover, as shown in vitro for herpes simplex
virus, antibody- and complement-mediated opsonization facili-
tates the phagocytosis of viral particles and virus-infected cells
by neutrophils.88

Neutrophil granules contain antimicrobial proteins and pep-
tides, including a-defensins 1 to 4 (or human neutrophil peptides
[HNPs] 1-4), cathelicidins (ie, LL-37), pentraxin (PTX) 3, and
MPO, which are released into the microenvironment on degran-
ulation.89 Neutrophils degranulate in response to in vitro stimula-
tion with RSV particles.90 HNPs are small, cationic amphipathic



TABLE I. Neutrophils possess direct antiviral activity

Mechanism or

molecular mediator Effect and function Virus/model References

Phagocytosis Eliminates virus-infected cells and virions Influenza virus/in vivo 76, 77

HNP-1 Inhibits viral entry into cell HIV/in vitro 78

HNP-1 and HNP-2 Promotes virion aggregation and phagocytosis Influenza/in vitro 79

LL-37 Inactivates virions, protects epithelial cells from infection

and cell death, inhibits virion production

RSV/in vitro and clinical association 80, 81

PTX3 Reduces virion infectivity Influenza virus and MHV-1/in vitro and in vivo 82, 83

MPO Inactivates virions through HClO production HIV-1/in vitro 84

NETosis Reduces viral infectivity and spread, inactivates virions Influenza virus and myxoma poxvirus/in vitro and in vivo 85, 86

Neutrophil effector mechanisms, neutrophil-derived molecules, and their respective antiviral activities are listed. The supporting lines of evidence and related references are

included.

HClO, Hypochlorous acid; MHV-1, mouse hepatitis virus strain 1.

J ALLERGY CLIN IMMUNOL

OCTOBER 2015

842 GEERDINK ET AL
peptides that demonstrate antiviral activity. For instance, multiple
steps of cellular entry by HIV-1 are inhibited by HNP-1,78 and
HNPs promote influenza virus aggregation and uptake by neutro-
phils.79 Whether the antiviral activity of HNPs extends to RSV is
not currently known, but the broad antiviral activities of HPNs
against multiple enveloped and nonenveloped viruses hints at
the possibility.91

Recent in vitro work demonstrates that the cationic antimicro-
bial peptide LL-37 possesses direct antiviral activity against RSV
virions, protects infected epithelial cells against RSV-induced cell
death, inhibits production of new viral particles, and reduces the
susceptibly of epithelial cells to RSV infection.80 Low serum
levels of LL-37 precursor (ie, hCAP-18) are associated with se-
vere infantile RSV-induced bronchiolitis.81

PTXs are soluble pattern recognition molecules that recognize
pathogen-associated molecular patterns and mediate innate hu-
moral immunity, functionally resembling antibodies of the
adaptive immune system. PTX3 can activate compliment through
recruitment of C1q (ie, the classical pathway) and act as opsonins
by interacting with the FcgRIII (CD16) and FcgRII (CD32)
receptors, which are expressed by phagocytes, including neutro-
phils.92 Mature neutrophils represent a major reservoir of pre-
formed ready-to-use PTX3, as well as other pattern recognition
molecules.93 Direct evidence of PTX3-mediated antiviral activity
against RSV is lacking but has been demonstrated for influenza
virus and mouse coronavirus. PTX3 reduces the infectivity of
both viruses. Moreover, PTX3-deficient mice inoculated with
either virus fare worse than their wild-type counterparts but can
be rescued by administration of exogenous PTX3.82,83

MPO catalyzes the production of hypochlorous acid, which is a
potent antimicrobial ROS, because of its ability to chlorinate and
oxidize a great variety of biomolecules. Secreted and NET-bound
MPO deactivates HIV-1 particles in vitro.84,85 The RSV F protein
induces formation of MPO-coated NETs through TLR4,54 and
HIV-1 triggers NETosis through a TLR7/TLR8- and ROS-
dependent pathway. NET-bound MPO and HNPs abolish the
infectivity of HIV-1 particles. In coculture neutrophils reduce
the infection of CD41 T cells by HIV-1 in a NET-dependent
manner.85 Thus NETs are elicited by stimulation with virus and
possess direct antiviral activity in vitro.

Furthermore, the release of NETs by neutrophils during
intravenous myxoma poxvirus challenge in mice protects against
viral infection of liver cells.86 Therefore NETs can benefit antiviral
defense in vivo. As discussed above, NETosis deficiency does not
affect the course of disease in human influenza virus-inoculated
mice.56 A contribution, protective or damaging, of NETs to anti-
viral defense might be virus and organ (eg, liver vs lung) specific.
NEUTROPHIL-MEDIATED IMMUNE MODULATION
Recent studies demonstrate multiple immune regulatory func-

tions for neutrophils. In addition to their role as effector cells in
patients with RSV infection described above, neutrophils can also
act as immune regulatory cells (Fig 3). Although neutrophil-
mediated immune regulation in the context of RSV infection
has yet to be examined directly, general concepts can be derived
from studies with other viruses and guide further research into the
severely understudied role of neutrophils in patients with RSV
infection. Here we focus on regulatory roles potentially involved
in RSV infection. For a more complete overview, the reader is
referred to a number of recent reviews.89,93-95

Neutrophils can promote antiviral CD81 T-cell responses.
Influenza virus antigen–displaying neutrophils stimulate lung-
infiltrated CD81 T cells to produce IFN-g, whereas infected
epithelial cells only elicit their own cytolysis.96,97 Stimulation
of IFN-g production by neutrophils can enhance antiviral de-
fense against RSV infection.98 The CD81 T-cell response to
influenza in the airways of mice is maintained by infiltrated
neutrophils.75 Neutrophils thus regulate CD81 T-cell effector
function at the site of viral infection. Neutrophils efficiently
cross-present phagocytosed antigen to naive CD81 T cells
in vivo to stimulate proliferation, IFN-g production, and cyto-
lytic activity.99 By acting as viral antigen shuttles, neutrophils
can indirectly induce an antiviral CD81 T-cell response. Mouse
neutrophils take up modified vaccinia Ankara virus in skin,
transport viral antigen to the bone marrow, and there, through
local phagocytic antigen-presenting cells, trigger virus-specific
CD81 T-cell proliferation and establishment of memory.100

Moreover, neutrophils can indirectly stimulate T-cell responses
by recruiting immature dendritic cells (DCs) to a site of infection
through CCL3 secretion101 and by inducing DC maturation
through direct cell-cell contact, which depends on altered glyco-
sylation patterns of Mac-1 (CD11b/CD18) and carcinoem-
bryonic antigen-related cell adhesion molecule 1 (CAECAM1)
that are specific to activated neutrophils.102,103

The homeostasis of innate cytotoxic lymphocytes (ie,
natural killer [NK] cells) is neutrophil dependent.104-106 Neu-
tropenic patients and neutrophil-depleted mice present with
immature hyporesponsive NK cells.104 Neutrophils stimulate
NK cells through IL-18 production and the interaction of
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CD18 with NK cell–expressed intercellular adhesion molecule
3. Moreover, neutrophils stimulate DCs to produce NK cell–
stimulatory IL-12 through CD18/intercellular adhesion mole-
cule (ICAM) 1 interaction.105,106 IFN-g produced by activated
NK cells potentiates the interaction between neutrophils and
DCs, thus creating a neutrophil-dependent positive feedback
loop that supports NK cell maturation, survival, and IFN-g
production.105
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The adaptive humoral response is stimulated by neutrophils as
well. Through cytokine secretion (ie, B cell–activating factor of
the TNF family [BAFF], a proliferation inducing ligand [APRIL],
and IL-21), splenic neutrophils induce immunoglobulin class-
switch recombination, somatic hypermutation, and antibody
production by marginal zone B cells.107

Neutrophils can also suppress adaptive immune responses.
Systemic inflammation in human subjects induces a neutrophil
subset with T cell–suppressive capabilities. These suppressive
neutrophils form Mac-1–dependent immunologic synapses with
T cells and locally produce bursts of membrane-associated
hydrogen peroxide (H2O2) that suppress T-cell proliferation.

108

Furthermore, neutrophil-derived thromboxane limits T-cell cyto-
kine production in response to protein-in-adjuvant vaccination of
mice and suppresses the spread of the T-cell response from the
draining lymph nodes of the injection site to distal lymph no-
des.109 Neutrophils can indirectly suppress T-cell responses
through deposition of MPO in lymph nodes, which impairs DC
function.110

In a more passive manner neutrophils might contribute to the
resolution of inflammation. Depending on environmental stimuli,
macrophages can acquire a proinflammatory or proresolution
phenotype. The phagocytosis of apoptotic neutrophils by macro-
phages induces a regulatory phenotype in macrophages, which
might contribute to the resolution of inflammation.111 In RSV-
infected cotton rats, proresolution macrophages limit lung
pathology.112
NEUTROPHILS, RSV-INDUCED BRONCHIOLITIS,
AND ASTHMA: REMAINING CAVEATS

Is it conceivable that neutrophils are abundantly present in the
airways during severe RSV infection without playing a major role
in either the pathogenesis of bronchiolitis or the subsequent
inception of asthma? Although indicators of neutrophilic inflam-
mation, including airway IL-8 levels and neutrophil elastase
activity, correlate with the severity of bronchiolitis, cell counts of
airway-infiltrated neutrophils, which are invariably high, are not
associated with RSV disease severity.10,13,15,16,113 Similar to
RSV-induced bronchiolitis, extensive neutrophil infiltration of
the airways and alveoli is observed during bacterial pneumonia,
usually in the absence of wheezing. If neutrophils contribute to
the inception of asthma after bronchiolitis, an increased risk of
asthma should also be observed after bacterial respiratory tract in-
fections in early childhood. Evidence in support of this is limited
to observations in a high-risk birth cohort.31 Future studies should
attempt to validate the relationship between bacterial respiratory
tract infection during infancy and the subsequent development of
reactive airway disease.
CONCLUDING REMARKS AND IMPLICATIONS FOR
THERAPY

The vast number of lung-infiltrating neutrophils in patients
with RSV-induced bronchiolitis appears to be the principal
instigator of pulmonary immunopathology. The secretion of
proteolytic enzymes, such as elastase, the production of ROS,
and NET release can clearly injure the lungs. This might disrupt
the delicate process of lung development in infancy and have
lasting adverse consequences for lung anatomy, function, and
susceptibility to chronic disease, including asthma. However,
through direct antiviral activity of these and other neutrophil
mechanisms, as well as through regulation of adaptive immune
responses, neutrophils can also contribute to a protective antiviral
response. In patients with severe RSV-induced bronchiolitis, the
balance between neutrophil antimicrobial activity and collateral
tissue damage appears to have shifted toward a pathologic
response. Hence pharmacologic suppression of neutrophil activ-
ity could curtail lung injury. Possible approaches include (1)
neutrophil-inhibitory macrolides43,46; (2) inhibiting damaging
neutrophil-derived products, such as elastase114; (3) antagonizing
neutrophil-modulatory adenosine115; (4) neutrophil chemokine
receptor blockade116,117; (5) and targeting neutrophil-expressed
inhibitory receptors.118,119 We eagerly await the results of future
clinical trials for the treatment of RSV infection with pharmaco-
logic agents that can effectively dampen neutrophilic inflamma-
tion, such as the selective small-molecule CXCR2 (IL-8
receptor) antagonist danirixin (ClinicalTrials.gov identifier:
NCT02201303).117

The relationship between extensive neutrophil infiltration of
the airways in early life and later asthma development might not
be limited to RSV infection. Lower respiratory tract illnesses in
infants induced by other viruses are also associated with subse-
quent wheeze and asthma.7,31,120 Limited evidence also hints at a
causal association between bacterial invasion of the respiratory
tract and subsequent asthma development.121-123 Colonization
of neonatal airways by pathogenic bacteria induces neutrophil
response–associated cytokines and is associated with develop-
ment of persistent wheezing and childhood asthma in a prospec-
tive birth cohort.124,125 Moreover, among prospectively followed
high-risk children, respiratory tract infections by pathogenic
bacteria in early life were associated with an increased risk of
school-age asthma.31 In fact, rather than a specific viral or bacte-
rial pathogen, the total number of early respiratory tract infections
correlated with the risk of childhood asthma in this study.31

Although injurious when present in excess, neutrophils are
essential to antimicrobial defense. The safety of treating RSV-
induced bronchiolitis with neutrophil suppression could improve
with the administration of RSV antivirals and prophylactic
antibiotics. Recently, a newly developed RSV antiviral was
successfully tested in a clinical trial wherein healthy adult
subjects were challenged with RSV.126 By itself, however, an
RSV antiviral might confer limited benefit when administered
several days after onset of symptoms. For influenza, oseltamivir
is only effective when administered within 36 to 48 hours after
symptom onset.127 Similarly, antiviral treatments against RSV
should ideally be administered as close to initial infection as
possible to be at their most effective, yet RSV loads are already
on the decrease when patients are admitted to the intensive care
unit.128 Nonetheless, neutrophils are still abundantly present in
the lungs,9-11 and thus neutrophil-mediated damage to the airways
persists (Fig 2). Therefore we propose that suppressing neutrophil
activity under the umbrella of RSVantivirals and prophylactic an-
tibiotics offers a promising treatment strategy to improve the out-
comes of infants with RSV-induced bronchiolitis and reduce the
risk of subsequent asthma.
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120. Calışkan M, Bochkov YA, Kreiner-Møller E, Bønnelykke K, Stein MM, Du G,

et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma.

N Engl J Med 2013;368:1398-407.

121. Beigelman A, Weinstock GM, Bacharier LB. The relationships between environ-

mental bacterial exposure, airway bacterial colonization, and asthma. Curr Opin

Allergy Clin Immunol 2014;14:137-42.

122. Thomas AO, Lemanske RF, Jackson DJ. Infections and their role in childhood

asthma inception. Pediatr Allergy Immunol 2014;25:122-8.

123. Kloepfer KM, Lee WM, Pappas TE, Kang TJ, Vrtis RF, Evans MD, et al. Detec-

tion of pathogenic bacteria during rhinovirus infection is associated with

increased respiratory symptoms and asthma exacerbations. J Allergy Clin Immu-

nol 2014;133:1301-7, e1-3.

124. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K,

et al. Childhood asthma after bacterial colonization of the airway in neonates. N

Engl J Med 2007;357:1487-95.

125. Følsgaard NV, Schjørring S, Chawes BL, Rasmussen MA, Krogfelt KA, Brix S,

et al. Pathogenic bacteria colonizing the airways in asymptomatic neonates stim-

ulates topical inflammatory mediator release. Am J Respir Crit Care Med 2013;

187:589-95.

126. Devincenzo JP, Whitley RJ, Mackman RL, Scaglioni-Weinlich C, Harrison L,

Farrell E, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge

study. N Engl J Med 2014;371:711-22.

127. Nguyen-Van-Tam JS, Venkatesan S, Muthuri SG, Myles PR. Neuraminidase in-

hibitors: who, when, where? Clin Microbiol Infect 2015;21:222-5.

128. Lukens MV, van de Pol AC, Coenjaerts FE, Jansen NJ, Kamp VM, Kimpen JL,

et al. A systemic neutrophil response precedes robust CD8(1) T-cell activation dur-

ing natural respiratory syncytial virus infection in infants. J Virol 2010;84:2374-83.

http://refhub.elsevier.com/S0091-6749(15)00933-1/sref102
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref102
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref102
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref102
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref103
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref103
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref103
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref104
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref104
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref104
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref104
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref105
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref105
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref105
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref105
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref105
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref106
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref106
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref106
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref107
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref107
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref107
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref108
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref108
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref108
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref109
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref109
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref109
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref110
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref110
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref110
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref111
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref111
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref111
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref111
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref112
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref112
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref112
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref112
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref113
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref113
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref113
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref114
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref114
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref115
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref115
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref116
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref116
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref117
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref117
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref117
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref117
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref118
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref118
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref118
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref119
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref119
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref119
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref120
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref121
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref121
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref121
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref122
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref122
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref123
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref123
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref123
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref123
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref124
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref124
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref124
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref124
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref125
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref126
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref126
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref126
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref127
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref127
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref128
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref128
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref128
http://refhub.elsevier.com/S0091-6749(15)00933-1/sref128

	Neutrophils in respiratory syncytial virus infection: A target for asthma prevention
	Neutrophils and RSV-induced bronchiolitis disease severity
	Clinical link between RSV-induced bronchiolitis and asthma inception
	Neutrophilic lung inflammation and asthma inception
	Neutrophil-induced lung injury
	Control of viral replication by neutrophils
	Neutrophil-mediated immune modulation
	Neutrophils, RSV-induced bronchiolitis, and asthma: Remaining caveats
	Concluding remarks and implications for therapy
	References


