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ABSTRACT: Tris(2-pyridylthio)methane ([Tptm]H)
has been employed to synthesize a series of cadmium
carbatrane compounds that feature an [N3C] coordination
environment. Specifically, [Tptm]H reacts with Cd[N-
(SiMe3)2]2 to afford [Tptm]CdN(SiMe3)2, which thereby
provides access to other derivatives. For example,
[Tptm]CdN(SiMe3)2 reacts with (i) CO2 to form
{[Tptm]Cd(μ-NCO)}2 and (ii) Me3SiOH and Ph3SiOH
to form {[κ3-Tptm]Cd(μ-OSiMe3)}2 and [Tptm]-
CdOSiPh3, respectively. The siloxide compound {[κ3-
Tptm]Cd(μ-OSiMe3)}2 reacts with Me3SiX (X = Cl, Br,
O2CMe) to give [Tptm]CdX, while the reaction with
PhSiH3 in the presence of CO2 generates the formate
complex, [Tptm]CdO2CH, thereby providing evidence for
the generation of a proposed cadmium hydride inter-
mediate, {[Tptm]CdH}.

Whereas zinc is of pivotal importance to human health,1 its
congeners, cadmium and mercury, are toxic.2 As such, an

appreciation of the different reactivities of these metals in a
common environment is essential for achieving a complete
understanding of the origin of the toxicity of cadmium and
mercury. The beneficial nature of zinc in biological systems is a
consequence of (i) its catalytic and structural roles in enzymes
and proteins and (ii) its ability to serve as a signaling ion in
regulation.1 With respect to the former, the active sites of many
zinc enzymes exhibit a nitrogen-rich coordination environment,
as exemplified by carbonic anhydrase, the first zinc enzyme to be
discovered. Since synthetic analogues3 are of much value in
providing insight into the structures and mechanism of
metalloenzymes,4 we have employed tris(3-tert-butyl-5-
methylpyrazolyl)hydroborato, [Tpt-Bu,Me], and tris(2-
pyridylthio)methyl, [Tptm], ligands to provide three nitrogen
donors to mimic the active site of carbonic anhydrase, including
the first structural characterization of mononuclear zinc
bicarbonate compounds, namely, [Tpt-Bu,Me]ZnOCO2H and
[Tptm]ZnOCO2H.

5,6 Here we describe the application of the
[Tptm] ligand to cadmium chemistry, thereby demonstrating
how zinc and cadmium exhibit significant differences in this
nitrogen-rich system.
Access to tris(2-pyridylthio)methylcadmium compounds is

provided by the reaction of tris(2-pyridylthio)methane ([Tptm]-
H)7 with Cd[N(SiMe3)2]2 to afford [Tptm]CdN(SiMe3)2 (1),
as illustrated in Scheme 1. The molecular structure of
[Tptm]CdN(SiMe3)2 has been determined by single-crystal X-
ray diffraction (Figure 1), which clearly demonstrates that the

[Tptm] ligand coordinates in a κ4 manner,8 thereby resulting in
an atrane motif.9,10 In this regard, the structure of the cadmium
carbatrane compound [Tptm]CdN(SiMe3)2 is very distinct from
that of the zinc counterpart for which 1H NMR spectroscopy
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Scheme 1

Figure 1. Molecular structure of [Tptm]CdN(SiMe3)2.
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demonstrates that the ligand coordinates in a κ3 manner.6a,8

De sp i t e t h e p r e s en c e o f t h e a t r an e mo t i f i n
[Tptm]CdN(SiMe3)2, however, the coordination geometry is
markedly distorted from a trigonal bipyramidal geometry
towards a square-pyramidal geometry, as illustrated by the
average value of 0.19 for the τ5 five-coordinate geometry index

11

for the two crystallographically independent molecules.
[Tptm]CdN(SiMe3)2 is a useful precursor for other cadmium

derivatives, as illustrated by the reaction with CO2 to form the
isocyanate complex {[Tptm]Cd(μ-NCO)}2 (2; Scheme 1),
which has been structurally characterized by X-ray diffraction
(Figure 2). While the reactivity of [Tptm]CdN(SiMe3)2 towards

CO2 is similar to that of the zinc counterpart [Tptm]Zn-
N(SiMe3)2,

6a,12 a most interesting difference is that the cadmium
complex {[Tptm]Cd(μ-NCO)}2 is dinuclear with bridging
NCO ligands, whereas the zinc complex [Tptm]Zn(NCO)
possesses a terminal NCO ligand.13,14

The Cd−N bond of [Tptm]CdN(SiMe3)2 is subject to facile
protolytic cleavage, as illustrated by the reactions with Ph3SiOH
and Me3SiOH to afford the siloxides [Tptm]CdOSiPh3 (3) and
{[κ3-Tptm]Cd(μ-OSiMe3)}2 (4), respectively (Scheme 1). The
molecular structures of [Tptm]CdOSiPh3

15 and {[κ3-Tptm]-
Cd(μ-OSiMe3)}2 (Figure 3) have been determined by X-ray
diffraction and reveal several notable features. For example, while
the Ph3SiO ligand coordinates in a terminal manner, the Me3SiO
ligand coordinates in a μ2 manner, thereby resulting in a dimeric

structure. The observation of both of these coordination modes
is noteworthy because there is only one other cadmium siloxide
compound listed in the Cambridge Structural Database
(CSD),14d namely Cd4I4(OSiMe3)(NPEt3)3,

16 and it is
tetranuclear with a triply bridging μ3−siloxide ligand.17,18
In addition to the different coordination modes of the OSiPh3

and OSiMe3 ligands, the [Tptm] ligands of [Tptm]CdOSiPh3
and {[κ3-Tptm]Cd(μ-OSiMe3)}2 also adopt different coordina-
tion modes. Thus, whereas [Tptm]CdOSiPh3 exhibits an atrane
motif with κ4 coordination, {[κ3-Tptm]Cd(μ-OSiMe3)}2 ex-
hibits κ3 coordination. Not only do {[κ3-Tptm]Cd(μ-OSiMe3)}2
and [Tptm]CdOSiPh3 illustrate the dramatic impact of varying
the substituents on silicon, but the structure of {[κ3-Tptm]Cd(μ-
OSiMe3)}2 is also of note because it provides another example of
the difference between the zinc and cadmium systems:
specifically, the zinc complex [Tptm]ZnOSiMe3 is monomeric,
with a terminal siloxide ligand. As such, [Tptm]ZnOSiMe3 more
resembles [Tptm]CdOSiPh3 than the trimethylsiloxide deriva-
tive, {[κ3-Tptm]Cd(μ-OSiMe3)}2.
The trimethylsiloxide derivative {[κ3-Tptm]Cd(μ-OSiMe3)}2

also provides access to a variety of cadmium compounds. For
example, {[κ3-Tptm]Cd(μ-OSiMe3)}2 reacts with Me3SiX (X =
Cl, Br, O2CMe) to form the halide and acetate derivatives
[Tptm]CdCl, [Tptm]CdBr, and [Tptm]CdO2CMe (5−7), as
illustrated in Scheme 2. The iodide compound, [Tptm]CdI, has

also been obtained by metathesis of [Tptm]Li with CdI2. X-ray
diffraction studies demonstrate that the halide compounds,
[Tptm]CdX (X = Cl, Br, I),15 have approximate trigonal-
bipyramidal geometries,19 while [Tptm]CdO2CMe exhibits a
distorted octahedral geometry with bidentate coordination of the
acetate ligand (Figure 4), as indicated by the magnitude of the
difference in the Cd−O bond lengths (Δd = 0.22 Å).20 In this
regard, it is evident that the cadmium complex [Tptm]-
CdO2CMe exhibits a greater degree of bidenticity than does
the zinc counterpart [Tptm]ZnO2CMe, for whichΔd = 0.44 Å.6a
{[κ3-Tptm]Cd(μ-OSiMe3)}2 also reacts with PhSiH3, which,

in the presence of CO2, produces the formate compound
[Tptm]CdO2CH (8). By analogy to the zinc system,6a the
formation of [Tptm]CdO2CH is proposed to occur via the
intermediacy of a cadmium hydride species, {[Tptm]CdH}, that
is trapped by CO2 to generate a formate derivative. While
cadmium formate compounds are known,21 the synthesis of
[Tptm]CdO2CH is novel because it is the first example of the
formation of a cadmium formate by the proposed insertion of

Figure 2. Molecular structure of {[Tptm]Cd(μ-NCO)}2.

Figure 3. Molecular structure of {[κ3-Tptm]Cd(μ-OSiMe3)}2.

Scheme 2
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CO2 into a cadmium hydride bond. Such reactivity is of relevance
to the discovery of potential methods for functionalizing CO2.

22

Also of note, the formate ligand of [Tptm]CdO2CH coordinates
in a bidentate manner (Δd = 0.22 Å), which is not only in
contrast to the zinc counterpart, [Tptm]ZnO2CH, which
exhibits a well-defined unidentate coordination mode (Δd =
0.63 Å),6a but also in contrast to other cadmium formate
compounds. For example, the smallest Δd for a mononuclear
cadmium formate compound listed in the CSD has a value of
0.75 Å.21f

The proposed intermediacy of a cadmium hydride species is
noteworthy because such species are not well precedented and
their reactivity has been little investigated. For example, there are
only two structurally characterized cadmium hydride compounds
listed in the CSD, namely, the terphenyl compounds Ar*CdH
and [Ar′Cd(μ-H)]2, as reported by Power et al.23 In addition,
spectroscopic evidence has been presented by Reger et al. for the
tris(pyrazolyl)hydroborate compound [Tpt-Bu]CdH.24 With
respect to the reactivity of these complexes, [Ar′Cd(μ-H)]2 is
unstable at room temperature and decomposes to [Ar′Cd]2,23b
an observation that is in accord with the paucity of cadmium
hydride compounds.
With the exception of {[κ3-Tptm]Cd(μ-OSiMe3)}2, each of

the cadmium compounds described above features an atrane
motif in which the [Tptm] ligand coordinates in a κ4 manner.
While tetradentate tripodal ligands that give rise to atrane
structures are common, the majority feature an L-type25 donor as
the bridgehead,9,10,26 as exemplified by tris(2-pridyl)amine.26b,27

Tetradentate tripodal ligands that feature X-type or Z-type
bridgeheads have received comparatively little attention,28−30

such that the carbatrane compounds described herein, with
transannular Cd−C interactions, represent a notable develop-
ment in cadmium chemistry.
The Cd−C and Cd−N bond length data pertaining to

coordination of the [Tptm] ligand for the above [Tptm]CdX
compounds are summarized in Table 1. Examination of these
data illustrate that, despite (i) the different coordination modes
of the [Tptm] ligand and (ii) the different steric demands of X,
the Cd−C (2.33−2.38 Å) and Cd−Nav (2.29−2.37 Å) bond
lengths exhibit relatively little variation. For example, the Cd−C
bond lengths vary from 2.332(6) Å for [Tptm]CdN(SiMe3)2 to
2.383(7) Å for [Tptm]Cd(O2CMe), while the average Cd−N
bond lengths range from 2.285 Å for [Tptm]CdOSiPh3 to 2.368
Å for [Tptm]CdN(SiMe3)2. In most cases, the Cd−C bond
length is slightly longer than the average Cd−N bond length. For

comparison, zinc compounds that feature the {[Tptm]Zn}
atrane motif exhibit a similar trend in terms of their Zn−C
(2.11−2.22 Å) and Zn−Nav (2.04−2.14 Å) bond lengths,31 with
the Zn−C bond length being slightly longer. As would be
expected, the Cd−C and Cd−Nav bonds are longer than the
corresponding bond lengths for zinc, with values that are
comparable to the difference in the covalent radii (ca. 0.2 Å) of
zinc and cadmium.32 The larger size of cadmium is, therefore,
one factor that is responsible for the different types of structures
that are described above, such as (i) the adoption of a dinuclear
octahedral structure for {[Tptm]Cd(μ-NCO)}2 and a mono-
nuclear five-coordinate structure for the zinc counterpart
[Tptm]ZnNCO and (ii) greater degrees of bidenticity in the
cadmium carboxylate compounds [Tptm]CdO2CR (R =H, Me)
than in the zinc derivatives.
In summary, the reaction of [Tptm]H with Cd[N(SiMe3)2]2

affords [Tptm]CdN(SiMe3)2, which thereby provides access to a
series of other carbatrane compounds that possess an [N3C]
coordination environment. Structural characterization by X-ray
diffraction reveals significant differences with zinc counterparts,
such as the observation that the NCO ligands in {[Tptm]Cd(μ-
NCO)}2 bridge two cadmium centers whereas the NCO ligand
in [Tptm]ZnNCO is terminal, and further illustrates the
versatility of [Tptm] as a supporting ligand.
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Figure 4. Molecular structure of 5.

Table 1. Cd−C and Cd−N Bond Lengths in [Tptm]CdX
Derivatives

d(Cd−C)/Å d(Cd−Nav)/Å

[Tptm]CdN(SiMe3)2 2.332(6) 2.368
2.343(6) 2.372

{[κ3-Tptm]Cd(μ-OSiMe3)}2 2.334(4) 2.334
[Tptm]CdOSiPh3 2.337(10) 2.285
{[Tptm]Cd(μ-NCO)}2 2.347(4) 2.314
[Tptm]CdO2CMe 2.383(7) 2.320
[Tptm]CdO2CH 2.370(9) 2.316
[Tptm]CdCl 2.372(6) 2.312
[Tptm]CdBr 2.368(6) 2.303
[Tptm]CdI 2.363(11) 2.322
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