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Abstract: Vector-borne infectious diseases are responsible for the deaths of over 700,000 people
annually, than 400,000 of them resulting from malaria. The mosquito Anopheles gambiae is one of
the dominant vector species of human malaria transmission. A significant issue of the conventional
insecticides which target the arthropod borne infectious diseases is their induced resistance. To
overcome this inconvenience, insecticides with new modes of action are required. One of the most
promising targets for the development of new potential insecticides as evidenced by current studies is
the D1-like dopamine receptor (DAR). To get a deeper understanding of the structural information of
this receptor, the 3D homology model was built. The possible sites within the protein were identified
and the most probable binding site was highlighted. The homology model along with a series of DAR
antagonists with known activity against Anopheles gambiae larvae were used in docking experiments
to gain insight into their intermolecular interactions. Furthermore, virtual screening of the natural
compounds from the SPECS database led to the prediction of toxicity and environmental hazards for
one potential new insecticide against the Anopheles gambiae mosquito.

Keywords: Anopheles gambiae mosquito; insecticide; in silico methods; toxicity predictions

1. Introduction

Globally, out of 700,000 annual deaths due to vector-borne infectious diseases, more
than 400,000 of the result from more than 219 million malaria infections [1]. Responsi-
ble for malaria transmission are several Anopheles (An.) mosquito species. Among them,
An. gambiae also known as the African malaria mosquito, is one of the most relevant, and
has been most commonly reported (in 34 countries) [2]. According to the World Malaria
Report of 2019 [3] the efforts to control the spread of malaria are hampered by the acquired
resistance to many categories of insecticides, like pyrethroids, organochlorides [4], carba-
mates, and organophosphates [5], etc. Therefore, insecticides with new modes of action are
an overall goal towards the eradication of malaria. as it appears also from the Innovative
Vector Control Consortium (IVCC) calls [http://www.ivcc.com (accessed on 12 March
2020)]. In this regard, the G protein-coupled receptor (GPCR) family aroused great interest
as a target for the development of next-generation insecticides [6]. Dopamine in inver-
tebrates has a major role in many processes, such as development, locomotion, learning,
courtship, etc. [7,8]. Some studies highlight that targeting the dopaminergic pathways may
cause disrupted development in insects or even their death [8–11]. Dopamine receptors are
members of class A GPCRs [12], that have seven transmembrane domain helices (generally,
the site of the ligand-binding pocket) and additionally the eighth helix with a palmitoylated
cysteine at the C terminal [13]. Dopamine receptors are split into two subfamilies: the
D1-like family (D1 and D5 dopamine receptors) and the D2-like family (D2, D3, and D4
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dopamine receptors), based on the coupling to either Gαs,olf proteins or Gαi/o proteins to
stimulate or inhibit the production of the second messenger cAMP, respectively [12].

However, an interesting and unexpected finding was observed in the study conducted
by Hill and collaborators [14], where D1-like dopamine receptor 2 of the An. gambiae
species (AgDOP2) appeared to selectively couple to Gαq signaling in vitro, as a potential
divergence between the signaling mechanisms of invertebrate and mammalian DARs.

Several studies have pointed out the GPCR D1-like dopamine receptor (DAR) as a
putative target for antagonist insecticides against Anopheles vectors [8,15].

It has been shown that the orthologous DAR of mosquitoes, Aedes aegypti (vector
for yellow fever) and Culex quinquefasciatus (vector for West Nile virus) have in vitro a
very similar pharmacological effect [11]. The D1-like dopamine receptor 2, namely DOP2
DAR, shows, on the one hand, high amino acid sequence identity (S.I.) among the vector
insects like An. gambiae, Ae. aegypti, C. quinquefasciatus, Ixodes scapularis, (over 70% in
transmembrane domains), but on the other hand lower S.I. to the human DARs, (under
55%) [11,15] These findings can be an asset to be considered in the rational design of new
insecticides against the aforementioned vector insects. Taking into consideration the results
of a recent study by Hill and collaborators [14] that attested to the in vitro and in vivo
data for potential DAR antagonists against An. gambiae, we used in silico methods for
predicting the possible intermolecular ligand-target interactions. The results obtained by
the aforementioned group of researchers who cloned, molecular and pharmacologically
characterized AgDOP2 (in Heck293 cells), as well as tested the in vivo activity of several
antagonists against An. gambiae larvae represented the starting point for the current study.
In the absence of the experimental structure of the target, homology modeling was involved
in the building of the 3D structure. In the next step, the most probable location of the
binding site was analyzed and assessed by several protocols and software and further
utilized in molecular docking and virtual screening (VS) experiments. The insight gained
through computational studies allowed us to understand the possibility of significant
hydrophilic and hydrophobic interactions between the ligands and the amino acids of the
DAR binding site, which may lead to the desired effect against the mosquito vector of
malaria and the proposal of new potential insecticides. Furthermore, for the estimation
of the selected compound environmental hazards, the bees’ toxicity, the oral acute rodent
toxicity, and other toxicological endpoints were predicted.

2. Materials and Methods
2.1. Homology Modeling

A homology model, based on the AgDOP2 gene [GenBank ID: KU948225] (Supplementary
Materials) of the An. gambiae species, corresponding to D1-like dopamine receptor 2 was
obtained using the I-TASSER server [16] (https://zhanggroup.org/I-TASSER/ (accessed on
14 April 2020)). The I-TASSER server built the receptor 3D model using multiple threading
templates. The top 10 templates (Supplementary Materials-Table S1) are identified by
the threading program LOMETS [17], accessed by I-TASSER server, which uses different
features in this regard, such as sequence identity, predicted secondary structure/solvent
exposure, etc. Finally, the best models from the largest cluster of structures were selected
by I-TASSER accessing the SPICKER program [18], which cluster the proteins based on
their similarity.

The Protein Preparation Wizard from the Schrödinger package [19], and the Deep
View Swiss-Pdb Viewer, version 3.7 [20] programs were used for refinement of the 3D
structures (using standard settings), while the Procheck server [21] and Molprobity server
(http://molprobity.biochem.duke.edu/ (accessed on 31 May 2022)) [22] were employed for
the assessment and validation of the built homology model.

The quality of the raw homology model was first assessed by the Procheck server,
and then Protein Preparation Wizard was involved in the energy minimization of the 3D
structure using the OPLS 2005 force field, with a default setting of 0.3 Å for the root mean
square deviation (RMSD). The 3D model was examined and the disordered regions with
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residues located in the disallowed areas of the Ramachandran plot followed a refining
process with the aid of Refine Loops from Prime software [23]. When the structural issues
persisted, a Swiss-PdbViewer Loop Database tool was used [20]. For a specific amino acid
sequence (a loop) where problems have been identified, several loops were proposed from a
database of known loops. For the selected loop, the following evaluation parameters: clash
score, pair potential and force field were assessed. For situations where there was clash
score, suitable rotamers were chosen for the residues involved in steric clashing to avoid
steric hindrances. Swiss-PdbViewer was also engaged in energy minimization to acquire
structures free of steric clashes [24]. Evaluation and refining steps followed iteratively until
a good quality of the homology model was reached.

2.2. Site Identification

The SiteMap software [23], with default settings, was utilized to discover the possible
sites within the 3D structure by using the scoring function (SiteScore) to recognize, evaluate
and rank the regions that may be appropriate for ligand binding. SiteScore, the score
utilized to determine and compare binding sites, is based on a weighted sum of properties
like, size, enclosure, and hydrophilic terms [25]. The SiteScore function is presented in
Equation (S1) (Supplementary Materials). Additionally, a Druggability Score (DScore) is
computed. Dscore is composed of terms that promote ligand binding: suitable size, separation
from solvent, and a term that corrects increasing hydrophilicity [25] as shown in Equation (S2)
(Supplementary Materials).

2.3. Docking Protocol

Molecular docking experiments were performed using the fast rigid docking protocol
of the FRED software from the OpenEye package [26–31]. The FRED program was found
to be a very good choice in the reproduction of experimental poses and virtual screening
experiments [30,31]. For docking, the multi-conformer structures of each ligand were
generated usingOMEGA software [32,33], with default settings, and the receptor was pre-
pared using the MakeReceptor software [34], starting from the homology model previously
obtained. To assign a protonation state and find all possible tautomers of the compounds,
they were further prepared with LigPrep software [35], using its default settings.

For each ligand, ten top-ranked docking poses were saved and visually analyzed
using the Biovia Discovery Studio software [36]. Then, for the virtual screening experiment,
the FRED program was employed as a docking engine for the 400 natural products from
the SPECS database (http://www.specs.net, accessed on 26 February 2020), along with
seven known inhibitors active against the D1-like dopamine receptor [14]. The widely
used Chemgauss 4 (CG4) scoring function, which uses Gaussian functions to describe
the shape and chemistry of molecules, implemented in FRED, was considered for a fast
evaluation of protein-ligand interactions. FRED’s CG4 scoring functions account for the
interactions which can include hydrogen bond interactions (H-acceptor and H-donors),
shape, metal-chelator interactions, and desolvation effects for both protein and ligand.
Compared with the CG3 scoring function, the hydrogen bonding and metal chelator terms
have been improved in CG4 (the shape and implicit solvent interaction terms remain
the same as in the old version). Therefore, the CG4 scoring function with better virtual
screening and pose prediction performance was selected in our study.

2.4. Insecticide-Likeness Prediction

Quantitative estimate of the insecticide-likeness (QEI) [37] was calculated based on a
function using six descriptors: molecular weight, logP, number of hydrogen bond acceptors,
number of hydrogen bond donors, number of rotatable bonds and number of aromatic
rings, which were computed with the aid of Instant JChem software [38].

http://www.specs.net
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2.5. Toxicity and Environmental Hazard Predictions

For the prediction of oral rodent acute and bee toxicities and other toxicological
endpoints of the studied compounds, the ProTox-II [39,40], and BeeTox [41,42] tools were
used, respectively. To estimate their potential bioaccumulation in aquatic species, the
bioconcentration factor (BCF) was estimated using the EPI Suite program [43].

3. Results and Discussion

Since homology (comparative) modeling is recognized as the most precise in silico
method to predict reliable 3D protein models from its amino acid sequences [44,45], in
the absence of an experimentally determined structure, this method was applied using
the I-TASSER server to build the D1-like dopamine receptor 2 of the An. gambiae species
(DAR AgDOP2).

Once the raw homology models are obtained, they are further involved in a careful
process of selection, refining, and optimization.

The confidence of each comparative model obtained by I-TASSER is quantitatively
measured by the C-score that is typically in the range of [−5, 2], where a higher value of
the C-score signifies a model with higher confidence, and vice versa. The best identified 3D
model (out of five comparative models) obtained a C-score value of −2.4 and the sequence
alignment of the query (GenBank ID: KU948225) and the best scored template (5WIUA) are
presented in Figure 1. The “C-score” scoring function is calculated by taking into account
the consensus significance score of the alignments of multiple threading templates and the
convergence parameters of the structure assembly simulations [46]. The C-score equation
is presented in Equation (S3) (Supplementary Materials). The PDB X-ray structure with the
ID: 5WIU, determined at a good resolution of 1.96 Å, belongs to the human D4 Dopamine
receptor in complex with nemonapride (a dopamine antagonist) [47].

Figure 1. Sequence alignment of the query (GenBank ID: KU948225) and the best scored template
(5WIUA), where the sequence identity and similarity are 30.6% and 54.1%, respectively. The conserved
residues [14] are represented in bold, while the amino acids of the binding site, identified using the
COFACTOR method and COACH meta-server, are italicized and underlined, respectively.

The stereochemical quality of the 3D model was assessed using the PROCHECK
server [21], mainly with the aid of the Ramachandran plot [48], which shows energetically
allowed and forbidden zones for the Phi and Psi backbone torsional angles. They include
disallowed (white areas), allowed (yellow areas), and most favored regions (red areas)
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regions (Figure 2). The residues that occur in the disallowed areas are associated with
unfavorable conformations of the protein backbone where atoms are too close (more than
the sum of their van der Waals radii).

Figure 2. Ramachandran plot of DAR AgDOP2. (a) Raw model (with 61.4% residues located in most
favored regions), and (b) Refined 3D homology model (with 90.2% residues in most favored regions).

The selected 3D model was examined and the disordered regions (Figure 2a) with
many residues located in the disallowed zones (amino acid sequences: 1–54; 264–345;
444–495, Figure S1, Supplementary Material), especially those of long coil elements [49],
were removed from the model after a previous check to ensure that they are not part of the
key domains of the protein.

Starting from a raw structure with weak stereochemistry (Figure 2a), several iterative
steps were taken to improve its quality. The Deep View Swiss-Pdb Viewer (version 3.7) [20],
Prime [23], and Protein Preparation Wizard [19] tools were used for the refinement and
optimization of the 3D structure of the protein. The homology model was examined and
the following disordered regions: 66–74; 118–125; 157–162; 168–171; 40–405, with residues
located in the disallowed areas of the Ramachandran plot were refined with the aid of
Refine Loops from Prime. In addition, it was necessary to reshape certain regions of the
protein (e.g., 78–82) using the database of known loops from the Swiss-PdbViewer Loop
Database. To attest to a good quality of the homology model, over 90% of the amino
acid residues should be in the most favored regions. As can be seen from Figure 2b, the
refined model has 90.2% residues in the most favored regions and none in the banned areas.
Additionally, the homology model quality was evaluated by PROCHECK assessing the
following geometric and energetic parameters: main-chain parameters (Ramachandran plot
quality assessment, peptide bond planarity, bad non-bonded interactions, Cα distortion,
hydrogen bond energies, overall G-factor), side-chain parameters, and distorted geometry.
All of these calculated parameters fit in the mean values, indicating a well refined and good
quality homology model of the DAR AgDOP2 receptor (Figures S2 and S3, Supplementary
Materials). In order to recognize the clash scores and outliers, the model assessment was
also done with the Molprobity server (http://molprobity.biochem.duke.edu/ (accessed on
31 May 2022)) [22], obtaining a clash score for all atoms of 0.2 (99th percentile (N = 1784,
all resolutions), where the 100th percentile is the best among the structures of comparable
resolution and the 0th percentile is the worst. The clash score represents the number
of serious steric overlaps (>0.4 Å) per 1000 atoms. The MolProbity score is 1.59 (93th
percentile (N = 27,675, 0 Å–99 Å), where 100th percentile is the best among the structures

http://molprobity.biochem.duke.edu/
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of comparable resolution; 0th percentile is the worst. The MolProbity score combines the
clash score, rotamer, and Ramachandran evaluations, normalized to be on the same scale
as X-ray resolution. MolProbity identified one Ramachandran outlier—Thr68, which does
not influence the protein binding site, given that it is outside the area of interest.

In order to identify the possible binding sites within the protein, the SiteMap [23]
top software was chosen, as it has been successfully used in previous studies [50,51].
The hydrophobic and hydrophilic contour site maps were generated. The hydrophilic
maps were further divided into the donor, acceptor, and metal-binding regions. In the
evaluation step, different properties corresponding to each site were estimated to complete
the calculation. Four possible site maps were identified (Figure 3), and the main binding
site found has a SiteScore of 1.100 and a volume of ~698 Å3, being located within the
transmembrane bundle towards the extracellular side of the receptor. A superposition
of the homology model over the top-scored template (PDB Id: 5WIU), is presented in
Figure 3C, while the alignment of their amino acid sequences is shown in Figure 1. From
Figure 3B,C, it can be observed that the best site identified using the SiteMap software
(Sitemap 1) corresponds to the known binding site of the template crystal structure (5WIU).
This hypothesis has been additionally confirmed using the COFACTOR method, which
reasons based on the structure comparison and protein-protein networks [52], and also the
COACH meta-server that combines multiple function annotation results [53] The same
top-ranked binding site was achieved using both approaches, with a C-score of 0.29 and a
cluster of 89 templates. The amino acids belonging to the aforementioned site can be seen
in Figure 1.

Figure 3. The parameters obtained using the SiteMap simulation; (A). The 3D structure of DAR
AgDOP2; the four sitemaps are represented by colored surfaces; (B). In Sitemap1 the contour maps
are depicted as transparent surfaces; hydrophobic map-yellow surface; hydrogen-bond donor map
-blue surface; hydrogen-bond acceptor map-red surface; (C). The overlapping of the main sitemap
(Sitemap1) of the homology model (the green ribbons) over the experimentally identified 5wiuA
receptor (purple ribbons with the co-crystalized ligand).

Hill and coauthors have realized an interesting study on several potential antagonists
(Table 1) against the DAR AgDOP2 vector to evaluate their insecticidal activity to larvae,
expressed as IC50 values (µM) for the inhibition of dopamine-stimulated IP1 response in HEK-
293 cell lines by DAR antagonists [14]. These compounds were further used in a molecular
docking study in order to gain insight into intermolecular ligand-target interactions.
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Table 1. DAR AgDOP2 antagonists along with their IC50 values and the docking results.

Compound 2D Structure pIC50
1 CG4 Score H Bonds 2 Hydrophobic

Interactions 3

Amitriptyline 6.638 −8.522 D136, T209 A412

Amperozide 4.726 −8.901 D136, N394, F390, F210, A412

Asenapine 9.155 −8.935 D136, T209 A412

Butaclamol 5.921 −8.947 E408 V393, W419

Chlorprothixene 6.398 −8.056 N394, E212, T415 F390, F210, A412

Methiothepin 6.854 −7.051 D136, T209 S411, W419

SCH23390 5.444 −8.706 D136, E408, T209

1 The insecticidal activity values are taken from the reference [14] and molar converted to pIC50 values; 2 Amino
acid residues involved in hydrogen bond formation; 3 Amino acid residues involved in hydrophobic interactions.

The docking output files were generated with 10 poses for each compound. The best
poses were chosen based on the Chemgauss4 score and key interactions. The interactions
between the docked compounds and the amino acid residues of the binding site are
presented in Table 1 and Figure 4.

In order to identify new molecules with potential insecticidal activity and environ-
mental safety that are most likely to bind to the DAR AgDOP2 target, vs. experiments
were undertaken implying SPECS natural compounds repository. The ten top-ranked
compounds (according to CG4 score) are presented in Table 2 and Figure 5.
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Figure 4. Superposition of the best poses identified for seven compounds (Table 1) into the DAR
AgDOP2 binding site. The hydrogen bonds are depicted with green dashed lines, while hydrophobic
interactions are presented with pink dashed lines.

Figure 5. Superposition of the best poses identified for 10 compounds (Table 2) into the DAR
AgDOP2 binding site. The hydrogen bonds are depicted with green dashed lines, while hydrophobic
interactions are presented with pink dashed lines.
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Table 2. The top-ranked compounds from the Specs database selected through vs. experiment.

No. Specs ID
Number 2D Structure Name CG4 Score H

Bonds
Hydrophobic
Interactions

1 AO-253/40760091 Rhaponticin (Rhapontin) −14.354

N394
T209
E408
S411
L217

L217

2 AH-632/20791006

3-(bromoacetyl)-3,5,10,12-
tetrahydroxy-6,11-dioxo-
1,2,3,4,6,11-hexahydro-1-

naphthacenyl
3-amino-2,3,6-

trideoxyhexopyranoside

−12.776

D136
T209
T415
L217

F390
V393
V137
F210

3 AE-508/21132035 O-Benzoylcinchonine −12.212 T209
F390
V137
F210

4 AO-166/21204006 Abysinnone −11.947 S140
L217

F391
V137
W132
W419
F210
R133
V108

5 AO-222/41148840 Teuscorodonin −11.807

T121
N394
T415
Y115

W132
W419
A412

6 AM-331/20711002 Indirubin −11.676 E408 T415
F210

7 AI-899/21033027

1-(3-acetyl-2,6-dihydroxy-4-
methoxyphenyl)-4,5-

dihydroxy-2-methylanthra-
9,10-quinone

−11.546 N394
S112

F390
F210

8 AQ-152/40869673 Cholestane-3,5,6-triol −11.445 E408

F391
W132
V137
W419
F210

9 AO-774/41465391 3,7-Dihydroxycholan-24-oic acid −11.336 E408
T209

F390
W132
F210
W419
L217

10 AL-466/21162039 Cinchonine −11.277 E408 -

The vs. results showed much better Chemgauss4 scores for the top compounds
(Table 2) compared to those previously studied (Table 1). The evaluation of the interactions
between the natural compounds and the amino acid residues revealed, as expected, mostly
those conserved (D136, F390, F391and S140) and those predicted to belong to the binding
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site (N394, W132, V137, F210, W419, T415), as well as new ones (T209, E408, L217, S411,
A412, V393, T121, E212). Among them, the most significant amino acid residues involved
in hydrophilic interactions (hydrogen bonds) are D136, N394, E408, and T209, while the
hydrophobic interactions are mainly realized with the following residues: F390, W419, A412,
F210, and V137. By analyzing and comparing these results with the observed interactions
between the 5WIU crystal structure (used as a template-Figure 1) and the nemonapride, the
co-crystalized ligand (Figure 3C) it was observed that nemonapride interacts by hydrogen
bonds with the conserved aspartate by D1153.32 (D136-Figure 1), and with the sidechain of
S1965.42 (S220-Figure 1) [47].

Applying rule-based filters for predicting insecticide-like compounds, Tice et al. [54]
found several criteria, such as molecular weight (MW between 150–500), logP (MLogP
between 0–5), number of hydrogen bond donors (HBD ≤ 2), number of hydrogen bond
acceptors (HBA between 1–8) and number of rotatable bonds (RB ≤ 9). The insecticide-
likeness was estimated for the ten top-ranked compounds resulting from the vs. experiment
using a desirability function based on the following six structural descriptors: molecular
weight, logP, number of hydrogen bond acceptors, number of hydrogen bond donors,
number of rotatable bonds, and number of aromatic rings [37]. The quantitative estimate of
the insecticide-likeness (QEI) was calculated (Table 3). Compound 5 (teuscorodonin) was
found with the highest desirability QEI score and fulfills the Tice criteria for insecticide-like
compounds (the MlogP value, calculated with the Dragon software (Dragon Professional
5.5, 2007, Talete S.R.L., Milano, Italy) was of 3.84).

Table 3. Structural descriptors based on which the insecticide-likeness (QEI) was calculated.

No. MW LogP HBA HBD RB arR QEI

1 420.41 0.98 9 6 6 2 0.124
2 593.40 2.45 10 6 4 2 0.092
3 399.51 5.17 2 1 6 3 0.543
4 392.50 5.95 4 2 5 2 0.441
5 400.43 2.53 3 0 4 1 0.751
6 261.26 3.32 3 1 1 3 0.442
7 433.39 5.22 8 3 2 3 0.159
8 404.68 6.67 2 2 5 0 0.540
9 404.59 4.07 3 1 5 0 0.686
10 295.41 2.67 2 2 3 2 0.525

The ProTox-II server [39] was used to predict the toxic potential of the compounds
taken in this study. ProTox-II makes predictions utilizing computer-based models trained
on experimental data. Thus, involving similarity comparisons with known toxic chemicals,
the acute toxicity class, the hepatotoxicity, and various toxicological endpoints (cytotoxicity,
mutagenicity, carcinogenicity, and immunotoxicity), the toxicological pathways, and the
toxicity targets were predicted for the targeted compounds based on trained machine
learning models.

The evaluation of the toxicity prediction (Supplementary Material) indicates that
among the top 10 compounds that resulted from VS, the vast majority belong to Toxi-
city Class IV and V, with the exception of no. 2 (Table 2), for which Class II has been
assigned. The significance of the assignment by class can be seen in the caption of Table S2
(Supplementary Material). As can be seen in Tables S3 and S4 (Supplementary Material)
two compounds (No. 3 and 10) pass all the evaluated toxicological criteria, while the rest
of them having immunotoxicity issues.

The study of the impact of pesticides on insect pollinators, especially on bees, is a major
and topical concern, therefore, a web server for the prediction of bee toxicity involving
the Graph Convolutional Neural Network [42] method was used. Thus, the previously
investigated molecules were further explored using the BeeTox tool [41] to predict their
toxicity for the bees. The estimations showed non-toxic outcomes for the vast majority of
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compounds (except no. 3 and 9; Figures S4–S11, Supplementary Material). Compound 5
with the highest QEI estimated value and which passed the Tice insecticidal rules was found to
be non-toxic for bees, according to this software (Figures S7 and S12, Supplementary Material).

One of the most significant parameters used for screening bioaccumulative and toxic
substances is the bioconcentration factor (BCF). BCF is an essential notion in environmental
risk assessment referring to the ability of a contaminant to be taken up by organisms from
the water [55]. The computation of BCFs has been achieved with the aid of the BCFBAF
Program from EPI Suite [43]. The results of the estimation showed low bioconcentration
potential for aquatic species (BCF < 1000, https://www.epa.gov/sites/default/files/2015
-05/documents/05.pdf, accessed on 10 January 2022) for all the ten natural investigated
compounds (Supplementary Material-Table S5).

An analysis of the vs. results indicated that some natural products identified in the
present paper as potential insecticides against the An. gambiae species were previously
shown to function as repellents against various species. Thus, acylated rhaponticin (a
derivative of compound ranked no. 1 in Table 2), isolated from eucalyptus rubida, was
found as a repellent against the blue mussel mytilus edulis, ref. [56] while cinchonine
(Table 2) was found to be a potent insecticide against Mythimna separata (Walker) in a
recent study [57]. Cinchonine as an alkaloid found in the Cinchona tree along with other
analogous (quinine, quinidine) [58] is also effective against Plasmodium falciparum, the
predominant species that causes malaria [59]. As it is known, alkaloids belong to a class of
compounds with a wide range of biological activities, including activity against the malaria
vector Anopheles gambiae [60].

4. Conclusions

In the absence of an experimentally determined structure, comparative modeling is
considered to be the most reliable in silico method to predict 3D protein models from their
amino acid sequences. Thushomology modeling was applied using the I-TASSER server
to build the DAR DOP2 receptor of An. gambiae species. An unsatisfactory percentage of
residues (61.4%) in the most favored regions of Ramachandran plot was observed in the raw
homology model. The homology model has undergone an intensive process of refinement
until a good percentage of 90.2% residues in the most favored regions was obtained.

With the aid of the SiteMap software, four sites were identified; the primary site was,
also, discovered by the COFACTOR method and COACH meta-server and was confirmed
by the superposition over the experimental structure of human Dopamine D4 receptor
(PDB ID: 5wiuA).

The homology model obtained was involved in a virtual screening process in or-
der to discover new and safe potential insecticides targeting the DAR DOP2 receptor of
An. gambiae, a dominant vector species of human malaria transmission. The top 10 natural
compounds ranked were further investigated in terms of ligand-receptor interactions, and
their insecticidal and toxicological profile was predicted. The results of the study predicted
that the investigated compound 5 (teuscorodonin) might have potential insecticidal charac-
teristics against An. gambiae and is not bioaccumulative for aquatic species. The predicted
toxicities indicate that the known natural compound teuscorodonin belongs to the toxicity
Class IV, being inactive for the following endpoints: mutagenicity, hepatotoxicity, and cyto-
toxicity, and is not toxic for bees. Furthermore, this study, by highlighting ligand-binding
site interactions, can facilitate the first step to a better understanding of a potential mode of
action of the DAR antagonists against AgDOP2 receptors.

https://www.epa.gov/sites/default/files/2015-05/documents/05.pdf
https://www.epa.gov/sites/default/files/2015-05/documents/05.pdf
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by I-TASSER; Figure S1: Predicted normalized B-factor; Table S2: Physicochemical parameters and
oral toxicity prediction results for the selected NPs and D1-like DAR antagonists; Table S3: Toxicity
Model Report—Prediction of various toxicity endpoints; Table S4: Toxicological pathways prediction;
Figure S2: Main-chain parameters of DAR AgDOP2; Figure S3: Side-chain parameters of DAR
AgDOP2; Figure S4: AO-253/40760091 (Compound 1 from Table 2); Figure S5: AH-632/20791006
(Compound 2 from Table 2); Figure S6: AO-166/21204006 (Compound 4 from Table 2); Figure S7:
AO-222/41148840 (Compound 5 from Table 2); Figure S8: AM-331/20711002 (Compound 6 from
Table 2); Figure S9: AI-899/21033027 (Compound 7 from Table 2); Figure S10: AQ-152/40869673
(Compound 8 from Table 2); Figure S11: AL-466/21162039 (Compound 10 from Table 2); Table S5:
Bioconcentration Factors (BCFs) computed with BCFBAF Program from EPI Suite; Figure S12: The
compound 5 into the DAR AgDOP2 binding site.
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