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Episodic memory allows a person to recall and mentally reexperience specific episodes from one’s personal past. Studies of
episodic memory are of great significance for the diagnosis and the exploration of the mechanism of memory generation. Most of
the current studies focus on certain brain regions and pay less attention to the interrelationship betweenmultiple brain regions. To
explore the interrelationship in the brain network, we use an open fMRI dataset to construct the brain functional connectivity and
effective connectivity network. We establish a binary directed network of the memory when it is reactivated. +e binary directed
network shows that the occipital lobe and parietal lobe have the most causal connections. +e number of edges starting from the
superior parietal lobule is the highest, with 49 edges, and 31 of which are connected to the occipital cortex. +is means that the
interaction between the superior parietal lobule and the occipital lobe plays the most important role in episodic memory, and the
superior parietal lobule plays a more causal role in causality. In addition, memory regions such as the precuneus and fusiform also
have some edges. +e results show that the posterior parietal cortex plays an important role of hub node in the episodic memory
network. From the brain network model, more information can be obtained, which is conducive to exploring the brain’s changing
pattern in the whole memory process.

1. Introduction

Episodic memory is the memory for specific events [1].
When two events occur at the same time, the brain will
establish a connection between the memories of the two
events to form an association. When the memory of one of
the events is reactivated, the memory associated with the
other event may also be activated again. Studies of gener-
ation mechanism of this memory have important practical
sense. For example, stimulation over network related to
episodic memory can promote the consolidation of memory
in older adults [1]. +is has a positive effect on the study of
phenomena such as memory decline in the elderly [2]. In
addition, episodic memory also provides enlightenment for

diagnosis and pathology research. +e study of the episodic
memory phase could help to accurately describe the
symptomatic phase of Alzheimer’s disease (AD), which
could lead to improved treatment regimens [3]. Episodic
memory network and hippocampus are also thought to be
closely related to Parkinson’s disease (PD) [4]. Episodic
memorymay also aid the diagnosis of othermental disorders
such as autism and schizophrenia [5, 6].

Episodic memory is concerned with the storage and
retrieval of some events about personal experience, as well as
the spatial-temporal relationships between these events [7].
Tulving described it as when recalling an event, people seem
to be taken back to the scene of the event, and thus, the
cortex involved in the memory retrieval process is
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reactivated [7]. Current research studies reveal that episodic
memory is influenced by interactions between multiple
brain regions.

Prefrontal cortex may play an important role on episodic
memory. Stimulation to the lateral prefrontal cortex can
consolidate episodic memory, while stimulation to the
posterior parietal cortex has no obvious effect [8, 9]. +ere
are also some studies working on other memory-related
functional networks. A study focus on the connection of the
hippocampal-cortical network (HCN) shows a causal rela-
tionship in episodic memory retrieval [10]. According to
other results of fMRI studies related to memory retrieval,
brain regions related to episodic memory are also widely
distributed in the temporal, parietal, occipital, frontal, and
other regions. Associative stimuli can consolidate the acti-
vation intensity of memory. In a learning and test task, a
large number of associative stimuli can make the learned
word items get stronger activation [11]. Studies have shown
that the prefrontal cortex and the medial temporal lobe
interaction play an important role in episodic memory. At
the same time, the encoding and retrieval of episodic
memory is related to the activation of the temporal lobe,
prefrontal lobe, and parietal lobe. +e upper and dorsal
parietal lobes, as well as the anterior prefrontal region, are
more active in the retrieval of episodic memory [12]. In
addition, some studies have shown that the hippocampus
and striatum have strong functional connectivity during
associative memory [13]. Also, in addition to some studies
focus on the activation of brain regions, there are also studies
that attempt to use some machine learning methods to
classify fMRI data with different activation patterns [14].

Brain networks related to episodic memory are widely
connected, and under different task modes, the connectivity
of various regions in the network is also different. +erefore,
in order to parameterize the degree of reactivation of epi-
sodic association at a finer granularity, multiple-object
tracking tasks with different difficulties are used to interfere
with episodic memory [15]. In the case of different dis-
turbances, the activation values of memory are also different.
For example, in the case of think/no-think paradigm, the
relationship between the differences in conditions and
memory basically corresponds to the fact that there is no
change in memory in the case of extremely low activation,
while memory is weak in the case of moderate activation and
enhanced in the case of high activation [16]. In the task with
multiple-object tracking interference, subjects need to
continuously track some moving target points during a
period of time, while visualizing the scene associated with
the words appearing in the center of the screen [17]. In this
task, subjects need to be highly focused while tracking the
targets; otherwise, the task will be difficult to complete
successfully [15]. Studies have shown that such tasks related
to visual working memory involve the parietal and frontal
cortex. In addition, human cognitive resources are limited,
and task performance is largely affected by the ability to
selectively focus, memorize, and manipulate information
according to task requirements [18]. +e brain regions ac-
tivated during this period overlapped with those of episodic
memory to a certain extent, indicating that the activation of

episodic memory and interference tasks would compete for
visual resources. +erefore, studying this kind of episodic
memory retrieval task that parameterizes the degree of
memory activation can help to understand the conditions of
episodic memory activation more comprehensively, and at
the same time, from the perspective of the whole brain
network, it helps to a broader understanding of the whole
brain rather than focusing on the changes of the activation of
certain regions; in this way, the coordination between
network regions can be further considered from the spe-
cialization of regional functions.

In addition, word reading stimulates episodic memory
retrieval in this task mode, the reading of English words will
be affected by regions such as the temporal occipital and
temporoparietal regions, and studies have shown that when
reading English words, the brain activity and visual regions
will have a strong coupling, English readers will have
stronger activation of the subtemporal gyrus in tasks related
to words retrieval [19]. +us, the mentioned regions may
have strong functional connectivity performance with the
episodic memory circuit.

In order to explore the brain network model for the
retrieval of disturbed episodic memory, a variety of methods
were used in this study to try to construct a directed network
in the task state, and the contribution of various regions
involved in episodic memory as well as the broader coor-
dination role of these regions was discussed from the per-
spective of network structure.

2. Materials and Methods

+e fMRI data used in this study were obtained from the
OpenfMRI database [17, 20]. +e accession number of the
data is ds002311, and the data are freely available at https://
openfmri.org/data-set/ds002311/.

As shown in Figure 1, in this study, three methods of
constructing brain function network using functional con-
nectivity (FC) and effective connectivity (EC) were com-
pared. FC matrices were calculated using Pearson
correlation coefficient, and EC matrices were calculated
using Granger causality analysis (GCA).

2.1. Participants. +e original fMRI data set contains 23
right-handed T1 structural image data and four sets of
functional image data [17]. +e data of 8 of subjects was
corrupted, so the data of the remaining 15 people were used.
All were native English-speakers between 18 and 25 years of
age with normal or corrected-to-normal vision and hearing.

2.2. Visual-Word Pairing Task Procedure. +e whole ex-
periment procedure is divided into six phases, and the fMRI
data set contains the fMRI data from phase 3 to phase 6.+is
paper mainly studies phase 5.

Before phase 5 of the experiment, all the participants
learned the 30 word-scene image pairs and performed a
memory test to ensure that the participants remembered
these pairs. At the same time, in order to control the sit-
uation of no visual association, before phase 5, each
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participant was shown 16 lure words without corresponding
scene images. +e participants were also required to be
familiar with these lure words that appeared. +ese lure
words will also appear in phase 5.

As shown in Figure 2, the subjects need to perform the
targets tracking task for multiple times during phase 5, and
try to reactivate the memory of word-scene image pairs in
the procedure of targets tracking task interference. Before
this, subjects had done similar targets tracking tasks many
times to ensure that the subjects were familiar with the
experimental procedure. In the target-tracking task, the
subjects will see 10 random nonoverlapping points in the
black background, among which the target points are red
and the nontarget points are green (in the case of multitarget
tracking, there are five target points, single target tracking
with only one target point). +ere was a white fixation cross
in the center of the screen. After a two-second exposure
duration for subjects to memorize, all points were presented
in green and began moving. Participants were asked to
mentally track which points were originally the red target
points for eighteen seconds. Meanwhile, the white central
fixation cross was replaced by a word in white font with a
small white dot in the center. If there was a scene image
paired with the word (that is, the word was not a lure word),
then the subject had to imagine the scene paired with the
word in as much detail as possible. At the end of tracking, all
points stop moving and one of the points turns white. +e
subjects need to select whether the white point is a target or a
nontarget originally by pressing a button. After three sec-
onds, participants were given feedback for one second in-
dicating whether they were correct or incorrect. Finally, the
participants completed two trails of an odd-even task: two
numbers were displayed on the screen for 1.9 seconds, and
participants need to press a button to determine whether the

sum was odd or even. +e text was presented in white, and
when participants gave a correct response, the font was
switched to green.When the response was incorrect, the font
was switched to red. +e interval between two odd-even
tasks was 0.1 s, and after the two odd-even tasks, the screen
was fixed for 4 seconds before the next multiple-object
tracking task began. +e total time of each trail of target
tracking task was 32 seconds.

A total of 25 tasks were completed in a whole scan,
among which there were 10 single-object tracking tasks of
scene pairing words, 10 multiple-object tracking tasks of
scene pairing words, and 5 multiple-object tracking tasks of
lure words without pairing scene. +e order of tasks was
random. In phase 5, three fMRI scans were performed, with
each subject performing a total of 75 tasks.

2.3. fMRI Data Acquisition. +e MRI data were acquired by
using a 3 Tesla whole-body Siemens Skyra MRI system. T1-
weighted high-resolution MRI volumes were collected using
a 3D MPRAGE pulse sequence optimized for gray-white
matter segmentation, with slices collected in the AC-PC
plane (176 sagittal slices; 1mm thick; FOV� 256mm;
256× 256 matrix; TR� 2530ms; TE� 3.37ms; flip
angle� 9°). +e fMRI scans were collected using T2∗-
weighted echo-planar image (EPI) acquisition (34 axial
oblique slices; 3mm thick; FOV� 192mm; 64× 64 matrix;
TR� 2000ms; TE� 33.0ms; flip angle� 71°; 2× IPAT
acquisition).

2.4. Preprocessing of fMRI Data. Preprocessing of fMRI data
was performed using the Statistical Parametric Mapping
(SPM) Version 12 toolbox from Wellcome Trust Centre for
Neuroimaging [21]. SPM provides a general method that can
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Figure 1: Methods of constructing brain function network compared in this study. For FC, calculate and compare the group-level FC
matrices under different task conditions, and try to construct a weighted undirected network; in order to further explore the direction of the
network, use the GCA method to calculate the EC matrix, and build a network model based on the F value and p value, respectively.
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be adapted to most forms of experimental design and data
analysis. It combines two mature theoretical frameworks
(the general linear model and the theory of Gaussian fields)
to provide a complete framework for the analysis of imaging
data. +is framework has conceptual and mathematical
simplicity, and the generality of the framework provides for
great latitude in experimental design and analysis. +e
preprocessing is divided into following steps. For each
subject, the difference caused by different slice scanning time
of each 3D image layer should be corrected at each time
point, so that the whole brain image can be reconstructed
accurately. In the process of slice timing, the middle layer of
the 3D image is used as the reference layer. In the second
step, we used the first scan in the time sequences as a ref-
erence image and aligned each image in the entire time
sequences to the reference image, so as to correct the dif-
ference that the scanning images are not aligned due to the
subject’s head movement during the experiment. +e
functional image was spatially coregistered with the struc-
tural image and then used the EPI template to normalize the
images and align the images to the Montreal Neurological
Institute (MNI) Brain Template. In the original data, the
voxel size is 3× 3× 3.9mm, and the image dimension is
64× 64× 36, and the normalized image voxel size is
3× 3× 3mm, and the image dimension is 61× 73× 61. Fi-
nally, a Gaussian kernel function of size 6× 6× 6 was used to
smooth the image.

2.5. Functional Connectivity. Functional connectivity rep-
resents correlations between time sequences of different
brain regions [22]. +e correlation between two time se-
quences can be calculated by Pearson correlation coefficient:

ρX,Y �
Cov (X, Y)

σXσY

�
E X − μX( 􏼁 Y − μY( 􏼁( 􏼁

σXσY

, (1)

where σX, σY represent the standard deviation and
Cov (X, Y) represents the covariance of the two time se-
quences. +e range of ρX,Y, the result of equation (1), is
−1≤ ρX,Y ≤ 1. When 0< ρX,Y ≤ 1, two time sequences show a
positive correlation, and the greater the ρX,Y is, the stronger
the positive correlation; when −1≤ ρX,Y < 0, two time se-
quences show a negative correlation, and the smaller the ρX,Y

is, the stronger the negative correlation. ρX,Y � 0 represents
that there is no correlation between two time sequences, that
is, the two sequences are independent. +is would reveal
whether the two brain regions are functionally synergistic or
antagonistic. In this study, the Brainnetome template [23]
was used to divide the whole brain into 246 brain regions
(excluding the cerebellum) according to anatomical struc-
ture. As shown in Figure 3, the time sequences of all voxels in
each brain region were used to calculate the average time
sequences, then we calculated the Pearson correlation co-
efficient of the average time sequences of each brain region
in pairs. +us, a 246× 246 symmetric matrix was obtained,
the value of each element in the matrix was the correlation of
the brain region, and the rows and columns of the matrix
corresponded to the number of brain regions. In order to
obtain the FC matrix under three kinds of tasks, the average
time sequences of each single task were extracted in this
study. 25 tasks were performed on each scan, and 75 tasks
were performed on three scans. However, the last task of
each scan is incomplete, so these tasks were discarded,
leaving 72 groups of average time sequences in total.

+e FC matrix is a symmetric matrix calculated by the
two time sequences, so the network structure represented by
the matrix is undirected graph, so that there are some
problems arise in the explanation of the network structure:
when two time sequences X and Y show correlation, does X
affect Y, or Y affectsX, or does it affect each other, or are both
X and Y affected by a third variable? +erefore, in order to
eliminate these problems related to the direction of network,
it is necessary to construct a model that considers causal
influence, that is, effective connectivity.

2.6. Granger Causality Analysis. In 1969, Cliver Granger
proposed the Granger causality analysis method [24]. It is
defined as follows: for two stationary time series X and Y, if
predicting the current value of X by the past value of X and Y
is more accurate than predicting the current value of X by
only using the past value of X itself, then Y is considered as
the Granger cause of X [25]. +is is implemented using a
multivariate autoregressive (MVAR) model. In 1994, Friston
applied GCA to neuroscience to obtain the EC between
brain regions [26]. As a method of obtaining the EC matrix,
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Figure 2: +e procedure of multiple-object tracking task.
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GCA can build interaction mathematical models between
different brain regions with statistically significant differ-
ences. +e interaction between these brain regions can be
used to infer the form of network connections. Consider the
following autoregressive (AR) models:

Xt � 􏽘

p

i�1
a1iXt−i + ε1t,

Yt � 􏽘

p

i�1
b1iYt−i + ε2t,

(2)

where a1i and b1i are coefficients of the model, while p is the
model order; that is, the current value is predicted using the
previous 1 time point to the previous p time point. ε1t and ε2t

are the residual errors, in the AR model of equation (2), ε1t

and ε2t only depend on the past values of X and Y, and the
accuracy of the model can be evaluated by the variance of the
prediction error, namely, var(εit), i � 1, 2.

Because X and Y may be affected by each other, X and Y
are jointly considered to build a bivariate AR model:

Xt � 􏽘

p

i�1
a2iXt−i + 􏽘

p

i�1
c2iYt−i + ε3t,

Yt � 􏽘

p

i�1
b2iYt−i + 􏽘

p

i�1
d2iXt−i + ε4t.

(3)

In the bivariate ARmodel, ε3t and ε4t are affected by both
X and Y. For time series X, when the accuracy of the bi-
variate AR model is higher than that of the univariate AR
model, that is, var(ε3t)< var(ε1t), then it can be said that Y

causes X, and the causality measure is defined as

FY⟶X � ln
var ε1t( 􏼁

var ε3t( 􏼁
􏼠 􏼡. (4)

When FY⟶X > 0, Y is the Granger cause of X. Similarly,
the causal relationship from X to Y can also be obtained:

FX⟶Y � ln
var ε2t( 􏼁

var ε4t( 􏼁
􏼠 􏼡. (5)

As shown in Figure 4, using a method similar to the
calculation of the FC matrix, the Granger causality matrix is
calculated using the average time series of each brain area,
that is, the EC matrix. +e effect of causality is directed,
FY⟶X and FX⟶Y are not same, so unlike FCmatrix, the EC
matrix is not a symmetric matrix, and the network it rep-
resents is a directed graph.+is would solve the FC influence
direction problem mentioned in Section 2.5.

In this study, FC and EC were obtained by using time
periods involving the reactivation of episodic memory, 0–18
seconds for each task. Because TR� 2 s, each time sequence
only contains 9 time points, and the shorter length of time
sequences also limits the choice of model order in GCA, so
the first-order GCA model was used in this study.

2.7. Statistical Analysis. By analyzing the time sequence of
each task, the FC matrix and the EC matrix were obtained.
For the FC matrix, in order to be able to perform the group-
level statistics, Z-score normalization should be performed
for FC matrix of each task procedure to ensure that each
sample has the same distribution. Z-score normalization is
to find the difference between each variable and its mean
divided by its standard deviation:

Z �
X − μX

σX

. (6)

In this way, all the data are converted to the same
distribution, with a mean of 0, and the standard deviation of
1. +en, the normalized FC matrices under the three task
conditions can be averaged, respectively, to obtain the FC
matrices in the three task states at the group level.

For the EC matrix, find the average EC matrix under the
three task conditions. When the matrix element is greater
than 0, there is causality between the two corresponding
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Figure 3:+e calculation of FCmatrix. In this study, the whole brain was divided into 246 brain regions.+en, correlation coefficients were
calculated in pairs. In this way, a 246× 246 symmetric matrix was obtained. +e matrix elements FC(x, y) and FC(y, x) represent the
correlation coefficient between two brain regions of x and y. +e paramaters x and y represent the indices of two brain regions in all 246.
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brain regions [25]. +erefore, using 0 as the threshold,
connections with causality are selected and weighted di-
rected network models under the three task conditions can
be constructed, respectively. +e weighted directed network
is used to further construct the binary network when the
word-scene image pairing memory is reactivated. In this
process, the interference of the target tracking task added in
the task design needs to be eliminated. In the multiple-object
tracking task with pairing words, the episodic memory of the
subjects was activated, as well as regions related to visual,
motion, and target tracking tasks. +erefore, it was com-
pared with the ECmatrix of themultiple-object tracking task
with lure words in this study. +e EC matrices of these two
task conditions were binarized. +e elements of the EC
matrix considered to have a causality are set to 1, and the
elements that do not have a causality are set to 0. In this way,
a binary network model in two task conditions was obtained.
Keeping the connections that only appeared in the word-
scene image pairing memory reactivation task but not in the
lure word task, we can get the network related to episodic
memory.

In addition, this study also used other methods to obtain
binary ECmatrices.+e single-sample t-test was used for the
results of GCA, and the connections with p< 0.05 were
selected [27] to obtain the binary network of each sample. In
order to obtain the binary network at the group level, the
averages of connection numbers under the three task
conditions were calculated for the binary network of each
sample. +e results are as follows: the average number of
connections in the single-object tracking task with scene
image pairing words is 5527 (standard deviation is 10.1669),
the average number of connections in the multiple-object
tracking task with scene image pairing words is 5469
(standard deviation is 10.3795), and the average number of
connections in the multiple-object tracking task with lure
words is 5408 (standard deviation is 6.0627). Add the binary
matrices of the three task conditions respectively, and keep
the connections that are shared by the most samples

according to the average number of connections. For ex-
ample, for a single-object tracking task with scene image
pairing words, the top 5527 connections that are shared by
the most samples are selected as the group-level result. For
the other two task conditions, 5469 connections and 5408
connections are selected.

3. Results

Figure 5 shows the group-level FC under three task con-
ditions. And Figure 6 shows the EC matrices under the three
task conditions. Compared with FC, ECmatrices in different
conditions have more obvious differences, especially after
binarization of the matrix. +erefore, the following dis-
cussion mainly focuses on the EC matrices.

In order to further analyze the differences between task
states, the connections with causality are selected, the ma-
trices are binarized, and the binary unweighted network is
further analyzed. As shown in equations (4) and (5), if the F
value of an element in an EC matrix is greater than zero, it
means that the edge represented by this element has causal
relationship. +erefore, with 0 as the threshold, the EC
matrices under the three task conditions were binarized, and
the binarized unweighted network represents a brain net-
work model with causality. As shown in Figure 7, it is the EC
matrices after binarization. +ere are certain differences in
matrix elements under the three task conditions. It can be
seen that compared with the single-object tracking task, a
broader causal relationship appears in the multiple-object
tracking task.

In order to control the influence of different task states
on brain activity in the experiment, this study focuses on two
multiple-object tracking tasks. +ese two task states have the
same task requirements except for whether there is an ep-
isodic memory about word-scene pairs to reactivate. Al-
though in the single-object tracking task, the simpler
tracking task reduces interference and can stimulate the
strongest reactivation under this condition, and it is difficult
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Figure 4: +e calculation of EC matrix. Similar to the calculation of the FC matrix, causality between brain regions was calculated in pairs
and a 246× 246 matrix was obtained. +e matrix elements EC(x, y) represent the causal relationship from region y to region x. Also, the
paramaters x and y represent the indices of two brain regions in all 246, as same as the indices in the FC matrix.
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to compare with the lure word task as a control group due to
too many different factors in the task. Although multiple-
object tracking tasks cause weaker reactivation of episodic
memory due to stronger interference, it is easier to control
variables. +erefore, in this study, we subtracted the binary
matrix of the multiple-object tracking task with pairing
words and the binary matrix of the multiple-object tracking
task with lure word.+e different connections under the two
task conditions were used to find out the differences in brain

networks when episodic memory was activated or not, and
the single-object tracking task that evoked the strongest
episodic memory reactivation was used as a reference.

In this study, we also compared the binary EC matrices
obtained by using the t-test to screen out elements with
p< 0.05. Figure 8 shows the connections shared by the most
samples under the three task conditions, which are 5527,
5469, and 5408 connections, respectively. Since the EC
network of a single sample after binarization has large
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Figure 5: (a) FCmatrix under single-object tracking task with pairing words; (b) FCmatrix under multiple-object tracking task with pairing
words; (c) FC matrix under multiple-object tracking task with lure words.
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differences between individuals, the number of shared
connections is small (the connections with the highest share
rate are only present in about 30% of the samples). +is is
difficult to be used as a basis for group-level analysis. Al-
though there are some differences in the connections filtered
according to the average number of connections, the re-
served connections are too complicated, and the overall
distribution still tends to be the same. It is difficult to de-
termine whether these differences are decisive factors for
different task states.

In summary, the most suitable method for analyzing the
difference of network connection between the three states is
to screen out the binarized EC matrices with F value greater
than zero. In this study, BrainNet Viewer [28] was used to
obtain the brain network.

Figures 9 and 10 show the episodic memory reactivation
network obtained by using the pairing word task matrices to
subtract the lure words task matrices. +e complete con-
nectivity matrix is uploaded to the supplementary material.
It can be seen from the figure that the connections are mostly
concentrated in the parietal lobe and the occipital lobe, and
there is also a partial distribution in the prefrontal cortex.
+is is similar to the distribution of EC networks in single-
object tracking. +at means the brain networks obtained by
subtraction are roughly similar to those when episodic
memory activation is the strongest and with a small amount
of interference.

+e result indicates that the episodic memory brain
networks obtained by this method are reliable. To further
analyze the characteristics of the brain region connection, it
is necessary to consider the direction of network edges. +e
brain network model obtained using this method is a di-
rected unweighted graph, and as shown in Tables 1 and 2, the
tables list all the indegrees and outdegrees of the brain gyri
with causality.

Table 1 shows the indegrees of each gyrus in the binary
network, that is, the number of connections with a certain
gyrus as the end point. It can be seen from Table 1 that most
of the edges end with medioventral occipital cortex and
lateral occipital cortex, and there are also many edges with
precuneus and fusiform as ends. Medioventral occipital
cortex and lateral occipital cortex belong to the occipital
cortex, which is closely related to vision [29]. In addition,

studies have shown that the precuneus is involved in many
advanced cognitive functions, including episodic memory
[30, 31]. +e fusiform is related to visual recognition
functions such as semantic recognition and object
recognition.

Table 2 shows the outdegrees of each gyri in the binary
network, that is, the number of connections starting from a
certain gyrus [32]. From Table 2, the starting points of most
connections are concentrated on the superior parietal lobule,
medioventral occipital cortex, and lateral occipital cortex.
+e superior parietal lobule is closely related to the occipital
lobe, participating in attention and visual and spatial
perception.

+ere are a total of 49 edges starting from the superior
parietal lobule, of which 31 end in the medioventral occipital
cortex and lateral occipital cortex, 7 end in the precuneus,
and the rest are connected to the inferior temporal gyrus,
thalamus, and parietal lobule. +ere are a total of 39 edges
starting from the medioventral occipital cortex and lateral
occipital cortex, of which 26 connect to the occipital lobe
itself, and the rest connect to the regions such as the pre-
cuneus, fusiform, superior parietal lobule, and inferior
temporal gyrus separately. +e close synergy between the
superior parietal lobule and the occipital lobe indicates that
the reactivation of episodic memory produced by the su-
perior parietal lobe can trigger the generation of visual
imagination in the occipital lobe. +e close connection
between the temporal occipital, temporal parietal, and visual
cortex plays an important role in the reading of English
paired words [19, 33]. +e connection of this part to the
posterior parietal lobe indicates that the episodic memory is
associated with the presence of the pairing word stimuli and
activates the retrieval of the episodic memory.

4. Discussion

In this study, we compared and discussed various methods
of constructing brain networks, and we constructed brain
network models in word-visual association pairing tasks.
+e results showed that the posterior parietal cortex plays an
important role in the episodic memory network. +ere is
some debate about whether posterior parietal cortex is a
memory region, but some studies have found that the region
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Figure 8: (a) Binary EC matrix under single-object tracking task with pairing words, p< 0.05; (b) binary EC matrix under multiple-object
tracking task with pairing words, p< 0.05; (c) binary EC matrix under multiple-object tracking task with lure words, p< 0.05.
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appears to be continuously involved in episodic memory
retrieval [34]. From a dual-attention perspective, in the
posterior parietal cortex, the superior parietal lobule and the
intraparietal sulcus coordinate goal-oriented, “top-down”
memory, while the inferior parietal lobule and the temporal
parietal junction coordinate stimulus-oriented, “bottom-up”
memory [32]. +e posterior parietal cortex may be more
closely associated with the representation of memory or as
an input/output buffer for retrieval [35]. Studies have also
shown that the parietal cortex is strongly activated in the
encoding and retrieval of episodic memory [9], which is
believed to be involved in the process of memory. In

addition, there may be more detailed and diverse functional
divisions in this part with low coupling, so there may be
more facts to be explored in the functional study of this
region [36, 37]. Consistent with most of the previous re-
search results, the occipital lobe area as the visual center
showed higher activity in tasks [29]. Many studies have
mentioned that the precuneus, cingulate gyrus, orbitofrontal
cortex, and prefrontal cortex play important roles in the
circuit of episodic memory [31, 38]. In this study, the above
regions show a high degree of causality, but the overall level
of causality is inferior to that of the superior lobule and
occipital lobe (medioventral occipital cortex and lateral

Figure 9:+e binary brain network model obtained by using GCA.+e regions where the sum of the indegree and outdegree is greater than
3 are displayed. +e size of nodes represents the number of degrees.
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Figure 10: +e connectivity matrix of the binary brain network obtained by using GCA.
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Table 2: Outdegrees of gyri.

Gyrus Outdegree of left or right hemisphere Outdegree of gyrus

Superior frontal gyrus 2 (L) 53 (R)

Middle frontal gyrus 1 (L) 43 (R)

Inferior frontal gyrus 0 (L) 11 (R)

Precentral gyrus 1 (L) 87 (R)

Fusiform gyrus 0 (L) 11 (R)

Superior parietal lobule 21 (L) 4928 (R)

Inferior parietal lobule 0 (L) 77 (R)

Precuneus 3 (L) 74 (R)

Postcentral gyrus 0 (L) 11 (R)

Cingulate gyrus 1 (L) 10 (R)

Medioventral occipital cortex 7 (L) 158 (R)

Lateral occipital cortex 8 (L)
16 (R) 24

Table 1: Indegrees of gyri.

Gyrus Indegree of left or right hemisphere Indegree of gyrus

Superior frontal gyrus 0 (L) 11 (R)

Middle frontal gyrus 0 (L) 22 (R)

Orbital gyrus 0 (L) 55 (R)

Paracentral lobule 1 (L) 10 (R)

Inferior temporal gyrus 2 (L) 75 (R)

Fusiform gyrus 7 (L) 103 (R)

Superior parietal lobule 0 (L) 44 (R)

Precuneus 10 (L) 155 (R)

Postcentral gyrus 3 (L) 41 (R)

Cingulate gyrus 2 (L) 20 (R)

Medioventral occipital cortex 14 (L) 3622 (R)

Lateral occipital cortex 16 (L) 4018 (R)

+alamus 0 (L) 22 (R)
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occipital cortex). We speculate that the decrease in the
overall activation level may be caused by the higher level of
interference and the competition for resources between
attention and situational recall, which is consistent with the
presupposition in the multiple-object tracking experiment
[39]. However, previous studies showed that some known
memory regions in the medial temporal lobe, such as par-
ahippocampal gyrus and hippocampus, are also involved in
the process of episodic memory [40, 41]. +ese brain regions
are also involved in the Papez circuit and default mode
network, but these regions are not obviously involved in the
network constructed in this study. +ere are only a few
connections in the inferior temporal gyrus region. In gen-
eral, the brain network model presented in this study is
consistent with previous research results. Specifically, there
are certain differences in the number and intensity of
connections. +is may be caused by different experimental
designs and different interference intensities, which need to
be further studied.

Studying brain networks related to episodic memory also
has implications for disease diagnosis and pathology research.
A study on PD has shown that the temporal lobe and parietal
lobe of PD patients with mild cognitive impairment (PD-
MCI) are atrophic, and the frontal cortex of patients is also
thinner than the control group [42]. +ese regions have
different levels of participation in the brain network con-
structed in this study. Episodic memory impairment is also
common in the later stages of PD. A meta-analysis of 1,346
PD-MCIs from 8 different groups found that more than 50%
of patients had memory impairment, while only 39% had
executive dysfunction [43]. In addition, in the episodic
memory task, the active regions of autistic patients and
healthy individuals are similar, but the level of functional
connection between the hippocampus and the frontal parietal
region is weaker [5]. It can be seen from the above studies that
some neurodegenerative diseases or other diseases such as
autism may cause structural and functional changes in the
episodic memory network and related brain regions.

From the results of this study, the network connectivity on
the right hemisphere is denser than those on the left. Some
previous studies have shown that in the encoding and retrieval
process of episodic memory, many brain regions do not show
obvious lateralization effect [34, 44, 45]. However, some studies
have shown that in the retrieval of episodicmemory, there are a
wide range of brain regions showing left lateralization. From
the perspective of microscopic neuron structure, there should
be no significant differences between the left and right
hemispheres of brain. However, when some disturbances occur
during the memory encoding or retrieval process of the
subjects, for example, different words or scenes presented in the
memory process may cause certain emotions, whichmay cause
the lateralization.+is kind of result needs further analysis and
discussion. Some data processing and statistical methods in the
article also have room for further optimization. For example,
since the EC matrix may be affected by some uncertainty or
inaccuracy, there may be some noise that can interfere with the
results. Some image processing-related methods may help to
eliminate these inaccuracies, such as using some techniques
based on fuzzy methods to process matrices [46, 47].

+is study provides an idea of a method for constructing
a task-based brain network model. From the brain network
model, more complete information can be obtained than
concentrated on a few brain regions, which is conducive to
exploring the brain’s changing pattern in the whole process.
It helps to further understand the brain circuit related to
episodic memory. At the same time, the study of brain
network will help to further study about the disease from the
perspective of whole brain function, including auxiliary
diagnosis and targeted treatment measures.

Research on episodic memory helps humans to further
understand the nature of the learning process. +ese studies
have revealed different processes and different forms of
memory production. Existing research can help people
consider the complex interactions and wide-ranging effects
of memory in a broader perspective in the future, help
fundamentally determine the characteristics of human ep-
isodic memory, and interact with other advanced cognitive
functions such as emotion, attention, and working memory.
Because the task of the data set used is too complicated, the
task focus may not be prominent, so only qualitative analysis
is carried out in this study. In the future, we will consider the
redesign of more focused experiments and conduct quan-
titative analysis, so as to further explore the clinical appli-
cation of the study on episodic memory.
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