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Abstract: Our study aimed to investigate the immune-enhancing mechanism of the pentadecapeptide
(RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) in a cyclophosphamide (CTX)-induced murine
model of immunosuppression. Our results showed that SCSP treatment significantly increased mouse
body weight, immune organ indices, and the production of serum IL-6, IL-1β, and tumor necrosis
factor (TNF)-α in CTX-treated mice. In addition, SCSP treatment enhanced the proliferation of splenic
lymphocytes and peritoneal macrophages, as well as phagocytosis of the latter in a dose-dependent
manner. Moreover, SCSP elevated the phosphorylation levels of p38, ERK, JNK, PI3K and Akt,
and up-regulated IKKα, IKKβ, p50 NF-κB and p65 NF-κB protein levels, while down-regulating
IκBα protein levels. Our results indicate that SCSP has immune-enhancing activities, and that it
can activate the MAPK/NF-κB and PI3K/Akt pathways to enhance immunity in CTX-induced
immunosuppressed mice.

Keywords: Cyclina sinensis; pentadecapeptide; immunomodulatory; cyclophosphamide; mechanism

1. Introduction

The immune system, composed of a complete set of immune organs, cells, and active
substances, constantly monitors the body for foreign entities and maintains the continuous
and healthy operation of the entire body [1]. However, factors such as obesity [2], stress [3],
mood [4], and lifestyle [5] have been shown to affect its normal functioning. Immunother-
apy can artificially enhance or suppress the body’s immunological responses in cases of
low or hyperactive conditions in order to return the immune system to its physiologic
status [6]. Compared with the instability and adverse effects of chemically synthesized
immunomodulators, natural products with immunomodulatory activity offer a way of
effectively avoiding these risk factors [7,8]. Therefore, it is necessary to identify safe and
effective natural immune modulators.

In the field of natural active product development, the marine environment offers a
treasure trove of natural compounds with distinctive biological characteristics, due to its
high biodiversity and complex ecological relationships [9]. Marine peptides have attracted
much attention due to their unique biological properties, such as antihypertensive [10],
antioxidant [11], antitumor [12], and antidiabetic activities [13]. Immunomodulatory pep-
tides identified from different marine sources have shown significant immune-enhancing
activities [14–16]. For example, Li et al. [17] purified two peptides (DNSIAMESMK and
LLQLGSG) from oyster hydrolysate and showed that these two peptides markedly pro-
moted the proliferation of murine lymphocytes and the phagocytic ability of macrophages.
Cai et al. [18] isolated two peptides (HIAEEADRK and AEQAESDKK) from trypsin hy-
drolysates of tuna and showed that these two peptides could bind to the active sites of
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TLR2 and TLR4 and stimulate macrophage activation. Xu et al. [19] purified a peptide
(YVMRF) with immunoregulatory activity from Stolephorus chinensis and confirmed that
YVMRF could stimulate RAW 264.7 differentiation and increase the concentrations of nitric
oxide (NO), TNF-α, IL-6, and IL-1β. In previous studies, we purified an immunomod-
ulatory peptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) and demonstrated
that SCSP showed significant immune-enhancing activities in mice with CTX-induced
immunosuppression [20]. However, the mechanisms underlying the immunomodulatory
effects of SCSP have not been elucidated.

Several signaling pathways have been shown to play crucial roles in immune activa-
tion, including MAPK, PI3K/Akt, and downstream NF-κB pathways [21–23]. Yu et al. [24]
demonstrated that sulfate-modified Cyclocarya paliurus polysaccharide could enhance the
secretion of TNF-α, IL-10 and NO in immunosuppressed mice by modulating the MyD88-
dependent MAPK/NF-κB/PI3K-Akt signaling pathway. He et al. [25] verified that low-
molecular-weight peptides from Mytilus coruscus exerted immunomodulatory effects on
macrophages by regulating the NF-κB/MAPK pathway. Yao et al. [26] reported that Euro-
pean eel (Anguilla anguilla)-derived peptides promoted the production of NO, inducible
nitric oxide synthase (iNOS) and cytokines by modulating the NF-κB and MAPK pathways
in macrophages. Moreover, the hexapeptide RNPFLP isolated from Lepidium meyenii protein
hydrolysate activated RAW 264.7 cells via TLR2 and TLR4 receptor-mediated activation
of the NF-κB and MAPK pathway [27]. In this study, we focused on the MAPK/NF-κB
and PI3K/Akt pathways to investigate the potential mechanisms underlying the immune-
enhancing effects of SCSP in mice with CTX-induced immunosuppression. Our results
provide an explanation for the effects of SCSP and support its use as a novel immunomod-
ulator candidate or immune adjuvant.

2. Results
2.1. Effect of SCSP on Immune Organ Indices

Body weight and organ indices are often utilized as the primary metrics to examine the
physiological conditions of experimental animals and the therapeutic impact of medications
in the early stages of research [28]. Our previous studies showed that the final murine
body weight in the SCSP-treated groups was significantly higher than in the CTX group,
suggesting that SCSP could improve CTX-induced murine body weight loss [29]. Moreover,
SCSP treatment effectively increased the murine immune organ indices, showing that SCSP
could alleviate immune organ damage by CTX (Figure 1).
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2.2. Effect of SCSP on Cytokine Production

As shown in Figure 2, CTX significantly inhibited the secretion of IL-1β (9.38 ± 0.21 ng/L
vs. 16.30 ± 0.19 ng/L), IL-6 (12.79 ± 0.39 ng/L vs. 33.16 ± 0.82 ng/L), and TNF-α
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(61.61 ± 1.88 ng/L vs. 94.27 ± 1.75 ng/L) when compared with the control group. Remark-
ably, higher concentrations of the three cytokines were observed (12.44 ± 0.26 ng/L, IL-1β;
30.22 ± 0.50 ng/L, IL-6; and 78.20 ± 2.12 ng/L, TNF-α) after treatment with 200 mg/kg of
SCSP, although it was still lower than in the positive control group. The above results suggest
that SCSP has an antagonistic effect on CTX-induced suppression of cytokine secretion.
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Figure 2. Effect of SCSP on serum levels of IL-1β (A), IL-6 (B), and TNF-α (C) in immunosuppressed
mice (n = 10).

2.3. Effects of SCSP on Cellular Immunity

An experiment with splenic lymphocytes was carried out to determine the impact
of SCSP on T and B cellular immune responses. As shown in Figure 3, CTX treatment
significantly inhibited the proliferative activity of these two immune cell populations when
compared with the control group (0.125 ± 0.009 vs. 0.226 ± 0.006, B cells; 0.116 ± 0.004
vs. 0.189 ± 0.007, T cells; p < 0.05). However, when animals were treated with different
concentrations of SCSP, the proliferation of B and T cells improved substantially when
compared with the CTX group (p < 0.05), indicating that SCSP enhanced cellular immune
responses, increasing spleen lymphocyte proliferation. Otherwise, it was still lower than in
the positive control group.

Proliferation (Figure 4A) and phagocytosis (Figure 4B) of mouse peritoneal macrophages
were also analyzed to examine the regulatory effects of SCSP on immune cells. CTX signifi-
cantly inhibited the proliferation and phagocytic activity of macrophages when compared
with the control group. However, with increasing doses of SCSP, the proliferative rate of
macrophages gradually increased, reaching its highest at 200 mg/kg of SCSP (0.324 ± 0.014),
although it was still lower than in the positive control group (0.374 ± 0.019). On the other
hand, SCSP considerably restored the phagocytic ability of macrophages when compared
with the CTX-treated group, and this effect reached its highest at 200 mg/kg of SCSP.
However, it was still lower than in the positive control group. These findings demonstrate
that SCSP can enhance lymphocyte and macrophage activity to overcome CTX-induced
immunosuppression.
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2.4. Western Blot Analysis

To explore the mechanisms underlying the immunomodulatory effects of SCSP, the
expression levels of proteins associated with the MAPK/NF-κB and PI3K/Akt pathways
were analyzed in the spleen. In both pathways, CTX significantly inhibited the phosphory-
lation levels of the corresponding proteins (p < 0.05). After the administration of 200 mg/kg
SCSP, the proportions of p-PI3K/PI3K and p-Akt/Akt were dramatically up-regulated in
comparison with the CTX group (Figure 5B,C, p < 0.05), and the levels of up-regulation
were higher than in the positive control group. Moreover, a notable enhancement in the
phosphorylation levels of JNK, ERK and p38 was detected when SCSP (200 mg/kg) was
administered (Figure 6B–D, p < 0.05).

As shown in Figure 7, NF-κB p50, NF-κB p65, IKKα, and IKKβ protein expression
levels were markedly down-regulated after CTX treatment, while the expression level of
IκBα increased, but not significantly. After treatment with 200 mg/kg of SCSP, the protein
levels of NF-κB p50, NF-κB p65, IKKα, and IKKβ in the spleen of immunosuppressed mice
increased considerably. Meanwhile, the expression of IκBα was clearly down-regulated
(p < 0.05) when compared with the control. These results suggest that SCSP exerts its im-
munomodulatory effects in mice by activating the MAPK/NF-κB and PI3K/Akt pathways.
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2.5. Expression of NF-κB p65 in the Spleen

Immunohistochemical results showed that NF-κB p65 was highly expressed in the
spleen of untreated mice, as evidenced by the brownish-yellow color in the cytoplasm and
nucleus, whereas it was hardly observed in the CTX-immunosuppressed group. In contrast,
the expression of NF-κB p65 increased gradually with higher SCSP doses (Figure 8). On the
other hand, the expression level of NF-κB p65 in the positive control group was between
that of the control and the SCSP-treated groups. These findings indicate that SCSP can
increase NF-κB p65 expression in the spleen of CTX-immunosuppressed mice.
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2.6. Expression of p-PI3K in Spleen

The impact of SCSP on the expression of p-PI3K in the spleen of immunosuppressed
mice is shown in Figure 9. The expression of p-PI3K in immunosuppressed mice was
significantly lower than that in the untreated control group, as evidenced by the almost
complete disappearance of brown granules in the cytoplasm. In contrast, some recovery of
brown particles was observed following administration of SCSP (200 mg/kg), suggesting
that SCSP can enhance the weak expression of p-PI3K caused by CTX treatment.
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2.7. Expression of p-p38 in the Spleen

The expression of p-p38 in the spleen was also analyzed, and this was seen as a
brownish-yellow region. Unlike the control group, the p-p38 protein was minimally
expressed in the spleen of immunosuppressed mice (Figure 10A). However, it can be seen
in the image that the brown particles in the SCSP and positive control groups clearly
increased, and there was no noticeable difference between these two groups.
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3. Discussion

The immune system is an intricate network of immune organs, cells, and active sub-
stances that interact with each other to maintain the healthy operation of the body [1]. The
rigorous regulation of the immune system is essential to ensure that the body mounts an
appropriate response to pathogens while preventing excessive immune reactions. With the
discovery of immunomodulators, immune regulation as a therapeutic approach against
tumors, autoimmune diseases, and inflammatory diseases has become a reality [30]. CTX
is the most commonly used chemotherapeutic drug against cancer in clinical practice, but
it is associated with unwanted side effects such as immunosuppression [31]. To charac-
terize an immunomodulator that can counteract this unwanted effect, we established a
murine model of immunosuppression by intraperitoneally administering 80 mg/kg CTX
for three continuous days. We used this model to explore the potential immunomodulatory
mechanisms of SCSP.

Consistent with previous results [20], the suppression of immune function induced
by CTX was reflected in the body weight and immune organ indices. The production
of serum IL-1β, IL-6 and TNF-α, and the expression of NF-κB p65, p-PI3K and p-p38 in
the spleen were all considerably lower than in the control group. Moreover, under the
influence of CTX, the proliferative and phagocytic abilities of peritoneal macrophages and
the proliferation of spleen lymphocytes were reduced, indicating that the CTX-induced
immunosuppression model was successful.

As the largest immune organ in the body, the spleen is not only part of the lymphatic
system, but also an important site for lymphocytes to migrate and receive antigenic stim-
ulation to generate immune responses and immune effector molecules [32]. The thymus
is the site for the differentiation, development and maturation of T lymphocytes. The
development of all lymphoid organs and the generation of immunity in the body require
the replenishment of T lymphocytes [28]. CTX can trigger immune organ atrophy and
weight loss by reducing lymphocyte numbers in immune organs and inhibiting their
proliferation and differentiation [31,33]. Our results showed that SCSP alleviated weight
loss, splenic and thymic atrophy, and increased immune organ indices in immunosup-
pressed mice, suggesting that SCSP treatment has a significant immune-enhancing effect
on immune organs.

Cytokines are small-molecular-weight proteins synthesized and secreted by immune
cells. They perform critical functions, regulating cell interactions and the growth and
differentiation of immune cells during immune responses [34]. It has been reported that
polypeptides can stimulate several cellular immunological responses and regulate the
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secretion of different cytokines, thereby enhancing immune function in mice [35–37]. Our
findings demonstrated that serum cytokines (IL-1β, IL-6, and TNF-α) in SCSP-treated mice
increased in a dose-dependent manner. The lymphocyte is a major player in the immune
response. T cells and B cells mediate cellular and humoral immunity, respectively, and
their proliferation is directly correlated with the strength of specific immune responses [38].
Macrophages are involved in the recognition, phagocytosis and degradation of pathogens
and trigger adaptive immune responses by presenting antigens to T cells [39]. Furthermore,
in the initial stages of inflammation, macrophages play an indispensable role by releasing
cytokines and chemokines [40]. Compared with the CTX-immunosuppressed group, SCSP
significantly restored the proliferative rate of lymphocytes (T and B cells) and macrophages.
Moreover, with increasing SCSP doses, the phagocytic capacity of peritoneal macrophages
also increased. These results suggest that SCSP treatment reverses CTX-induced immune
damage by enhancing immune cell function in mice.

NF-κB is a family of transcription factors involved in various biological processes such
as inflammation, apoptosis, and proliferation [41,42]. The typical NF-κB pathway is consid-
ered to be a central regulator of inflammatory responses and has been extensively studied
in human autoimmune diseases and cancer [43]. Akt serves as a key component of the
PI3K/Akt signaling pathway, mediating multiple cellular functions, including metabolism,
growth, and proliferation [44]. The activation of upstream PI3K enables Akt to regulate
NF-κB signaling by phosphorylating IKK [45]. Our results showed that SCSP not only
up-regulated the expression of important components of the NF-κB pathway in the spleen
(including IKKα, IKKβ, NF-κB p50 and p65), but also enhanced the phosphorylation levels
of PI3K and Akt proteins, and these results were consistent with the immunohistochem-
ical results in splenic tissue. As one of the important pathways in the eukaryotic signal
transmission network, the MAPK pathway modulates a number of crucial cellular physio-
logical processes such as cell proliferation, differentiation, and inflammatory responses [46].
Western blotting results indicated that SCSP treatment of CTX-immunosuppressed ani-
mals increased the phosphorylation of JNK, ERK, and p38 proteins when compared with
the CTX-immunosuppressed group. In addition, the immunohistochemical results also
indicated that the SCSP group showed high expression of p-p38 protein. It has previously
been reported that wild-simulated ginseng can activate mouse macrophages to produce
immunomodulators (TNF-α, IL-1β, and IL-6) and intensify phagocytosis via the MAPK,
NF-κB, and PI3K/Akt pathways [47]. Our overall results are consistent with the above
reports, since the immune-enhancing effects of SCSP in CTX-immunosuppressed mice was
achieved through activation of the MAPK/NF-κB and PI3K/Akt pathways.

4. Materials and Methods
4.1. Materials and Reagents

SCSP was provided by Wuxi MimoTopes Biotechnology (Wuxi, China) [20]. CTX was
purchased from Hengrui Medicine (Lianyungang, China). The DAB immunohistochemistry
kit was purchased from Boster (Wuhan, China). Neutral red staining solution and primary
antibodies against β-actin, NF-κB p50, NF-κB p65, IKKα, IKKβ, and IκBα were supplied
by Beyotime (Shanghai, China). The remaining primary antibodies were provided by Cell
Signaling Technology Inc. (Beverly, MA, USA).

4.2. Animals and Treatment

A total of 60 male ICR mice (six-week-old, 20 ± 2 g) were purchased from the Zhejiang
Academy of Medical Sciences (Hangzhou, China). All procedures in laboratory animals
were authorized by the Animal Ethics Committee of Zhejiang Ocean University (SCXK
ZHE 2019-0031). Mice were randomly assigned to six groups (n = 10) after the one-
week adaptation period. With the exception of the control group, the remaining groups
were treated with 80 mg/kg CTX continuously for three days [48]. Subsequently, the
experimental groups were treated with different doses of SCSP (50, 100, and 200 mg/kg),
while the positive control group received levamisole hydrochloride (25 mg/kg) at the
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same time for seven consecutive days (Figure 11). Twenty-four hours after the last feeding,
blood samples were obtained using eyeball extirpation, and the mice were sacrificed by
cervical dislocation.
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4.3. Immune Organ Indices

The daily weight fluctuations of mice were monitored and recorded during the whole
experiment. The collected spleens and thymuses were used to determine the organ indices
using the following formula:

Thymus or spleen index = thymus or spleen weight (mg)/body weight (g) (1)

4.4. Cytokines Assays in Serum

Blood samples were collected in centrifuge tubes without anticoagulant treatment and
placed in a refrigerator at 4 ◦C. After blood coagulation, serum was collected by centrifuging
(6000× g, 5 min). The concentrations of IL-6, IL-1β, and TNF-α were determined following
the guidelines by Solarbio (Beijing, China).

4.5. Splenic Lymphocyte Proliferation Assay

To evaluate the proliferative responses of T and B lymphocytes, splenic lymphocytes
were stimulated with Con A and LPS, respectively [49,50]. The preparation of mouse
spleen lymphocytes was carried out as described by Tang et al. [49,50]. The collected cells
were seeded in a 96-well plate (1 × 106 cells/mL, 4 replicate wells in each group), Con A
(5 µg/mL) or LPS (1 µg/mL) was added, and the plate was placed in an incubator (Forma
3111 CO2 incubator, Thermo Forma, Waltham, MA, USA) at 37 ◦C with 5% CO2 for 24 h.
Then, 200 µL of MTT staining solution was added, and 150 µL of DMSO was added after
incubating for 4 h. The absorbance at 570 nm was measured (SpectraMax M2 microplate
reader, Molecular Devices, Silicon Valley, CA, USA).

4.6. Peritoneal Macrophage Proliferation Assay

The mice were intraperitoneally injected with sterile saline solution (5 mL), and the
abdomen was gently pressed for 2 min, and the abdominal wall was cut open. Then, the
abdominal fluid was sucked into a centrifuge tube, and the cell suspension was centrifuged
(2000× g, 10 min) and resuspended with DMEM medium. After incubation at 37 ◦C with
5% CO2 for 4 h, the supernatant was discarded to obtain purified macrophages [49,50].
The cell density was then adjusted (1 × 104 cells/mL), seeded in 96-well plates (200 µL
per well), and incubated for 24 h. After discarding the supernatant from each well, 200 µL
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of PBS containing 10% MTT was added, and the plates were incubated for another 4 h.
Then, 150 µL DMSO was added, and the optical density (OD) at 570 nm was measured to
calculate the proliferation rate of macrophages.

4.7. Macrophage Phagocytic Capacity

Macrophage phagocytosis was examined by measuring neutral red uptake [50]. The
collected peritoneal macrophages were seeded on a 96-well plate (5 × 105 cells/mL) and
incubated for 24 h. Then, 200 µL of nutrient solution (excluding NaHCO3), and 20 µL of
neutral red staining solution was added. The supernatant was discarded after incubating
for 2 h, lysis buffer was added, and the cells were incubated for another 10 min. The
absorbance at 540 nm was measured, and the phagocytic index was calculated.

4.8. Western Blotting

The experimental procedures were conducted as previously described [31]. Briefly,
the BCA protein assay kit was used to measure the amount of protein in each spleen
homogenate supernatant, and 30 µg of proteins were loaded per lane. The proteins were
separated using a 12% SDS-PAGE gel and then transferred to the PVDF membrane. En-
hanced chemiluminescence (ECL) was utilized to detect the bands, and data processing
was carried out using the Alphaview SA gel image analysis software (Fluor Chem FC3,
ProteinSimple, San Jose, CA, USA).

4.9. Immunohistochemical Analysis

Paraffin sections of the mouse spleen were deparaffinized and rehydrated. Then,
endogenous peroxidase was blocked with H2O2 and treated with antigen retrieval solution.
After incubating with the primary antibody at 4 ◦C overnight, the secondary antibody was
added, and the samples were incubated for 1 h. Finally, the DAB immunohistochemical
staining kit was used for color development, and the staining characteristics of each group
were analyzed with a CX31 biological microscope (Olympus, Tokyo, Japan).

4.10. Statistical Analysis

One-way analysis of variance (ANOVA) was performed on the experimental data
using SPSS 22.0 software. All results are expressed as the mean ± standard deviation
(x ± SD) and differences between means were considered significant at p < 0.05.

5. Conclusions

In conclusion, SCSP enhanced immune responses by attenuating CTX-induced splenic
and thymic damage in mice, enhancing the cellular functions of splenic lymphocytes and
peritoneal macrophages, and promoting cytokine secretion. Moreover, SCSP activated the
MAPK/NF-κB and PI3K/Akt pathways to enhance murine immunity (Figure 12). Our
findings suggest that SCSP can effectively reverse CTX-induced murine immunosuppres-
sion, indicating that SCSP could be developed as a new immunomodulator or immune
adjuvant in the future.
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