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The level of genetic diversity in a population is inversely proportional to the linkage
disequilibrium (LD) between individual single nucleotide polymorphisms (SNPs) and
quantitative trait loci (QTLs), leading to lower predictive ability of genomic breeding
values (GEBVs) in high genetically diverse populations. Haplotype-based predictions
could outperform individual SNP predictions by better capturing the LD between SNP
and QTL. Therefore, we aimed to evaluate the accuracy and bias of individual-SNP- and
haplotype-based genomic predictions under the single-step-genomic best linear unbiased
prediction (ssGBLUP) approach in genetically diverse populations. We simulated purebred
and composite sheep populations using literature parameters for moderate and low
heritability traits. The haplotypes were created based on LD thresholds of 0.1, 0.3, and
0.6. Pseudo-SNPs from unique haplotype alleles were used to create the genomic
relationship matrix (G) in the ssGBLUP analyses. Alternative scenarios were compared
in which the pseudo-SNPs were combined with non-LD clustered SNPs, only pseudo-
SNPs, or haplotypes fitted in a second G (two relationship matrices). The GEBV accuracies
for the moderate heritability-trait scenarios fitting individual SNPs ranged from 0.41 to 0.55
and with haplotypes from 0.17 to 0.54 in the most (Ne � 450) and less (Ne < 200)
genetically diverse populations, respectively, and the bias fitting individual SNPs or
haplotypes ranged between −0.14 and −0.08 and from −0.62 to −0.08, respectively.
For the low heritability-trait scenarios, the GEBV accuracies fitting individual SNPs ranged
from 0.24 to 0.32, and for fitting haplotypes, it ranged from 0.11 to 0.32 in the more (Ne �
250) and less (Ne � 100) genetically diverse populations, respectively, and the bias ranged
between −0.36 and −0.32 and from −0.78 to −0.33 fitting individual SNPs or haplotypes,
respectively. The lowest accuracies and largest biases were observed fitting only pseudo-
SNPs from blocks constructed with an LD threshold of 0.3 (p < 0.05), whereas the best
results were obtained using only SNPs or the combination of independent SNPs and
pseudo-SNPs in one or two G matrices, in both heritability levels and all populations

Edited by:
Guosheng Su,

Aarhus University, Denmark

Reviewed by:
Beatriz Cuyabano,

Institut National de recherche pour
l’agriculture, l’alimentation et

l’environnement (INRAE), France
Lei Zhou,

China Agricultural University, China
Emre Karaman,

Aarhus University, Denmark

*Correspondence:
Luiz F. Brito

britol@purdue.edu

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal
Frontiers in Genetics

Received: 23 June 2021
Accepted: 07 September 2021

Published: 14 October 2021

Citation:
Araujo AC, Carneiro PLS, Oliveira HR,

Schenkel FS, Veroneze R,
Lourenco DAL and Brito LF (2021) A

Comprehensive Comparison of
Haplotype-Based Single-Step

Genomic Predictions in Livestock
Populations With Different Genetic

Diversity Levels: A Simulation Study.
Front. Genet. 12:729867.

doi: 10.3389/fgene.2021.729867

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7298671

ORIGINAL RESEARCH
published: 14 October 2021

doi: 10.3389/fgene.2021.729867

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.729867&domain=pdf&date_stamp=2021-10-14
https://www.frontiersin.org/articles/10.3389/fgene.2021.729867/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.729867/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.729867/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.729867/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.729867/full
http://creativecommons.org/licenses/by/4.0/
mailto:britol@purdue.edu
https://doi.org/10.3389/fgene.2021.729867
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.729867


regardless of the level of genetic diversity. In summary, haplotype-based models did not
improve the performance of genomic predictions in genetically diverse populations.

Keywords: effective population size, genomic estimated breeding value, haplotype blocks, linkage disequilibrium,
pseudo-SNP

1 INTRODUCTION

Genomic selection (GS) (Meuwissen et al., 2001) is now routinely
used worldwide in livestock and plant breeding programs
(Lourenco et al., 2020; Moreira et al., 2020). GS enables the
prediction of more accurate genomic estimated breeding values
(GEBVs) at earlier stages compared to the traditional pedigree-
based evaluation (Brito et al., 2017a; Guarini et al., 2018, 2019).
The advantages of GS compared to the pedigree-based are even
greater for lowly-heritable traits, traits measured late in life, and
sex-limited or expensive-to-measure traits (Daetwyler et al., 2012;
Lourenco et al., 2020).

Over the past 15–20 years, several statistical methods have
been proposed aiming to obtain more accurate and less biased
GEBVs. Among the available methods, the single-step genomic
best linear unbiased prediction (ssGBLUP; Legarra et al., 2009;
Aguilar et al., 2010) is widely used to perform genomic
predictions in livestock. This method enables the simultaneous
evaluation of both genotyped and non-genotyped individuals and
has similar or better statistical properties and predictive ability
compared to other approaches such as pedigree-based BLUP and
multi-step GBLUP (Aguilar et al., 2010; Legarra et al., 2014;
Guarini et al., 2018; Piccoli et al., 2020).

Although the pioneer GS study (i.e., Meuwissen et al., 2001)
fitted single nucleotide polymorphism (SNP) haplotypes as
covariates in the models, subsequent studies were mainly
performed based on individual SNPs. This is most likely due
to the additional analytic steps and higher computational
requirements when fitting haplotype-based models. In this
sense, it is important to first define the haplotype blocks or
haploblocks, which are sizable regions of the genome with
little evidence of historical recombination (Gabriel et al.,
2002), i.e., a genomic region between two or more marker
loci. More recently, the use of haplotypes as covariates in
genomic evaluations rather than single SNPs has been further
investigated due to many potential advantages. Haplotypes are
more polymorphic than individual SNPs because they can be
multi-allelic (Meuwissen et al., 2014) and they can be in stronger
linkage disequilibrium (LD) with Quantitative Trait Loci (QTLs)
compared to individual SNPs with low minor allele frequency
(MAF) (Hess et al., 2017). In this context, the potential stronger
LD between haplotypes and QTL in comparison to individual
SNPs can yield more accurate GEBVs (Calus et al., 2008;
Cuyabano et al., 2014; 2015). Moreover, haplotype alleles have
the potential to capture epistatic effects within blocks and the
QTL can be flanked by SNPs that delimit the haploblock (Hess
et al., 2017; Jiang et al., 2018; Karimi et al., 2018).

Previous studies based on simulated data have shown that
fitting haplotypes can substantially improve the performance of
genomic predictions compared to individual SNP-based methods

(Calus et al., 2008; Villumsen et al., 2009). However, none or only
small increases in the predictive ability of GEBVs have been
observed in practice (e.g., Cuyabano et al., 2014, 2015; Hess
et al., 2017; Karimi et al., 2018; Mucha et al., 2019; Won et al.,
2020). The large majority of the studies evaluating haplotype-based
models were done in dairy cattle populations (real or simulated
datasets), which usually have high LD levels between SNPmarkers
and lower genetic diversity (Ne lower than 100; Makanjuola et al.,
2020). Haplotype-based genomic predictions in populations with
increased genetic diversity, on the other hand, have not beenwidely
explored yet, and the knowledge of their possible advantages is
limited (Feitosa et al., 2019; Teissier et al., 2020).

Different from intensively selected populations and pure breeds,
which present low genetic diversity (e.g., Holstein dairy cattle),
genetically diverse populations (e.g., relatively recent breeding
programs in small ruminants and crossbred or composite
populations) may have more alleles segregating in the haplotype
blocks and greater complexity in the interactions among haplotype
allele effects within haploblocks. Thus, we hypothesize that
haplotype-based methods could result in more accurate and less
biased GEBV prediction when compared to SNP-based models in
populations with high genetic diversity because of their development
process (e.g., relatively lower selection pressures, crossbreeding) and
more complex haplotype structure than observed in populations
with low genetic diversity. Simulated data is an interesting approach
to investigate this hypothesis because the true breeding values
(TBVs) are known (Morris et al., 2019; Oliveira et al., 2019).
Therefore, we simulated sheep populations with different genetic
diversity levels to test our hypothesis. Sheep is a good model due to
the large genetic diversity in commercial populations, with Ne
ranging from less than 50 to over 1,000 (Kijas et al., 2012; Brito
et al., 2017b; Stachowicz et al., 2018). Hence, the main objective of
this study was to evaluate the accuracy and bias of GEBVs in
genetically diverse populations, using ssGBLUP when: 1) only
individual SNPs are used to construct a single genomic
relationship matrix (G); 2) non-clustered (out of haploblocks)
SNPs and haplotypes (fitted as pseudo-SNPs) are used to
construct a single G; 3) only haplotypes are used to construct a
single G; and 4) non-clustered SNPs and haplotypes are used to
construct two G matrices. We also compared the impact of different
SNP panel densities and haploblock-building methods on the
performance of genomic prediction, as these factors could impact
the accuracies and bias of genomic predictions.

2 MATERIALS AND METHODS

The approval of Institutional Animal Care and Use Committee
was not required because this study only used computationally
simulated datasets.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7298672

Araujo et al. Haplotype-Based Genomic Predictions

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2.1 Data Simulation
2.1.1 Population Structure
The simulation was performed to mimic datasets of purebred and
composite sheep populations (Kijas et al., 2012; Prieur et al., 2017;
Brito et al., 2017a; Oliveira et al., 2020). The QMSim software
(Sargolzaei and Schenkel, 2009) was used to simulate a historical
population initially with 80,000 individuals (40,000 males and
40,000 females). Then, a population bottleneck was simulated,
reaching 50,000 individuals (25,000 males and 25,000 females) in
the 1,000th generation. After that, there was an increase in the
population to 60,000 individuals, with 20,000 males and 40,000
females in the 1,500th generation. There was random mating in
the historical population, with gametes randomly sampled from
the pool of males and females present in each generation.
Mutation and genetic drift were considered in the historical
population to create the initial LD. The complete simulation
design is summarized in Figure 1.

Five random samples from the last historical population were
selected to create five pure breeds, called A, B, C, D, and E
(Figure 1). The combination of different founder population sizes
(2,480 animals for the breeds A and B, 12,480 for the breed C, and
41,600 for the breeds D and E) and generations of phenotypic
selection (10 for the breeds A and B, and one generation for the
breeds C, D, and E) were used to achieve different LD patterns
and, consequently, different Ne in the most recent populations.
There were random matings and exponential increase in the
number of females in a rate of 0.10 for the breeds A and B and
0.15 for the breeds C, D, and E. During the generations of
phenotypic selection, it can be considered that the breeds were
separated geographically, restricting the mating within each
population. Subsequently, the pure breeds were divergently
selected based on estimated breeding values (EBVs) predicted
using BLUP, with breeds A, C, and D selected for increasing and
breeds B and E for decreasing the EBVs for the simulated trait. All

breeds were selected based on the EBVs during 10 generations.
The male/female ratio in the EBV-selected populations was 1/25,
with a replacement rate of 40% for males and 20% for females.
There were single, double, and triple births, with the odds of 30,
50, and 20%, respectively, to be similar with the ones observed in
sheep flocks. The number of individuals in each generation of
EBV-based selection were tested and at the end were greater than
7,000 to allow a reasonable number of selection candidates in
each generation.

Crosses were made to obtain composite breeds, which had two
or three pure breeds as the starting point (Figure 1). Two
composite populations were created based on either two
breeds (Comp_2), which had 62.5% of breed D and 37.5% of
breed E (Figure 1), or three breeds (Comp_3), which had 37.5%
of breed A, 37.5% of breed B, and 25.0% of breed C (Figure 1).
Randommating was restricted within each crossbreed population
for five generations. According to Rasali et al. (2006), five-to-six
generations are sufficient to stabilize the frequencies of linked
genes in new populations. Thereafter, the composite breeds were
divergently selected using EBVs for the next 10 generations, with
Comp_2 and Comp_3 divergently selected for decreasing and
increasing performance, respectively. Mating type, sire and dam
replacements, and the number of births per dam in the composite
breeds were the same as those previously described for the pure
breeds. The number of individuals per generation in the
composite breeds (during the selection based on EBVs) was
more than 18,000, to keep a higher Ne on those populations
compared to the pure breeds.

2.1.2 Effective Population Size in the Recent
Populations
The number of generations in the pure breeds during the
expansion of the recent populations were modified accordingly
to achieve the LD patterns corresponding to Ne of ∼100, ∼250,

FIGURE 1 | Simulation design to obtain pure and composite sheep populations.
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and ∼500. The Ne was calculated using the LD and the realized
inbreeding in the recent populations for pure and composite breeds
under EBV-based selection. With the LD approach, Ne was
estimated using the formula: NeLD � (4c)−1{[E(r2)]−1 − 2}, which
is a re-arrangement of the estimator E(r2) � (4Nec + 2)−1 proposed
by Sved (1971), whereE(r2) is the expected LD for a population with
effective size Ne, c is the genetic distance (chromosome segment size
inMorgans—M)within autosomal chromosomes. It was considered
that 1Mb corresponds to a centimorgan (cM) when calculating the c
value, as this is an acceptable approximation in sheep (Prieur et al.,
2017). Lastly, populations were simulated to have an LD of
approximately 0.024, 0.010, and 0.005 for SNPs spaced apart by
10Mb, which correspond to the values of E(r2) for Ne � 100, 250,
and 500, respectively. A 10Mb distance corresponds to an Ne that
existed five generations ago (considered as current Ne), based on the
relationship t � 1/2c proposed by Hayes et al. (2003), where t is the
number of generations ago and c is as previously defined. Estimation
of LD was performed considering only SNPs with MAF higher than
0.05 using the r2 metric (Hill and Robertson, 1968). We also
estimated the Ne based on the realized inbreeding five
generations ago using the formula (Falconer and Mackay, 1996):
NeInb � 1/2ΔF, where ΔF � (Fn − Fn−1)/(1 − Fn−1) and Fn is the
average inbreeding in the nth generation. The average inbreeding per
generation was obtained from the QMSim software outputs
(Sargolzaei and Schenkel, 2009).

2.1.3 Simulated Traits
We simulated two traits with initial heritability levels of 0.30 and
0.10 (global parameters for the QMSim software; Sargolzaei and
Schenkel, 2009), to represent moderate (MH2) and low (LH2)
additive genetic effects, respectively, affecting the total
phenotypic variability of the trait. The phenotypic variance
was set to 100 in both simulations. The heritability was
estimated in the recent populations based on pedigree and
phenotype information using the AIREMLf90 software
(Misztal et al., 2018) to verify if the desired values were
achieved. All simulations were replicated five times using
different seed values in order to simulate different populations.
Only additive genetic effects were simulated due to the QMSim
software (Sargolzaei and Schenkel, 2009) capabilities.

2.1.4 Genome and Data Editing
The genome was simulated with 26 autosomal chromosomes with
size varying between 43 and 301 cM (a total of 2,656 cM),
mimicking the sheep genome (Supplementary Material S1).
The number and size of chromosomes were defined based on
information obtained from the most recent sheep reference
genome (assembly OAR_v4.0) available in the NCBI platform
(www.ncbi.nlm.nih.gov/genome?term�ovis%20aries). The
genome simulation was also performed using the QMSim
software (Sargolzaei and Schenkel, 2009).

A total of 3,057 QTLs were simulated, spanning the whole
autosomal genome. The number of QTLs per chromosome varied
between 51 and 391 (Supplementary Material S1), which was
chosen based on the information published in the AnimalQTLdb
(AnimalQTLdb, 2019). QTLs with the number of alleles varying
from two to six were simulated to evaluate the advantages of using

haplotype-based approaches. All simulated markers were bi-
allelic to mimic SNP markers, and the total number of SNPs
was set to 576,595 (Supplementary Material S1; similar number
of autosomal SNPs included in the Ovine Infinium® HD SNP
Beadchip 600K; FarmIQ, 2013; Kijas et al., 2014) sampled from
the segregating loci (MAF ≥0.05) in the last historical generation.
The information on the number of markers in each chromosome
was obtained from the SNPchiMp v.3 platform (Nicolazzi et al.,
2015). Both QTL and markers were randomly distributed within
chromosome and placed in different chromosomic positions,
i.e., simulated QTLs were not among the SNPs, so that the
genomic predictions rely only on the LD between them.

The additive genetic effects of the QTL were sampled from a
gamma distribution with the shape parameter equal to 0.4,
whereas no effects were simulated for the SNP markers. The
initial allele frequencies assumed for QTL and markers
(generation 0 of the historical population) were 0.5. The QTL
heritability on the MH2 and LH2 traits was equal to 50 and 10%
of the trait heritability, i.e., 0.15 and 0.01, respectively. The
remaining genetic variance not explained by the QTLs was
attributed to the polygenic effect. Recurrent mutation rates on
the order of 1 × 10−4 were simulated for the QTL and markers.
Rates of 0.05 and 0.01 were used for the occurrence of missing
genotypes and genotyping errors, respectively.

Quality control (QC) was performed in the genotype file of
each simulated recent population for each replicate, using the
PREGSf90 software from the BLUPf90 family programs (Misztal
et al., 2018). In this step, SNPs with no extreme departure from
Hardy–Weinberg equilibrium (difference between observed and
expected frequency of heterozygous less than 0.15) and MAF
≥0.01 were maintained. All SNPs passed this QC for all
populations, indicating that there was enough variability on
the simulated SNP chip panel.

2.2 Haplotype Blocks Construction
The FImpute v.3.0 software (Sargolzaei et al., 2014) was used to
phase the genotypes (i.e., to infer SNP allele inheritance).
Subsequently, the haploblocks were constructed using different
LD thresholds (variable haploblock sizes), as described below.
The r2 metric (Hill and Robertson, 1968) was used to calculate the
LD between markers to construct the haploblocks, as this
measure is less sensitive to allele frequency (Bohmanova et al.,
2010). The “gpart” package (Kim et al., 2019) implemented in the
R software (R Core Team, 2020) was used to build the
haploblocks considering r2 levels of 0.1 (low), 0.3 (moderate),
and 0.6 (high) based on the Big-LD approach (Kim et al., 2018).
Following the previous definition of haploblocks (Gabriel et al.,
2002), a haploblock in this study was considered as a genomic
region spanning at least two SNPs.

2.3 Prediction of GEBV
All genomic predictions were performed using the ssGBLUP
method implemented in the BLUPf90 family programs
(Misztal et al., 2018). Before using the BLUPf90 software, the
AIREMLf90 software (Misztal et al., 2018) was used to estimate
the variance components for each simulation replicate for the
models described in the next sections.
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2.3.1 ssGBLUP Using SNPs
The model used to predict the GEBVs under this approach was

y � Xb + Zu + e

where y is an N × 1 vector of phenotypes for genotyped and non-
genotyped animals, b is the vector of fixed effects
(i.e., generation), u is a random vector of GEBVs for
genotyped and non-genotyped animals with u ∼ N(0,Hσ2g), e
is the vector of random errors with e ∼ N(0, Iσ2e ), X is the
incidence matrix of fixed effects, and Z is the incidence matrix
that relates the records to GEBVs. In the case of ssGBLUP fitting
individual SNPs, the H matrix is a hybrid relationship matrix that
combines the genomic and pedigree relationships (Legarra et al.,
2009), and its inverse can be computed directly in the mixed
model equations as follows (Aguilar et al., 2010):

H−1 � A−1 + [ 0 0
0 τ(αG + βA22)−1 − ωA−1

22
]

where A−1 is the inverse of pedigree relationship matrix, A−1
22 is the

inverse of pedigree relationship matrix for the genotyped animals,
and G is the genomic relationship matrix. The G matrix was
constructed as in the first method proposed by Vanraden (2008):

G � MM′
2Σpi(1 − pi)

where M is the matrix of centered genotypes, with a dimension
equal to the number of animals by the number of markers. The
blending and weighting parameters for the genomic information
were the default values in the PREGSf90 software (α and β equal
to 0.95 and 0.05, respectively, and τ and ω equal to 1.0; Misztal
et al., 2018).

2.3.2 ssGBLUP Using SNPs and Haplotypes
Combined in a Single Genomic Relationship Matrix
The model and assumptions in this approach are the same as
described in ssGBLUP using SNPs. However, the G matrix used to
construct the combined relationship in this model had both
independent markers (i.e., non-blocked markers, which are
SNPs out of the LD blocks) and haplotypes as pseudo-SNPs.
To build the Gmatrix using haplotype information, the haplotype
alleles were first converted to pseudo-SNPs, as in Teissier et al.
(2020). Using this approach, if there were five unique haplotype
alleles in a haploblock, five pseudo-SNPs were created for this
haploblock. At the end, the number of copies of a specific pseudo-
SNP allele were counted and coded as 0, 1, or 2 for each
individual, similar to the codes used in M (when creating the
G) as previously described based on individual SNPs. The
pseudo-SNPs were subjected to the same QC steps as
described above for individual SNPs.

2.3.3 ssGBLUP Using Haplotypes
The model and assumptions in this approach were the same as
described in ssGBLUP using SNPs. However, only haplotypes
converted to pseudo-SNPs were used to create the G matrix used
in the predictions, therefore, excluding non-blocked
individual SNPs.

2.3.4 ssGBLUP Using SNPs and Haplotypes Assigned
to Two Different Genomic Relationship Matrices
The model used for these analyses was:

y � Xb + Zu1 + Zu2 + e

where u1 and u2 are the random additive genetic effects of the
first and second component of the overall GEBV, respectively,
which, under this modeling, is equal to u1 + u2. All other vectors
and matrices on this model are the same as described on the
previous sections. The main assumption on this model is that
the breeding value is divided into two uncorrelated components
with their own covariance structure, being u1 ∼ N(0,H1σ2g1) and
u2 ∼ N(0,H2σ2g2), in which H1 and H2 are the hybrid
relationship matrices with the same structure of the H matrix
described before. The only difference between H1 and H2is the G
matrix that is combined with the pedigree relationship in each
one of them, named as G1 and G2, respectively, containing the
genomic relationships between the individuals based on single
non-blocked SNPs and haplotypes, respectively. This
parametrization was used to account for the fact that
haplotypes and, therefore, the corresponding pseudo-SNPs,
are more polymorphic than individual SNPs. Consequently,
pseudo-SNPs could better capture the effect of large-sized
QTL with lower allele frequency than individual SNPs and
could have different distribution of their allele effects
compared to individual SNPs.

2.4 Training and Validation Population Sets
The populations used in the genomic predictions were the pure
breeds B, C, and E, defined as Breed_B, Breed_C, and Breed_E,
respectively, and composite breeds Comp_2 and Comp_3. Only
breeds Breed_B, Breed_C, and Breed_E were presented here
because the genetic background simulated, i.e., the size of the
founder population and generations of selection, was more
divergent for these populations (Figure 1). As breeds A and D
had similar sizes of the founder populations and generations of
selection when compared to breeds B and E, respectively, we
observed similar results between breeds A and B and also D and E
(data not shown).

The datasets (populations from the simulated EBV-based
selection programs) were divided into training and validation
sets to test the accuracy and bias of GEBVs. The training sets
within each population were composed of 60,000 individuals with
phenotypes randomly sampled from generations one to eight, and
8,000 of them also had genotypes for the simulated HD panel. The
genotyped individuals in the training set were randomly sampled
from generations four to seven. The validation populations were
composed of 2,000 individuals randomly sampled from
generations nine and ten and were also genotyped for the
same panel. Generation eight was considered as a gap between
training and validation populations in terms of genotypes. The
whole pedigree (generations 1–10) was used in all analyses. As we
assume that validation individuals would not have phenotypes,
their GEBVs were estimated based on the relationships of the
validation cohort with the training set (with phenotypes and
genotypes included in the analyses).
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2.5 Evaluated Scenarios
Although the HD SNP panel datasets were first simulated, the
main genomic predictions were performed using a medium
density 50 K SNP panel, which was designed based on
randomly selected SNPs from the original HD panel. This step
was performed because similar accuracies tend to be achieved
when using a medium density SNP panel in sheep (Moghaddar
et al., 2017), as well as in other species (Binsbergen et al., 2015; Ni
et al., 2017; Frischknecht et al., 2018). The total number of SNPs
selected for the 50 K panel was 46,827, as currently available in
the 50 K SNP panel (for autosomal chromosomes) reported in the
SNPchiMp v.3 platform (Nicolazzi et al., 2015). The markers in
the 50 K SNP panel were randomly sampled within each
autosome, and the number of SNPs per chromosome is
reported in Supplementary Material S1. In addition, previous
analyses showed that both SNP and haplotype-based predictions
based on the HD and 50 K SNP panels were not statistically
different (data not shown). Therefore, the haplotype blocks for all
the prediction scenarios were created based on the 50 K panel and
the results for the HD SNP panel were presented as an additional
scenario.

At the end, 11 scenarios were evaluated, which consisted of
genomic predictions using: 1) SNPs from the 600 K; 2) SNPs from
the 50 K; 3–5) independent SNPs and pseudo-SNPs from
haplotype blocks with LD equal to 0.1, 0.3, and 0.6 in a single
relationship matrix (IPS_LD01, IPS_LD03, and IPS_LD06,
respectively); 6–8) only pseudo-SNPs from haplotype blocks
with LD equal to 0.1, 0.3, and 0.6 (PS_LD01, PS_LD03, and
PS_LD06, respectively); and 9–11) independent SNPs and
pseudo-SNPs from haplotype blocks with LD equal to 0.1, 0.3,
and 0.6 in two different relationship matrices (IPS_2H_LD01,
IPS_2H_LD03, and IPS_2H_LD06, respectively). All these
scenarios were evaluated for two different heritability levels
(moderate and low) and in each one of the five populations
previously described (purebred and composite breeds with
distinct Ne). Therefore, 110 different scenarios were evaluated
in each one of the five replicates. A summary of the evaluated
scenarios is shown in Figure 2.

2.6 Scenario Comparisons
The statistics related to haplotype blocking strategies were
compared between populations (pure and composite breeds)

within each LD threshold to create the blocks (0.1, 0.3, and
0.6), and also, the LD thresholds were compared within each
population to differentiate the haplotype block structures. These
statistics are: average number of haploblocks, blocked SNPs,
pseudo-SNPs before and after QC, non-blocked plus pseudo-
SNPs after QC, and the additional computer time required by
using pseudo-SNPs (e.g., SNPs phasing, haplotype blocking, and
pseudo-SNP derivation). The GEBV accuracies and bias in each
prediction scenario were compared within each population, to
mimic population-specific (breed) genetic evaluation. Prediction
accuracy was estimated as the Pearson correlation coefficient
between the GEBVs and TBVs for the validation animals, for each
replicate and scenario. Prediction bias was assessed as the
deviation from one of the linear regression coefficients (β1) of
the TBVs on the GEBVs
(i.e., bias � β1 − 1;where TBV � β0 + β1 × GEBV) in the
validation population in each replicate and scenario.

A linear mixed model was used to test the effect of the
population and LD level on the statistics from haplotype block
strategies and the effect of marker information (SNP and
haplotype prediction scenarios) on the accuracy and bias of
GEBV prediction. The statistical model used was:

yij � μ + Ti + Rj + εij

where /yij is the observation of the ith treatment on the jth
repetition; Ti is the treatment effect, in which i is equal to
Breed_B, Breed_C, Breed_E, Comp_2, and Comp_3 to
compare the population effect over the statistics from
haplotype block strategies within each LD threshold; equal
to LD01, LD03, and LD06 to compare the effects of LD level
over the statistics from haplotype block strategies within
population; and equal to 600 K, 50 K, IPS_LD01, IPS_LD03,
IPS_LD06, PS_LD01, PS_LD03, PS_LD06, IPS_2H_LD01,
IPS_2H_LD03, and IPS_2H_LD06 to test the effect of
marker information over the accuracy and bias of GEBV
prediction within each population; Rj is the random effect
of replicates which was assumed to follow ∼ N(0,Bσ2b); and εij
is the residual effect of the model.

Replicate was used as a random effect in the model to
account for the covariance between the scenarios, as the
compared averages were obtained within the simulated
populations in each replicate. This was done to reduce the
occurrence of false negatives (Type-II error). Different
covariance structures (B) were evaluated (spherical,
compound symmetry, simple autoregressive process, and
unstructured covariance) to explain the covariances between
replicates, and the structure that presented the lowest Akaike
information criterion (AIC) and Bayesian information criterion
(BIC) values was used in the final models for comparison
purposes. After defining the appropriate covariance structure
(which was not the same for all scenarios, with unstructured
covariance being the best in the major part of the scenarios), the
means of the Ti levels were compared using the Tukey test at 5%
of significance level. The “nlme” (Pinheiro et al., 2021) and
“emmeans” (Lenth, 2021) R packages were used to fit the models
and compare the means, respectively, in the R environment (R
Core Team, 2020).

FIGURE 2 | Evaluated scenarios used in the genomic predictions with
pseudo-single nucleotide polymorphisms (SNPs) from linkage disequilibrium
(LD) blocks using independent and pseudo-SNPs in a single genomic
relationship matrix (1H), and only pseudo-SNPs and independent and
pseudo SNPs in two genomic relationship matrices (2H).
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3 RESULTS

3.1 Genetic Diversity and Genetic
Parameters in the Simulated Populations
After the simulation process, several different Ne levels were
observed in the recent populations studied (generations 1–10 of
pure and composite breeds under EBV-based selection). The total
additive genetic effect variances estimated with the models that
used two H matrices (ssGBLUP using SNPs and Haplotypes
Assigned to Two Different Genomic Relationship Matrices),
taken as σ2g1 + σ2g2, and the residual variances were similar to
the variances estimated with the models that fitted a single H
matrix (ssGBLUP using SNPs, ssGBLUP using SNPs and
Haplotypes Combined in a Single Genomic Relationship Matrix,
ssGBLUP Using Haplotypes) and similar to the variances
estimated with the model that used only the pedigree
relationship matrix (Simulated Traits; Supplementary
Materials S3, S4). Therefore, for simplicity, only the genetic
parameters estimated based on the pedigree relationship matrix
are presented in Table 1. A population structure analysis based
on principal components (PCs) of the G matrix using the SNPs
from the 50 K panel was also performed (Supplementary
Material S2). Individuals within the population were close to
each other, and no clear clusters between populations existed at
95% confidence level based in the approximated unbiased test
from a hierarchical clustering method using 10,000 bootstrap
samples (Shimodaira, 2002; Supplementary Material S2).

3.1.1 Ne and Genetic Parameters for the Simulation of
a Trait With Moderate Heritability
The average NeLD ranged between 110 and 644 (Breed_B and
Comp_2, respectively), while the NeInb varied from 159 to 373
(Breed_B and composite breeds, respectively), being lower in
pure breeds independently of the Ne measure (Table 1 and
Supplementary Material S3). The average additive genetic
variance in the MH2 scenarios ranged from 25.82 (Comp_2)
to 28.09 (Breed_C), while the residual variances ranged from
70.85 (Breed_C) to 73.07 (Comp_2). Average heritability
estimates ranging from 0.26 (Comp_2) to 0.29 (Breed_C) were

observed across populations, which are close to the global
simulation parameters (heritability and phenotypic variance
equal to 0.30 and 100, respectively).

3.1.2 Ne and Genetic Parameters for the Simulation of
a Low Heritability Trait
The average NeLD ranged from 125 (Breed_B) to 522 (Comp_2),
while NeInb ranged between 94 and 259 for these same
populations (Table 1 and Supplementary Material S4).
Average additive genetic variances ranging from 8.00
(Comp_3) to 9.31 (Breed_C and Breed_E) were observed. The
average residual variances ranged from 90.30 (Breed_B) to 91.90
(Comp_3). In the LH2 scenarios, the average heritabilities were
equal to 0.09 in the pure breeds and 0.08 in the composite breeds,
which are close to the global simulation parameters (heritability
and phenotypic variance equal to 0.10 and 100, respectively).

3.2 Statistics From Haplotype Blocks and
Pseudo-SNPs: Moderate Heritability Trait
3.2.1 Number of Blocks
The average number of blocks with two or more SNPs and the LD
threshold equal to 0.1 ranged from 7,709.6 (Comp_2) to 8,607.6
(Comp_3), with Comp_2 and Breed_B showing similar and
significantly lower number of blocks with this LD threshold
level than the other populations (Figure 3A and
Supplementary Material S5). With the LD threshold equal to
0.3, the average number of blocks ranged from 145.0 (Comp_2) to
3,574.6 (Breed_B), and Breed_B showed significantly larger mean
compared to the other populations (Figure 3B and
Supplementary Material S5). Only Breed_B had blocks with
an LD threshold equal to 0.6, with an average equal to 23.8, which
was statistically different from all the other populations
(Figure 3C and Supplementary Material S5). Within each
population, the mean number of blocks from LD threshold
levels of 0.1, 0.3, and 0.6 were statistically different for all
populations, with the LD threshold equal to 0.1 being the
largest, followed by the LD threshold equal to 0.3, and the 0.6
level yielding the lowest number of blocks.

TABLE 1 | Average (SE) effective population size based on the linkage disequilibrium (NeLD) and realized inbreeding (NeInb) methods, additive genetic variance (σ2a ), residual
variance (σ2a ), and heritability (h2) estimates of the trait in simulated sheep populations.

Simulation Populationa NeLD
b NeInb

c σ2a σ2e H2

Moderate h2 (0.30) Breed_B 110 (6) 190 (17) 27.12 (0.27) 71.54 (0.10) 0.27 (0.00)
Breed_C 379 (8) 260 (15) 28.09 (0.25) 70.85 (0.26) 0.29 (0.00)
Breed_E 359 (5) 192 (6) 27.45 (0.35) 72.42 (0.34) 0.28 (0.00)
Comp_2 644 (15) 446 (7) 25.82 (0.37) 73.07 (0.25) 0.26 (0.00)
Comp_3 466 (40) 447 (53) 26.80 (0.62) 72.88 (0.50) 0.27 (0.00)

Moderate h2 (0.10) Breed_B 125 (8) 94 (11) 9.17 (0.26) 90.30 (0.38) 0.09 (0.00)
Breed_C 272 (11) 120 (11) 9.31 (0.28) 89.91 (0.23) 0.09 (0.00)
Breed_E 251 (22) 119 (19) 9.31 (0.23) 90.38 (0.26) 0.09 (0.00)
Comp_2 522 (32) 259 (40) 8.42 (0.27) 91.13 (0.27) 0.08 (0.00)
Comp_3 407 (32) 235 (38) 8.00 (0.29) 91.90 (0.23) 0.08 (0.00)

aBreed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; Comp_2 and Comp_3: composite breeds based on two and three pure breeds,
respectively.
bEstimated based on the re-arranged estimator present in Sved (1971).
cEstimated based on the formula presented by Falconer and Mackay (1996).
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3.2.2 Number of Blocked SNPs
The average number of blocked SNPs for the LD threshold equal
to 0.1 varied between 17,122.2 (Comp_2) and 19,199.8 (Comp_3)
(Figure 3A and SupplementaryMaterial S5), and for Comp_2, it
was significantly lower than all the other populations. The average
number of SNPs within blocks with an LD threshold equal to 0.3
ranged from 340.4 (Comp_2) to 8,195.4 (Breed_B) (Figure 3B
and Supplementary Material S5). The number of blocked SNPs
for Breed_B was significantly higher than for the other
populations (which did not differ among them). The average
number of blocked SNPs with LD threshold equal to 0.6 in
Breed_B was 56.8 (Figure 3C and Supplementary Material
S5) and was significantly greater, as no blocks were created for
all the other populations.

3.2.3 Number of Pseudo-SNPs After Quality Control
After QC, the average number of pseudo-SNPs from blocks with
an LD threshold equal to 0.1 was reduced, ranging from 35,524.6
(Comp_2) to 39,713 (Breed_E) (Figure 3A and Supplementary

Material S5). In general, Breed_B and Comp_2 were statistically
similar and had lower averages compared to all other populations.
The average number of pseudo-SNPs after QC with haploblocks
constructed with the LD threshold of 0.3 was between 718.6
(Comp_2) and 16,259.4 (Breed_B), in which only Breed_B was
statistically different from all other populations (Figure 3B and
Supplementary Material S5). With an LD threshold equal to 0.6,
the average number of pseudo-SNPs for Breed_B was 91 and no
pseudo-SNPs were generated with this LD threshold for all the
other populations (Figure 3C and Supplementary Material S5).
The average number of pseudo-SNPs before QC is also shown in
Figure 3A and Supplementary Material S5.

3.2.4 Number of Non-blocked SNPs Plus
Pseudo-SNPs After Quality Control
The average number of non-blocked plus pseudo-SNPs after QC
varied from 64,987.0 (Breed_B) to 67,367.2 (Breed_E) when using
blocks with an LD threshold of 0.1 (Figure 3A and
Supplementary Material S5). Breed_B and Comp_2 showed

FIGURE 3 | Average number of blocks (Blocks) spanning two or more SNPs, markers within blocks (Blocked_SNPs), pseudo-SNPs (Pseudo_SNPs), pseudo-
SNPs after quality control (PS_A_QC), non-blocked SNPs plus pseudo-SNPs after quality control (NB_PS_A_QC), and computing time to obtain the pseudo-SNPs
(Duration_time) in the simulation for a trait with moderate heritability (h2 � 0.30). A, B, and C show the results for haplotype blocks with LD thresholds of 0.1, 0.3, and 0.6,
respectively. Breed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; Comp_2 and Comp_3: composite breeds from two and
three pure breeds, respectively. The same lower- or upper-case letters mean no statistical difference comparing populations within LD thresholds and LD threshold
across populations, respectively, at 5% significance level by the Tukey test.
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lower averages compared to all the other populations. Regarding
the LD threshold of 0.3, the number of non-blocked plus pseudo-
SNPs after QC ranged from 47,205.2 (Comp_2) to 54,891.0
(Breed_B) (Figure 3B and Supplementary Material S5). For
this LD threshold, the Breed_B average was statistically greater
than all the other populations. The average number of non-
blocked plus pseudo-SNPs after QC was equal to 46,867.8 for
Breed_B and 46,827 for all the other populations when using an
LD threshold of 0.6 to create the haploblocks (Figure 3C and
Supplementary Material S5).

3.2.5 Additional Time to Create Pseudo-SNPs
The average computing time to create the pseudo-SNPs (also
considering the haplotype phasing and blocking) was between
8,800.6 s (2 h and 26 min; Comp_2) and 22,650.0 s (6 h and
18 min; Breed_B) with the LD threshold of 0.1 (Figure 3A and
Supplementary Material S5). For this LD threshold, the
computing time for Breed_B was statistically similar to that
in Breed_C, but significantly different from all the other
populations. When using an LD threshold of 0.3 to create
the blocks, the average computing time ranged from 675.4 s
(11 min; Comp_2) to 2,935.0 s (49 min; Breed_B) (Figure 3B
and Supplementary Material S5). The computing time for
Breed_B was statistically higher than all the other
populations, which were not statistically different among
them. The average computing time for pseudo-SNPs from
blocks with an LD threshold equal to 0.6 ranged from 591.4
(10 min) to 666.8 s (11 min) (Breed_C and Breed_B,
respectively; Figure 3C and Supplementary Material S5),
and no statistical differences were observed across
populations. The computing time compared across LD
thresholds within the population showed that LD thresholds
of 0.3 and 0.6 were statistically similar and lower than with the
LD threshold of 0.1.

3.3 Statistics From Haplotype Blocks and
Pseudo SNPs: Low Heritability Trait
We have also checked the statistics from haplotype blocks and
pseudo-SNPs in the low heritability trait scenarios because the
simulation was done for each heritability level at a time. In
general, the number of blocks, blocked SNPs, pseudo-SNPs
before and after the QC, the number of non-blocked plus
pseudo-SNPs after QC, and computing time to generate the
pseudo-SNPs for a trait with a low heritability were similar to
those for a trait with moderate heritability and are shown in
Figure 4 and Supplementary Material S6. The results for the
statistical comparisons in each one of these metrics for both
populations, within each LD threshold, and for LD thresholds
across populations were also similar between the LH2 and MH2
scenarios. The exceptions for the statistical comparisons under
LH2 scenario was that the number of blocks in Breed_C and
Breed_E would show a similar or lower average number of blocks,
blocked SNPs, pseudo-SNPs after QC, and number of non-
blocked plus pseudo-SNPs after QC than Breed_B, whereas
the opposite would occur under the MH2 scenario. However,
as pointed out before, the values were similar across the LH2 and

MH2 scenarios. Therefore, the interpretation of the statistical
comparisons for haplotype blocks in the MH2 scenario are also
extended to LH2.

3.4 Accuracy and Bias of Genomic
Predictions: Moderate Heritability Trait
3.4.1 Pure Breed With Lower Genetic Diversity
(Breed_B)
The average accuracy for GEBVs based on individual SNPs in the
Breed_B was 0.54 and 0.55 for the 50 and 600 K panels,
respectively, whereas it varied from 0.48 (pseudo-SNPs from
blocks with an LD threshold of 0.3, PS_LD03) to 0.54
(independent SNPs and pseudo-SNPs from blocks with an LD
threshold of 0.6, IPS_LD06) using haplotypes (Figure 5A,
Supplementary Material S7). In general, genomic predictions
that used pseudo-SNPs and independent SNPs in one or two
relationship matrices did not statistically differ from those with
SNPs in the 50 and 600 K panels. Using only pseudo-SNPs in the
genomic predictions showed significantly lower accuracy than all
other methods, when considering an LD threshold equal to 0.1
and 0.3 to create the blocks (PS_LD01 and PS_LD03,
respectively). No predictions with PS_LD06 and IPS_2H_LD06
(independent SNPs and pseudo-SNPs from blocks with an LD
threshold of 0.6 in two relationship matrices) were performed due
to the low correlations observed between off-diagonal elements in
A22 and G constructed with only pseudo-SNPs from haploblocks
with an LD threshold of 0.6 (Supplementary Material S8). The
average GEBV bias was equal to −0.09 and −0.08 for the 50 and
600 K SNP panels, respectively, whereas it ranged between −0.20
(PS_LD03) and −0.08 (IPS_2H_LD01) with haplotypes. No
statistical differences were observed in the average bias when
the two SNP panel densities or the independent and pseudo-SNP
in one or two relationship matrices were used. PS_LD01 and
PS_LD03 generated statistically more biased GEBVs than all the
other scenarios.

3.4.2 Pure Breed With Medium-Size Founder
Population and Moderate Genetic Diversity (Breed_C)
The average accuracy observed in the Breed_C was equal to
0.53 and 0.54 with the 50 and 600 K, respectively, while with
haplotypes, it ranged from 0.25 (PS_LD03) to 0.52 (IPS_LD03)
(Figure 5A, Supplementary Material S7). Similar to Breed_B,
the PS_LD01 and PS_LD03 models yielded statistically less
accurate GEBVs than all the other models, with PS_LD03
being the worst one. Fitting pseudo-SNPs and independent
SNPs in one or two relationship matrices did not have
statistical differences when compared with individual-SNP
predictions. The IPS_2H_LD03 scenario did not converge
during the genetic parameter estimation, and no pseudo-
SNPs were generated for any haplotype method that used
an LD threshold of 0.6 (IPS_LD06, PS_LD06, and
IPS_2H_LD06). Consequently, no results were obtained for
these scenarios. Average GEBV bias equal to −0.05 and −0.02
were observed for the 50 and 600 K SNP panels, whereas in the
haplotype-based predictions, it ranged from −0.49 (PS_LD03)
to −0.03 (IPS_2H_LD01). PS_LD01 and PS_LD03 were
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statistically more biased than all the other scenarios
(statistically similar among them).

3.4.3 Pure Breed With Larger Founder Population and
Moderate Genetic Diversity (Breed_E)
The average accuracy was equal to 0.52 and 0.53 for the 50 and
600 K SNP panel, respectively, while the haplotype-based
approach yielded accuracy varying between 0.28 (PS_LD03)
and 0.51 (IPS_LD03) in Breed_E (Figure 5A, Supplementary
Material S7). Using only pseudo-SNPs from haplotype blocks
with an LD threshold of 0.3 (PSLD03) yielded the less accurate
genomic predictions, being statistically lower than all the other
models (with similar accuracy among them). No blocks with an
LD threshold equal to 0.6 were created in this population, and
therefore, no predictions were obtained with the models that
would use pseudo-SNPs from these blocks. For the GEBV bias,
averages of −0.09 and −0.06 were observed for the 50 and 600 K
panels, respectively, ranging from −0.53 (PS_LD03) to −0.09
(IPS_2H_LD01) when haplotypes were fitted. Similar to the

accuracy findings, the PSLD03 showed statistically lower
average GEBV bias of prediction compared to all other
models, showing the more biased predictions.

3.4.4 Composite Breed From Two Populations With
High Genetic Diversity (Comp_2)
The average accuracy for the 50 and 600 K SNP panels in
Comp_2 were 0.41 and 0.42, respectively, with haplotype-
based predictions ranging from 0.17 (PSLD03) to 0.41
(IPS_LD03) (Figure 5A, Supplementary Material S7). As
observed in the pure breeds, there were no statistical
differences between the predictions with SNPs based on both
SNP density panels and the scenarios that fitted pseudo-SNPs and
independent SNPs in one or two relationship matrices. Using
only pseudo-SNPs to create the G matrix also provided
statistically lower accuracy, with PS_LD03 yielding the worst
results. No predictions were made with IPS_2H_LD03 in this
population because of convergence problems during the genetic
parameter estimation process. No pseudo-SNPs were obtained

FIGURE 4 | Average number of blocks (Blocks) spanning two or more SNPs, markers within blocks (Blocked_SNPs), pseudo-SNPs (Pseudo_SNPs), pseudo-
SNPs after quality control (PS_A_QC), non-blocked SNPs plus pseudo-SNPs after quality control (NB_PS_A_QC), and computing time to obtain the pseudo-SNPs
(Comp_time) in the simulation for a trait with low heritability (h2 � 0.10). A, B, and C show the results for the haplotype blocks with LD thresholds of 0.1, 0.3, and 0.6,
respectively. Breed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; Comp_2 and Comp_3: composite breeds from two and
three pure breeds, respectively. The same lower- or upper-case letters mean no statistical difference comparing populations within LD thresholds and LD threshold
across populations, respectively, at 5% significance level based on the Tukey test.
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with the LD threshold of 0.6 and, consequently, no subsequent
genomic prediction results. Average GEBV bias of −0.14 and
−0.10 was observed for the 50 and 600 K SNP panels, respectively,
while the average GEBV bias ranged from −0.62 (PS_LD03) to
−0.15 (IPS_2H_LD01) when fitting haplotypes. Statistically, more
biased predictions were obtained only when pseudo-SNPs from
haplotype blocks with an LD threshold of 0.3 were used
(PS_LD03).

3.4.5 Composite Breed From Three Populations With
High Genetic Diversity (Comp_3)
The average accuracy for the 50 and 600 K SNP panels were 0.41
and 0,42, respectively, and with haplotype-based predictions, they
ranged from 0.22 (PS_LD03) to 0.41 (IPS_LD03) (Figure 5A,
Supplementary Material S7). The PS_LD01 and PS_LD03
scenarios yielded statistically lower accuracy than all the other
methods (statistically similar among them). Similarly to Comp_2,
no genomic predictions were performed for the IPS_2H_LD03
and models fitting pseudo-SNPs from blocks with an LD
threshold of 0.6. The average GEBV bias was −0.19 and −0.14
for the 50 and 600 K SNP panels, respectively, and ranged from
−0.60 (PS_LD03) to −0.18 (IPS_LD01) for the haplotype-based

predictions. Using only pseudo-SNPs from LD blocks
constructed based on an LD threshold of 0.3 resulted in more
biased GEBV predictions for the Comp_3 population.

3.5 Accuracy and Bias of Genomic
Predictions: Low Heritability Trait
The effects of fitting haplotypes in the genomic predictions under
the LH2 scenarios were similar to those observed in the MH2
scenarios for all populations, with also similar average results
(Figure 5B and Supplementary Material S9). Therefore, the
interpretations of the results for MH2 can be extended to the LH2
scenario, in which the worst results were observed for the
PS_LD03 and similar accuracy and bias using SNPs or
haplotypes (with independent SNPs) were observed. The
GEBVs from the LH2 scenarios were less accurate and more
biased than those from the MH2 scenarios within populations
(e.g., lower accuracy and greater bias in LH2 within Breed_B), as
would be expected due to the lower heritability of the trait. No
GEBV predictions were made for the PS_LD06 and
IPS_2H_LD06 for Breed_B due to the low correlation between
the off-diagonal elements of the A22 and G created with pseudo-

FIGURE 5 | Accuracies and bias of genomic predictions based on individual SNPs and haplotypes for the simulations of traits with moderate (A) and low (B)
heritability (0.30 and 0.10, respectively). Breed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; Comp_2 and Comp_3: composite
breeds from two and three pure breeds, respectively. 600 K: high-density panel; 50 K: medium-density panel; IPS_LD01, IPS_LD03, and IPS_LD06: independent and
pseudo-SNPs from blocks with LD thresholds of 0.1, 0.3, and 0.6, respectively, in a single genomic relationship matrix; PS_LD01, PS_LD03, and PS_LD06: only
pseudo-SNPs from blocks with LD threshold of 0.1, 0.3, and 0.6, respectively; and IPS_2H_LD01, IPS_2H_LD03, and IPS_2H_LD06: independent and pseudo-SNPs
from blocks with LD thresholds of 0.1, 0.3, and 0.6, respectively, in two genomic relationship matrices. Zero values for both accuracies and bias mean no results were
obtained, due to poor quality of genomic information or no convergence of the genomic prediction models. The same lower-case letters mean no statistical difference
comparing genomic prediction methods within population at 5% significance level based on the Tukey test.
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SNPs from blocks with an LD threshold of 0.6 (Supplementary
Material S10). No results for all scenarios fitting pseudo-SNPs
from blocks with an LD threshold of 0.6 were obtained for
Breed_C, Breed_E, Comp_2, and Comp_3 because no blocks
were created based on this threshold.

4. DISCUSSION

We hypothesized that the predicted GEBV in populations with
higher genetic diversity, such as composite sheep breeds (e.g.,
Kijas et al., 2012; Brito et al., 2017b; Oliveira et al., 2020), could
benefit from the use of haplotype-based rather than SNP-based
genomic predictions, by obtaining GEBVs with higher accuracy
and lower bias of prediction. Therefore, we investigated the
impact of including haplotype information in ssGBLUP for
populations with high genetic diversity, assessed based on the
Ne metric, and different genetic background. Furthermore, we
evaluated the performance of haplotype-based models by fitting
the haplotypes as pseudo-SNPs in different ways under the
ssGBLUP framework. For that, we considered only pseudo-
SNPs to construct the genomic relationships and also two
different relationship matrices (i.e., derived from individual
SNPs and pseudo-SNPs from haplotype blocks), assuming no
correlation between them. To evaluate our hypothesis, simulated
data was used to calculate the true accuracy and bias of genomic
predictions for simulated traits with moderate and low
heritability level. These two sets of heritability levels comprise
the major part of traits of interest in livestock breeding programs
(e.g., growth, carcass, feed efficiency, reproductive performance,
disease resistance, overall resilience).

4.1 Genetic Diversity and Genetic
Parameters
The genetic diversity and variance components were assessed in
the subsets of the data used for the predictions to verify the
consistency of the initial simulation parameters. In addition to the
first three recent Ne idealized at the beginning of this study (100,
250, and 500), several other genetic diversity measures were
obtained after the simulation process was finalized, which are
measures of recent Ne (until five generations ago) based on LD
(NeLD) and on realized inbreeding (NeInb) (Table 1 and
Supplementary Materials S3, S4). NeLD would be more useful
in the absence of accurate pedigree information, as it relies on the
E(r2) estimation in a pre-defined chromosomic segment size and
was proposed for simpler population structures (e.g., random
mating and no selection; Sved, 1971). However, we also calculated
NeInb as an alternative indicator of Ne, because this estimate is
based on the realized inbreeding and relies on the actual increase
in population autozygosity (Falconer and Mackay, 1996).

One thousand and six hundred individuals from each one of
the five populations (8,000 in total) were used to obtain the
principal components (PCs) shown in Supplementary Material
S2, which actually explained a small proportion of the overall
variance (1.71 and 2.13% for the first two and first three PCs,
respectively). McVean (2009) highlighted several situations that

can affect the structure and spatial distribution of the PCA using
SNPs (e.g., current and recurrent bottlenecks, admixture, waves
of expansion, sample size) and potentially cause bias in the scatter
with the first PCs, especially if they explain a little proportion of
the overall variance. Rao (1964) also indicated that inferences
about structural relationships using the first PCs are only
recommended when they explain a substantial amount of
variation, which was not our case. Also, Deniskova et al.
(2016) found a sheep population with a lower Ne (176) more
scattered in the first two PCs than populations with higher Ne
(>500), indicating the need for a third PC to observe differences
within the high genetically diverse, similar to what we observed in
this current study. The authors mentioned that a small founder
population could be the reason for the lower Ne in the more
scattered population along the first two PCs, and the Breed_B in
our study (lower Ne) also had the smallest founder population.
Another important point to highlight is that when using
commercially available SNP chips, there tends to be
ascertainment bias in the design of the SNP panels, which
then contributes to a greater differentiation among
populations (depending if they contributed or not to the SNP
panel design) and crossbred/composite animals tend to have
greater SNP diversity and be more scattered in the plots. This
does not tend to happen when using simulated datasets. In
summary, as it is not recommended to make inferences with
PCs that are not significant (Rao, 1964; McVean, 2009), the Ne
should be used to make conclusions about the genetic diversity of
the simulated populations, with the PCs used only for the
illustration of the population structure.

Both Ne measures showed values close to those observed for
some terminal and composite sheep breeds (125–974) as reported
by Brito et al. (2017b), indicating that the simulation analyses
resulted in datasets mimicking the genetic structure of
commercial sheep populations. In addition to sheep, other
species also present similar genetic diversity levels to some of
the simulated populations used in this research, such as goats (Ne
from 38 to 149; Brito et al., 2015), beef cattle (Ne from 153 to 220;
Biegelmeyer et al., 2016), and dairy cattle (Ne from 58 to 120;
Makanjuola et al., 2020). The genetic parameters estimated after
the simulation process were similar and consistent among
replicates across all recent populations used for the subsequent
analyses in both scenarios (MH2 and LH2; Table 1 and
Supplementary Materials S3, S4).

4.2 Statistics From Haplotype Blocks and
Pseudo-SNPs
The differences observed on the haplotype block statistics across
the simulated populations within LD thresholds and also across
LD thresholds within populations are a consequence of the
genetic events experienced by them. The number and size of
the LD blocks can vary according to recombination hotspots and
evolutionary events such as mutation, selection, migration, and
random drift (McVean et al., 2004). In this context, a lower
number of blocks with high LD thresholds would be expected in
more genetically diverse populations, simply because in these
populations, a large number of SNPs are expected to be excluded
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from all haploblocks, left to be considered as individual SNP
effects. This was observed in Breed_B (less diverse, Ne ranging
from 94 to 159) having a larger number of blocks not only when
0.6 was used as the LD threshold but also when the LD threshold
was set to 0.3 in both MH2 and LH2 scenarios (Figures 3, 4 and
Supplementary Materials S5, S6).

The average number of blocks was similar (LH2, Figure 4 and
Supplementary Material S7) or even lower (MH2, Figure 3 and
Supplementary Material S6) in Breed_B compared to the other
populations when the LD threshold was set to 0.1. The Big-LD
method used in this study defines the LD blocks by using weights
estimated based on the number of SNPs from all possible
overlapping intervals (Kim et al., 2018). Therefore, low LD
thresholds could imply in similar intervals to derive the
independent blocks regardless of the level of genetic diversity
in populations derived from the same historical population
(i.e., same species). When setting low LD thresholds to
construct the LD-blocks, more intervals of linked SNPs are
obtained as the number of blocks increase with less SNPs
excluded (and vice versa). Therefore, this might explain the
distribution of the number of blocks across populations with
an LD threshold of 0.1. Consequently, a greater number of blocks
are expected, as observed when comparing the number of blocks
across LD thresholds (the number of blocks with an LD threshold
of 0.1 > 0.3 > 0.6, Figures 3, 4 and Supplementary Materials
S5, S6).

The number of blocked SNPs and pseudo-SNPs before and
after QC in bothMH2 and LH2 (Figures 3, 4 and Supplementary
Materials S5, S6) is a function of the genetic diversity level of the
populations. Longer blocks with many SNPs are expected in less
genetically diverse populations (Hayes et al., 2003; Villumsen
et al., 2009; Hess et al., 2017) likely due to selection and
inbreeding, whereas more pseudo-SNPs (unique haplotypes)
are expected in more genetically diverse populations (Teissier
et al., 2020), when the single SNPs out of the LD-clusters are not
considered as a block, following the standard definition of
haplotype block (Gabriel et al., 2002). However, this also
depends on the LD threshold used to create the haplotype
blocks, as this pattern was clear only when LD was greater
than 0.1.

Independently of the LD level used to create the blocks, the
relative reduction in the number of pseudo-SNPs after QC was
greater on the less genetically diverse population, with
approximately 40% in Breed_B when the LD threshold was set
to 0.6. The greatest reduction of pseudo-SNPs in populations with
less genetic diversity was due to the low frequency of the
haplotypes in this research, which agrees with the literature
[e.g., based on simulated data (Villumsen et al., 2009); in dairy
cattle populations (Hess et al., 2017; Karimi et al., 2018); and in
dairy goats (Teissier et al., 2020)].

The additional computing time needed for genotype phasing,
creating the haplotype blocks and the covariates for the models
(Feitosa et al., 2019; Teissier et al., 2020), and running the
genomic predictions (Cuyabano et al., 2015; Hess et al., 2017)
have been indicated as the main drawbacks for the use of
haplotypes in routine genomic predictions. In this study, the
maximum additional computing time observed was

approximately 7 h (23,663.6 s, Breed_B with LD equal to 0.1
under the LH2 scenario—Figure 4A and Supplementary
Material S6). Hess et al. (2017) used marker effect models
under Bayesian approaches and observed additional time of up
to 27.2 h for predictions with haplotypes derived from 37 K SNPs
with training and validation populations of about 30,000 dairy
cattle individuals. Cuyabano et al. (2015) reported that genomic
predictions using Bayesian approaches and haplotypes took
approximately from 1 to 46 h, depending on the number of
previously associated SNPs included in the GEBV predictions
(1–50 K, respectively), with approximately 4,000 individuals in
the training and validation populations. Differently from these
studies, we used the ssGBLUP method, which showed consistent
time for the predictions in the 50 K SNP panel or when fitting
haplotypes (as pseudo-SNPs) in the same G matrix. This was
likely observed because the GEBVs are estimated directly based
on the G matrix and the number of pseudo-SNPs added to the
non-blocked SNPs (Figures 3, 4 and Supplementary Materials
S5, S6) was not large enough to require longer time to create the
genomic relationship matrices. As we calculated GEBVs for more
than 62,000 individuals (genotyped and non-genotyped) using
haplotype information with a relatively low increase of time,
ssGBLUP is a feasible alternative for that purpose.

Interestingly, our results suggest that the computing time to
obtain pseudo-SNPs in less genetically diverse populations is
higher than in more diverse populations. This could be because
more diverse populations have a smaller number of intervals with
a determined LD level than populations with low genetic
diversity, implying in less iterations for the algorithm to create
the haplotype blocks. The smaller number of candidate intervals
to create the blocks, leading to a lower computing time, might also
explain the differences observed when comparing the LD levels
within populations, with the computing time being significantly
greater with an LD threshold of 0.1, followed by 0.3 and 0.6 LD
thresholds.

4.3 Accuracy and Bias of Genomic
Predictions
Genomic predictions based on whole genome sequence (WGS)
data could be more advantageous because all the causal mutations
are expected to be included in the data. However, practical results
have shown no increase in GEBV accuracy when usingWGS over
HD (Binsbergen et al., 2015; Ni et al., 2017) or even medium
density (∼50 K) SNP panels (Frischknecht et al., 2018). HD SNP
panels were developed to better capture the LD between SNPs and
QTLs and thus improve the ability to detect QTLs and obtain
more accurate GEBVs (Kijas et al., 2014), especially in more
genetically diverse populations or even across-breed genomic
predictions. However, the 50 K SNP panel has shown a similar
predictive ability to the HD even in highly diverse populations as
in sheep (Moghaddar et al., 2017). These findings corroborate
with our results using the 50 K SNP panel, regardless of the trait
heritability. This suggests that both SNP panels (i.e., 50 and
600 K) are sufficient to capture the genetic relationships of the
individuals, which is the base of the genomic predictions based on
the ssGBLUP method (Legarra et al., 2009; Aguilar et al., 2010;
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Lourenco et al., 2020). Therefore, we used the 50 K SNP panel for
haplotype-based genomic predictions.

Genomic predictions are expected to be more accurate with
haplotypes instead of individual SNPs mainly because they are
expected to be in greater LD with the QTL than are individual
markers (Calus et al., 2008; Villumsen et al., 2009; Cuyabano
et al., 2014, 2015; Hess et al., 2017). In this context, Calus et al.
(2008) and Villumsen et al. (2009) reported better results for the
haplotype-based predictions of GEBVs than individual SNPs in
simulated data, highlighting the possibility of improving both the
accuracy and bias of genomic predictions. The Ne of the
populations used by Calus et al. (2008) and Villumsen et al.
(2009) is similar to the one in Breed_B (∼100). However, in this
current study, haplotype-based models provided similar or lower
accuracy and they were also similar or more biased than
individual SNP-based models under both MH2 or LH2
scenarios (Figure 5 and Supplementary Materials S7, S9).
This might be related to the LD level between SNP-QTL and
haplotype-QTL and also the amount of information used to
estimate the SNP and haplotype effects. Calus et al. (2008)
and Villumsen et al. (2009) had fewer individuals (∼1,000),
and their simulations were done with more general parameters
compared to our study. The training set in this research for all
populations was composed by 60,000 individuals with
phenotypes, in which 8,000 of them were also genotyped. This
amount of data is likely enough to estimate SNP effects and also
the SNP-QTL LD properly. Thus, predictions with SNPs and
haplotypes did not differ in some cases due to both of them
capturing well the genetic relationships to achieve similar
prediction results.

The correlations between off-diagonal, diagonal, and all
elements in A22 and G created with pseudo-SNPs and
independent SNPs together were similar to fit only individual
SNPs in both SNP panel densities for all LD thresholds and in all
populations, regardless of the heritability (Supplementary
Materials S8, S10). Furthermore, the average, maximum, and
minimum values of the diagonal elements in G created when
combining pseudo-SNPs and independent SNPs were also similar
to using only individual SNPs for both SNP panel densities in all
scenarios investigated. Therefore, combining haplotypes and
SNPs in a single G matrix captured the same information as
fitting only individual SNPs, and, consequently, resulting in
similar GEBV predictions.

Another reason for the similar genomic predictions when
fitting individual SNPs and haplotypes might be the absence
of or negligible epistatic interaction effects between SNP loci
within haplotype blocks. In humans, a species with high Ne (Park,
2011), Liang et al. (2020) showed that epistasis was the reason for
increased accuracy with haplotypes over individual SNPs for
health traits. In other words, a similar accuracy between SNPs
and haplotypes was observed when there was negligible epistasis
effect. The same authors also pointed out that predictions using
haplotypes might only be worse than fitting individual SNPs
because of a possible “haplotype loss,” which can happen when
SNP effects are not accurately estimated by the haplotypes. As no
epistatic effects are currently simulated by QMSim (Sargolzaei
and Schenkel, 2009) and, therefore, were not simulated in the

current study, different from our assumption that haplotypes
could improve the predictions in more genetically diverse
populations (Breed_C, Breed_E, Comp_2, and Comp_3), the
accuracy and bias estimated based on haplotypes were similar
or worse compared to fitting individual SNPs.

Many studies based on real datasets have shown small
improvements in the performance of haplotype-based
genomic predictions. For instance, Cuyabano et al. (2014)
showed up to a 3.1% increase in the accuracy for milk
protein when using LD-based haplotypes. Cuyabano et al.
(2015) also obtained gains in accuracy of up to 1.3% using
pre-selected SNPs associated with the trait combined with the
haplotypes as covariates in the models for production, fertility,
and health traits. Mucha et al. (2019) showed no differences in
predictions with high-frequency haplotypes compared to SNPs
when evaluating reproductive performance traits and somatic
cell score in Polish dairy cattle. Additionally, Feitosa et al. (2019)
obtained nearly the same accuracy and bias for meat fatty acid
(MFA) traits in Nellore cattle when fitting individual SNPs or
haplotypes. These findings indicate that, even in instances where
haplotypes are better than SNPs, the improvements are
negligible or small. However, considerable improvements in
haplotype-based predictions have also been reported in the
literature for relatively less polygenic traits with known
major genes or when using biological information to
construct the haplotype blocks. Won et al. (2020) reported a
significant increase of 4.6% in GEBV accuracy with LD-
clustering-based haplotypes for eye muscle area in Korean
cattle. In Simmental cattle, Xu et al. (2020) reported
increases of 9.8% in carcass weight when incorporating
haplotype information based on SNPs from functionally
related genomic regions. Teissier et al. (2020) reported an
increase in accuracy of up to 22% when using haplotypes
from fixed length or LD blocking strategies under an
ssGBLUP setting. Based on these literature reports in
livestock, it seems that haplotype predictions could provide
better results when traits are oligogenic or affected by major
genes, which are less common in livestock breeding goals. In
addition, the presence of epistatic interactions in a real situation
can also provide better results (Liang et al., 2020). In this sense,
using biological information to create the blocks of linked
markers to make haplotype predictions can be an alternative
to improve the genomic predictions in genetically diverse
livestock populations. Unfortunately, there are limited real
datasets of enough size with both phenotypes and genotypes
for populations with large Ne that could be used for validating
our findings.

It is worth mentioning that haplotype-based models
without including the independent SNPs (markers not
assigned to any block) to create the genomic relationships
always provided the worst results, regardless of the LD
threshold to create the haploblocks (0.1, 0.3, and 0.6). These
models were also less accurate and more biased in all the
populations, regardless of the genetic diversity level and
heritability (Figure 5 and Supplementary Materials S7,
S9). The worst results were obtained when fitting only
pseudo-SNPs from blocks with an LD threshold of 0.3
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(PSLD03) and in more genetically diverse populations
(Breed_C, Breed_E, Comp_2, and Comp_3). This might
have occurred because fitting only pseudo-SNPs from the
haploblocks with two or more SNPs is not enough to
consider all the important chromosomic regions influencing
the trait of interest. The number of blocks, blocked SNPs, and
pseudo-SNPs that were used to make the predictions were
significantly lower with the LD level of 0.3 compared to 0.1 in
both simulations (Figures 3, 4 and Supplementary Materials
S5, S6), with this being likely the reason for the lowest accuracy
and largest bias observed for PS_LD03. In this context,
increasing the LD threshold to create the haploblocks have
hampered the prediction with only haplotypes because a larger
number of genomic markers were not considered to make the
predictions. However, increasing the LD threshold to create
the blocks and using the non-clustered SNPs together with the
pseudo-SNPs did not affect the prediction results, presenting
similar GEBV accuracies and bias compared to SNP-based
predictions. In addition, the main differences in the properties
of the G matrix were observed when only pseudo-SNPs from
haploblocks with bigger LD thresholds were used, with lower
correlations between off-diagonal and all elements in the A22

and Gmatrices and differences in the maximum and minimum
values of the diagonal elements of the G (Supplementary
Materials S8, S10). Therefore, independently of the LD
threshold used to create the haploblocks, we recommend
using the non-clustered SNPs with pseudo-SNPs from
multi-marker haploblocks to make haplotype-based
predictions, as well as in genome-wide association studies
(GWAS) using haplotypes, because these variants may play
an important role.

Separating the independent and pseudo-SNPs in two
different random effects, with no shared covariances
structures, did not significantly impact the genomic
predictions, but had a computational cost. The genetic
parameter estimation and GEBV prediction required more
computing time using these two genetic components in the
model, with more iterations and greater time in each iteration
than the other models (data not shown), sometimes leading to
no convergence of the solutions (IPS_2H_LD03 in the
Breed_C, Comp_2, and Comp_3 under MH2). The model
with pseudo-SNPs and independent SNPs in two genetic
components is more complex, and the convergence
difficulty might suggest poor model parametrization,
potentially because the random effects were assumed to be
uncorrelated. This fact can be confirmed by high correlations
(above than 0.90) between the inverted H matrices with non-
clustered SNPs and pseudo-SNPs (data not shown). Although
increased computational time was a common problem in both
heritability levels, convergence was achieved in all analyses
with low heritability. Our findings suggest that a single G
matrix with individual SNPs is enough to capture the QTL
variation, regardless of the genetic diversity and heritability.
Nonetheless, using two uncorrelated genetic components can
be useful in other situations such as fitting SNPs and structural
variants (e.g., copy number variation—CNVs) in the
same model.

5 CONCLUSION

Haplotype-based models did not improve the performance of
genomic prediction of breeding values in genetically diverse
populations (assumed as Ne > 150) under ssGBLUP settings. A
medium-density 50 K SNP panel provided similar results to the
high-density panel for the genomic predictions using individual
SNPs or haplotypes, regardless of the heritability and genetic
diversity levels. ssGBLUP can be used to predict breeding values
for both genotyped and non-genotyped individuals using
haplotype information in large datasets with no increase in
computing time when fitting a single genomic relationship matrix.
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