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Abstract
Stable isotope probing (SIP) is a key tool for identifying the microorganisms catalyzing the turnover of specific substrates in
the environment and to quantify their relative contributions to biogeochemical processes. However, SIP-based studies are
subject to the uncertainties posed by cross-feeding, where microorganisms release isotopically labeled products, which are
then used by other microorganisms, instead of incorporating the added tracer directly. Here, we introduce a SIP approach
that has the potential to strongly reduce cross-feeding in complex microbial communities. In this approach, the microbial
cells are exposed on a membrane filter to a continuous flow of medium containing isotopically labeled substrate. Thereby,
metabolites and degradation products are constantly removed, preventing consumption of these secondary substrates. A
nanoSIMS-based proof-of-concept experiment using nitrifiers in activated sludge and 13C-bicarbonate as an activity tracer
showed that Flow-SIP significantly reduces cross-feeding and thus allows distinguishing primary consumers from other
members of microbial food webs.

Stable isotope probing (SIP) is widely applied to link spe-
cific microbial populations to metabolic processes in the
environment and has greatly advanced our understanding of
the role of microorganisms in biogeochemical cycling. SIP
relies on tracing the incorporation of specific isotopically
labeled substrates (e.g., 13C, 15N, 18O, 2H) into cellular
biomarkers or bulk cellular biomass [e.g., 1–4]. SIP is
considered a robust technique to identify microbial popu-
lations that assimilate a labeled substrate of interest in
complex environmental communities. However, cross-
feeding can occur when isotopically labeled metabolites
are released from a primary consumer and then used by
other microorganisms, which subsequently also become
isotopically labeled. Likewise, when 13C-bicarbonate and
unlabeled substrate are supplied to assess the activity
of specific chemolithoautotrophs [e.g., 5–7], undesired
13C-incorporation can occur due to cross-feeding between
chemolithoautotrophs whose activity depends on each
other, for example in nitrifiers, where ammonia oxidizers
provide nitrite oxidizers with their substrate, nitrite. The
uncertainties associated with cross-feeding in SIP studies
increase as the incubation time of microbial communities
increases. While this phenomenon can be used to study
microbial interactions and trophic networks [8–11], cross-
feeding can lead to erroneous identification of organisms
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that are not directly responsible for the process of interest,
but are rather connected to primary consumers via a
microbial food web [2, 10, 12, 13].

We developed an approach that significantly reduces the
effect of cross-feeding in SIP studies. For this purpose, a
thin layer of microbial cells is placed on a membrane filter,
and isotopically labeled substrate is supplied at a fixed
concentration by continuous flow, which constantly
removes released metabolites and degradation products of
primary substrate consumers. While previous SIP studies
have employed a continuous flow of medium or substrate
[e.g., 6, 14–16], in these studies, cross-feeding still occur-
red, as large amounts of biomass were placed in a 3D space,
which allowed for the exchange of metabolites. Here, we
present a proof-of-concept experiment with a nitrifying
activated sludge microbial community, which converts
ammonia to nitrite by the activity of ammonia-oxidizing
bacteria (AOB), and subsequently oxidizes nitrite to nitrate
by nitrite-oxidizing bacteria (NOB). In our experiments,
the carbon source for both groups of autotrophic nitrifiers
(the sludge contained no comammox bacteria [17, 18]) was
isotopically labeled inorganic carbon (13C–NaHCO3) and,
as the sole electron donor, unlabeled ammonium was
provided.

In the flow-through approach, AOB, but not NOB,
should be 13C-labeled because the substrate for NOB
(nitrite), produced by AOB is continuously removed and
thus the NOB should remain metabolically inactive (Fig. 1).
In addition to a regular batch incubation, we included a
control incubation, where the flow-through was recirculated

to determine the impact of the experimental setup (con-
tinuous medium flow and retainment of biomass on a
membrane filter) in Flow-SIP on the activity of the bacterial
cells (in particular on the NOB as their autotrophic activity
is used as a read out for cross-feeding in our experiments) in
comparison to the batch experiment. Cross-feeding is
expected to occur in both recirculated and batch control
incubations, where nitrite is not removed and thus both
AOB and NOB conserve energy to fix 13C–CO2. After the
experiments, fluorescence in situ hybridization (FISH) with
rRNA-targeted oligonucleotide probes was used to identify
AOB and NOB and combined with nanoscale secondary ion
mass spectrometry (nanoSIMS) to quantify 13C-assimilation
at the single-cell level for all setups.

For these experiments, activated sludge from a Danish
municipal wastewater treatment plant was initially treated
by sonication to disrupt large flocs. Cells were then either
placed on a membrane filter for flow-through incubation
and the recirculated control experiment, or incubated in a
conventional batch experiment. All experiments were set up
using the same amount of biomass, and the ratio of biomass
to medium volume was the same in batch and recirculated
control experiments. Incubations were done using mineral
medium containing 250 µM NH4Cl and 2 mM
13C–NaHCO3 for 24 h. Medium flow was maintained at a
rate of 26 ml h−1. We did not select a higher flow rate in
order to avoid excessive stress by the medium flow on the
microbial cells and to minimize the required amounts of
media containing isotopically labeled bicarbonate. Further-
more, modeling nitrite advection and diffusion at different

NH3 NO2
-

13CO2

NO3
-

AOB NOB

Batch Recirculated

NH3 NO2
-

13CO2

NO3
-

AOB NOB

Flow-through

medium
reservoir

peristaltic
pump

filter holder

3-way
valve

air
outlet

waste

fresh 
medium

peristaltic
pump

filter holder

3-way
valve

air
outlet

air
filter

air
filter

Fig. 1 Schematic representation of the experimental setup: (left)
batch, (center) recirculated, and (right) flow-through incubation.
In all incubations, the carbon source for both autotrophic nitrifiers
(AOB, yellow and NOB, magenta) was isotopically labeled (i.e., CO2

as 13C–NaHCO3) and ammonia was provided as the only external
energy source (as NH4Cl). Cross-feeding is expected to occur in the

batch and recirculated approaches, where NOB consume nitrite pro-
duced via ammonia oxidation by AOB and thus both AOB and NOB
incorporate 13C–CO2. In the flow-through approach, only AOB are
expected to be 13C-labeled, as cross-feeding should be eliminated by
the continuous removal of nitrite. Other, non-nitrifier cells are indi-
cated in gray.
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flow rates showed that, for example, a tenfold higher flow
rate would only marginally reduce nitrite concentrations
surrounding the AOB colonies (Fig. S1). In contrast, in a
purely diffusive system without continuous flow, our model
showed that nitrite would accumulate to significantly higher
concentrations around single AOB colonies (Fig. S2). For
example, after 24 h, ~23 µM nitrite would accumulate at a
distance of 0–100 µm (with no significant decrease over
distance) around an AOB colony of 50 cells, which is 230-
to 9200-fold higher (depending on the distance to the col-
ony) than modeled nitrite concentrations at the flow rate
used in our experiments. Most inorganic metabolites that
can directly be taken up into cells behave similar as nitrite in
a diffusive system, i.e., they have a similar diffusion coef-
ficient. Larger molecules tend to have an even smaller dif-
fusion coefficient, which would lead to slower diffusion,
and thus even more efficient metabolite removal when a
medium flow is applied.

We monitored nitrification activity via concentration
measurements of ammonium, nitrite and nitrate (Fig. S3)
and conducted nanoSIMS analyses (Fig. 2) for two suc-
cessive experiments using sludge collected from the same
treatment plant on different days as replication of experi-
mental results (referred to as E1 and E2). Additionally, we
confirmed the reproducibility of the method with two fur-
ther experiments, where nitrification activity was followed
(Fig. S4). Details on the experimental setup are given in
Fig. 1 and the Supplementary Text.

In recirculated and batch control incubations, the con-
sumption of ammonium, production of nitrite and nitrate
(Fig. S3), and single cell 13C-incorporation (Fig. 2) indi-
cated that both AOB and NOB were active. However,
nitrification activity (i.e., nitrite and nitrate production) in
recirculated incubations were reduced by 57% (E1) and
83% (E2) compared to batch incubations (Fig. S3). The
reduced ammonia oxidation activity in the recirculated
incubations compared to the batch incubations was
also reflected by a 73–82% lower 13C-incorporation
in AOB cells in the former incubations (Fig. 2, median
AOB 13C-enrichment in recirculated setup was 3.7 and 3.9
13C-atom%, in batch incubations 20.7 and 14.7 13C-atom%
for E1 and E2, respectively). AOB in the flow-through
incubations also showed lower 13C-enrichment levels (8.2
and 8.5 atom% for E1 and E2, respectively) compared to
batch incubations but higher enrichment than in the recir-
culated incubations. The lower enrichment of AOB in the
recirculated compared to the flow-through incubations
might be due to an accumulation of compounds leaching
from the used tubing (PharMed® Ismaprene, Table S1),
which may negatively affect AOB. Indeed, nitrifiers have
previously been reported to be sensitive to various organic
compounds [19, 20]. Use of different rubber tubing or
replacing rubber tubing by glass might alleviate these

effects. AOB 13C-enrichment was highest in batch incuba-
tions, which could be due to both the lack of stress from the
continuous medium flow and the observed reaggregation of
the sonicated activated sludge into larger flocs—reminiscent
of native activated sludge flocs.

As expected, NOB were 13C-enriched in both the batch
(13.3 and 4.9 atom% for E1 and E2, respectively) and
recirculated incubations (7.2 and 4.7 atom% for E1 and E2,
respectively). In contrast, as intended, the flow-through
setup resulted in a substantial reduction in 13C-enrichment
of NOB (2.0 atom% for both E1 and E2, respectively; with
consistently low 13C-enrichment in all NOB cells mea-
sured). This demonstrates that Flow-SIP efficiently removed
the secondary substrate nitrite released by the AOB primary
substrate consumers, thereby strongly limiting cross-feeding
between AOB and NOB. The low 13C-enrichment of NOB
in the flow-through incubations was statistically not sig-
nificantly different to the 13C-enrichment of non-nitrifier
cells (Table S2). It is unlikely that this low background
13C-enrichment was due to 13C-bicarbonate adsorption, as
all samples were treated with acid before nanoSIMS ana-
lysis. It is, however, possible that at least some of the
observed 13C-enrichment in NOB and other bacteria is due
to anaplerotic reactions leading to C-fixation by background
cellular activity rather than substrate-induced autotrophic
C-fixation [e.g., 21, 22]. Transfer of 13C-labeled metabolites
from the autotrophic nitrifiers to non-nitrifier cells was
negligible in all incubations, including batch and recircu-
lated incubations (Fig. 2), which was likely due to the short
incubation time (24 h). In contrast, other SIP studies using
incubation times of several days reported significant
C-isotope transfer from nitrifiers to non-nitrifiers [11, 23].

Our results demonstrate that Flow-SIP is a promising
approach to significantly reduce cross-feeding in complex
microbial communities and can be even successfully
applied to highly aggregated samples like activated sludge
flocs when they are dispersed prior to the experiment. Flow-
SIP and conventional SIP are complementary to each other
in the analysis of such aggregated or biofilm communities.
In such systems, Flow-SIP enables microbial ecologists
studying microbial physiologies with drastically reduced
cross-feeding, but destroys the spatial arrangement of cells,
while conventional SIP retains the 3D architecture, but its
results are strongly influenced by cross-feeding. We expect
that Flow-SIP is ideally suited for oligotrophic fresh- or
seawater samples, which predominantly harbor planktonic
cells or small aggregates, and thus do not require any
sonication pretreatment before incubation. Furthermore, for
such samples, tracer can be directly added to sterile filtered
water without the need for using artificial medium, as used
for the presented proof-of-principle experiments.

Flow-SIP may, after upscaling to label more biomass,
also be used in combination with DNA-, RNA- or protein-
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SIP, which should in comparison to conventional SIP,
where cross-feeding is not inhibited, allow microbial ecol-
ogists to more precisely identify both previously known and
yet unknown primary consumers of a supplied substrate.

For example, Flow-SIP with 13C-bicarbonate and unlabeled
ammonium would allow distinguishing comammox organ-
isms from canonical NOB, as comammox but not the
canonical NOB would be active under these conditions

 

5

10

15

20

25

30

NA

  
FED

13C
 atom

 %

AOB
NOB
other cells

C Flow-throughB RecirculatedA Batch

I Flow-through E1H Recirculated E1G Batch E1

L Flow-through E2K Recirculated E2J Batch E2

AOB
n=178

NOB
n=100

other cells
n=59

AOB
n=46

NOB
n=70

other cells
n=42

AOB
n=28

NOB
n=56

other cells
n=42

0

10

20

30

40

13
C

 a
to

m
 %

AOB
n=115

NOB
n=83

other cells
n=41

AOB
n=154

NOB
n=124

other cells
n=77

AOB
n=377

NOB
n=60

other cells
n=96

0

10

20

30

40

13
C

 a
to

m
 %

13C
 atom

 %

0

10

20

30

40

13C
 atom

 %

0

10

20

30

40

c C b C a B b A c B a A b B a A a B

c C b C a B b A c B a A b B a A a B

Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities 351



together with the canonical ammonia oxidizers. In addition,
Flow-SIP has the potential to study direct use of chemically
unstable substrates by microorganisms, by distinguishing it
from microbial consumption of their chemically formed
decomposition products. For example, cyanate, which
abiotically decays relatively fast to ammonium and carbon
dioxide [24, 25], has previously been shown to serve as
energy and nitrogen source for ammonia-oxidizing archaea
[25, 26]. Using Flow-SIP, cyanate could be constantly
supplied, thereby strongly reducing abiotic decay. At the
same time, any abiotically formed ammonium (and
ammonium produced by other organisms) would be con-
stantly removed, which should allow identifying ammonia-
oxidizing microorganisms that directly use cyanate as a
substrate. Furthermore, the presented approach may be
coupled to fluorescence-based activity markers, where a
substrate of interest and bioorthogonal noncanonical amino
acids are supplied and, subsequently, translationally active
cells are visualized on an epifluorescence microscope
(BONCAT) [27]. In conclusion, Flow-SIP expands the
toolbox of microbial ecologists interested in
structure–function analyses of microbial communities and
will contribute to a more precise understanding of the
ecophysiology of bacteria and archaea catalyzing key pro-
cesses in their natural environments.
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