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Abstract

Introduction

Hypovitaminosis D associates with obesity, insulin resistance, hypertension, and dyslipo-

proteinemia. We asked whether the presence of multiple cardiometabolic risk factors, and

which particular combination, exerts additive negative effects on 25(OH)D3 levels; and

whether 25(OH)D3 levels associate with markers of inflammation and oxidative stress.

Subjects and Methods

In non-diabetic medication-free adults central obesity (waist-to-height ratio > 0.5); elevated

blood pressure (systolic BP�130 mm Hg and/or diastolic BP�85 mm Hg); increased ath-

erogenic risk (log(TAG/HDL) � 0.11); and insulin resistance (QUICKI < 0.322) were consid-

ered as cardiometabolic risk factors. 25(OH)D3 status was classified as deficiency (25(OH)

D3 �20 ng/ml); insufficiency (levels between 20-to-30 ng/ml), or as satisfactory (>30 ng/ml).

Plasma adipokines, inflammatory and oxidative stress markers, advanced glycation end-

products, and their soluble receptor were determined.

Results

162 subjects were cardiometabolic risk factors-free, 162 presented increased (i.e. 1 or 2),

and 87 high number (i.e. 3 or 4) of cardiometabolic risk factors. Mean 25(OH)D3 decreased

with rising number of manifested risk factors (36 ± 14 ng/ml, 33 ± 14 ng/ml, and 31 ± 15 ng/ml,

respectively; pANOVA: 0.010), while prevalence of hypovitaminosis D did not differ signifi-

cantly. Elevated blood pressure and insulin resistance appeared as significant determinants

of hypovitaminosis D. Subjects presenting these risk factors concurrently displayed the low-

est 25(OH)D3 levels (29 ± 15 ng/ml). Plasma adipokines, inflammatory and oxidative stress
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markers, advanced glycation end-products, and their soluble receptor generally differed sig-

nificantly between the groups, but only advanced oxidation protein products and advanced

glycation end-products associated fluorescence of plasma showed significant independent

association with 25(OH)D3 levels.

Conclusion

In apparently healthy adults increasing number of cardiometabolic risk factors associates

with poorer 25(OH)D3 status, while the association between 25(OH)D3 status and inflam-

matory or oxidative stress markers remains equivocal.

Introduction
Steroid hormone vitamin D is produced in dermis from 7-dehydrocholesterol through expo-
sure to UV-B irradiation. Provitamin D3 quickly undergoes rearrangements to form stable vita-
min D3, and enters circulation after binding to vitamin D binding protein (DBP). It is
hydroxylated to 25(OH)D3 in the liver and thereafter to its active form 1,25(OH)2D3 by 1, α-
hydroxylase in the kidneys. Moreover, a wide variety of extrarenal cells expressing vitamin D
nuclear receptor—VDR (i.e. adipocytes, cells of the immune system, colon, pancreas, skin and
the vasculature) synthesize 1,25(OH)2D3. This local production of vitamin D is responsible for
extraskeletal modulation of various physiological processes: complex of vitamin D, VDR, and
other transcription factors (such as retinoid X receptor); and binds to vitamin D response ele-
ments of as many as 2000 genes to regulate their expression directly or in directly [1]. Hence
hypovitaminosis D extends its negative effects beyond calcium homeostatsis and skeletal health
playing a pathophysiological role in different noncommunicable diseases.

Vitamin D deficiency may contribute to manifestation of different cardiometabolic risk fac-
tors via distinct biological pathways. Vitamin Dmay modulate blood pressure (BP) by suppres-
sion of the renin–angiotensin–aldosterone system, direct effects on vascular cells,
renoprotective effects, and those on calcium metabolism, including prevention of secondary
hyperparathyroidism [2–4]. Link between vitamin D and glucose homeostasis is complex. Pan-
creatic β-cells express vitamin D receptors and 1, α-hydroxylase enzymes, and vitamin D
response element is present in insulin gene promoter region [5, 6]. Thus, vitamin D affects
insulin synthesis, release, β-cell function, as well as insulin sensitivity [7–9]. Moreover, poly-
morphisms in vitamin DBP, VDR, and 1, α-hydroxylase genes might link vitamin D deficiency
to insulin resistance (reviewed in [10]). Mitochondria possess both a functional renin-angio-
tensin system and vitamin D receptors, and their dysfunction has been implicated in the patho-
genesis of hypertension and insulin resistance via enhanced generation of reactive oxygen
species, induction of endoplasmic-reticulum stress, and inflammation [11]. Also adipocytes
express vitamin D receptors and 1, α-hydroxylase enzymes. Vitamin D may affect body fat
mass by inhibiting lipid accumulation and key adipogenic transcription factors during adipo-
cyte differentiation [12]. It may modulate lipid profile indirectly through its effect on serum
parathormone and/or on the calcium balance, or via modulation of insulin secretion and sensi-
tivity [13–16].

Several clinical studies indicate an association between inadequate vitamin D status and sin-
gle cardiometabolic risk factors such as obesity (central obesity in particular), hyperglycemia,
insulin resistance, hypertension, dyslipoproteinaemia, and disbalance of immune function
(reviewed in [1, 17–19]). In general population, obese subjects, patients with hypertension or
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impaired fasting glucose, low 25(OH)D3 levels associate with higher levels of systemic inflam-
mation, glycoxidative, lipoxidative, and carbonyl stress markers [20, 21]. Vitamin D influences
production of adipokines and the inflammatory response in adipose tissue [12]. It regulates
genes encoding pro-inflammatory cytokines, downregulates Toll-like receptors expression [8,
9], and counteracts the inflammatory effects induced by cytokines [22, 23]. Thus, hypovitami-
nosis D (serum 25(OH)D3 levels<30 ng/ml are classified as insufficiency; those<20 ng/ml as
deficiency) represents a global problem [24].

Owing to distinct pathomechanisms linking different cardiometabolic risk factors to vita-
min D status, we hypothesized that presence of multiple cardiometabolic risk factors should be
associated with lower 25(OH)D3 levels and a higher prevalence of hypovitaminosis D. We also
asked which particular combination of cardiometabolic risk factors associates with poor 25
(OH)D3 status. To this point, non-diabetic apparently healthy adults presenting increased (1
or 2) and high number (3 or 4) of cardiometabolic risk factors were compared with their cardi-
ometabolic risk factors-free counterparts. We also studied the association of vitamin D3 status
with non-standard cardiometabolic risk factors, such as adipokines, markers of microinflam-
mation and oxidative stress, advanced glycation end products (AGEs), and their soluble recep-
tor (sRAGE).

Subjects andmethods
This cross-sectional study was conducted in accordance to the principles of the Declaration of
Helsinki. The study protocol was approved by the Ethics Committee of the Slovak Medical
University in Bratislava. All subjects signed an informed consent to participate.

Study population
Apparently healthy volunteers residing in Bratislava and surroundings, declaring that they do
not suffer from and are not treated for any acute or chronic illness, and did not take any vita-
min D supplements during last 6 months, were recruited. Elevated fasting plasma glucose
(FPG� 7 mmol/l), decreased renal function (eGFR� 0.6 ml/s/1.73m2), pregnancy and lacta-
tion were exclusion criteria.

From among 452 recruited subjects aged 18-to-81 years who underwent blood sampling
during winter period 41 were excluded: 11 in whom 25(OH)D3 levels were not determined for
technical reasons, 17 presenting FPG� 7 mmol/l, 2 with eGFR� 0.6 ml/s/1.73m2, and 11 with
incomplete data for unequivocal classification of cardiometabolic risk factors. Thus, data from
411 subjects was available for analysis.

Procedures
Body weight, height, waist circumference, and BP were measured in the outpatients depart-
ment in the morning hours. Blood pressure was measured at forearm in sitting position after
10 min. rest and the mean of last 2 measurements out of 3 taken was recorded. Self-reported
smoking status was recorded (current smoker/non-smoker). Blood was taken from antecubital
vein after overnight fasting.

Research variables
Standard blood chemistry (glucose, lipid profile, creatinine, uric acid, albumin) was analyzed
immediately (Vitros 250 analyzer, Johnson&Johnson, Rochester, NY, USA). Aliquoted plasma
samples were stored at -80°C for special analyses. Commercial ELISA sets according to manu-
facturers’ instructions were used to determine high sensitive C-reactive protein (hsCRP,
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Immundiagnostik AG, Bensheim, Germany), interleukine-6 (Human IL-6, R&D Systems, Min-
neapolis, MN, USA), high sensitive transforming growth factor-α (Human TNF-α/TNFSF1A,
R&D Systems, Minneapolis, MN, USA), adiponectin (Human Adiponectin, R&D Systems,
Minneapolis, MN, USA), leptin (Human Leptin, R&D Systems, Minneapolis, MN, USA), resis-
tin (Human Resistin, R&D Systems, Minneapolis, MN, USA), Nε-carboxymethyllysine (CML,
Microcoat, Bernried, Germany) and soluble receptor for advanced glycation end products
(sRAGE, R&D Systems, Minneapolis, MN, USA). Serum concentrations of 25-hydroxyvitamin
D was analyzed by RIA method (25(OH)D3, Immuno Diagnostic system, Boldon, UK) and
intact parathyroid hormone by IRMAmethod (PTH, Immunotech, Marseille, France).
Advanced oxidation protein products (AOPPs) were determined after precipitation of plasma
lipids [25, 26], and advanced glycation end products-associated fluorescence of plasma
(AGE-Fl) according to Munch et al. [27].

Body mass index (BMI), waist-to-height ratio (index of central obesity, ICO), mean arterial
pressure (MAP), pulse pressure (PP), quantitative insulin sensitivity check index (QUICKI)
[28], atherogenic index of plasma (AIP, log(TAG/HDL)) [29], and glomerular filtration rate
(eGFR) [30] were calculated. CML, AGE-Fl and AOPPs were corrected for plasma albumin.

Classification of cardiometabolic risk factors
Presence of cardiometabolic risk factors was classified as follows: central obesity: ICO>0.5
[31]; elevated BP: systolic BP (SBP)�130 mmHg and/or diastolic BP (DBP)�85 mm Hg;
increased atherogenic risk: AIP�0.11 [29]; insulin resistance: QUICKI<0.322. Subjects were
classified into 3 groups: those not presenting cardiometabolic risk factors; subjects presenting
increased (i.e. 1 or 2); and those presenting high number (i.e. 3 or 4) of risk factors.

Vitamin D status classification
Vitamin D status was classified as deficiency if plasma vitamin D concentrations�20 ng/ml, as
insufficiency if levels ranged between 20-to-30 ng/ml, while higher levels were considered as
satisfactory.

Statistical analysis
Normality of data distribution and equality of variances were tested (Kolmogorov-Smirnov
and Levene’s test, respectively). Skewed data were logarithmically (ln) transformed for statisti-
cal evaluation, but for better understanding data are given as mean ± standard deviation
(x ± SD); if not given differently. Two groups were compared using Student’s t-test, compari-
son between 3 groups was performed using one way analysis of variance (ANOVA) with post-
hoc Scheffe’s test. Categorical data were compared by chi-square test. General linear model
(GLM) was employed to study the impact of cardiometabolic risk factors on 25(OH)D3 status.
Binary logistic regression analysis was used to provided evidence on whether the cardiometa-
bolic risk factors, gender and renal function could be considered independent variables for pre-
diction of satisfactory 25(OH)D3 status. In Model 1 number of cardiometabolic risk factors,
gender, and ln eGFR were used as predictors; in Model 2 number of risk factors was replaced
by categories (absence/presence) of elevated blood pressure, insulin resistance, central obesity
and atherogenic index. Classification tree was employed to study the impact of independent
variables on 25(OH)D3 levels. P<0.05 (2-sided) was considered significant. Statistical analyses
were performed using program SPSS version 22 (SPSS Inc., Chicago, IL, USA).
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Results

Cohort characteristics
Study participants were 36 ± 14 years of age, on average slightly overweight (average BMI:
25 ± 5 kg/m2) and not presenting central obesity (ICO: 0.50 ± 0.08), (Table 1). Except for
mildly decreased mean eGFR they presented mean BP values, variables characterizing glucose
homeostasis and lipid metabolism, concentrations of uric acid, albumin, and inflammatory
markers (hsCRP, IL-6) within the reference range (Tables 1 and 2).

25(OH)D3 status
25(OH)D3 levels ranged between 5.8–96.3 ng/ml (mean: 33.4 ± 14.5 ng/ml; Fig 1). 17.5% of
subjects were 25(OH)D3 deficient, 28.7% presented 25(OH)D3 insufficiency, and satisfactory
25(OH)D3 levels were revealed in 53.8% of participants (Table 1).

25(OH)D3 levels and cardiometabolic risk factors
Cardiometabolic risk factors-free subjects presented significantly higher 25(OH)D3 levels
(35.5 ± 14.2 ng/ml) in comparison with groups presenting increased (32.6 ± 14.3 ng/ml) and
high (31.0± 15.1 ng/ml) number of cardiometabolic risk factors (Fig 1). However, the frequen-
cies of 25(OH)D3 deficiency, insufficiency, and satisfactory levels did not differ significantly
among the groups (Table 3). Mean 25(OH)D3 levels were similar among the groups presenting
25(OH)D3 deficiency, insufficiency, and satisfactory levels regardless of the presence or
absence of cardiometabolic risk factors (Table 3). Gender or smoking status showed no signifi-
cant impact on 25(OH)D3 concentrations either in the whole cohort, or in subgroups with
regard to 25(OH)D3 status, and presence of cardiometabolic risk factors.

Thirty-eight % of subjects presented elevated BP values, 43% were centrally obese, 19% were
insulin resistant, and 26% presented elevated atherogenicity of plasma. Those presenting ele-
vated BP had significantly lower 25(OH)D3 levels in comparison with their normotensive
counterparts (31.4 ± 14.5 ng/ml vs. 34.6 ± 14.4 ng/ml, p = 0.026). Presence of insulin resistance
(31.2 ± 15.3 ng/ml vs. 33.9 ± 14.3 ng/ml, p = 0.053), central obesity (32.3 ± 14.7 ng/ml vs.
34.3 ± 14.3 ng/ml, p = 0.11), and increased atherogenic index of plasma (32.3 ± 14.7 ng/ml vs.
33.8 ± 14.4 ng/ml, p = 0.24) was reflected only with trends towards lower levels. In comparison
with cardiometabolic risk factors-free subjects presenting mean 25(OH)D3 of 35.5 ± 14.2 ng/ml
those suffering solely from insulin resistance displayed significantly lower concentrations
(n = 12; 27.3 ± 13.1 ng/ml; p = 0.022), while in absence of other risk factors subjects presenting
elevated BP (n = 40; 31.8 ± 15.6 ng/ml, p = 0.08); or central obesity (n = 31; 32.8 ± 14.0 ng/ml;
p = 0.26), or increased atherogenic risk (n = 14; 30.4 ± 11.9 ng/ml; p = 0.13) showed only ten-
dency towards lower 25(OH)D3 concentrations.

In Model 1 binary logistic regression indicated that in comparison with cardiometabolic
risk factors-free subjects those presenting 1-to-2 cardiometabolic risk factors are 2.3-fold less
likely to present satisfactory 25(OH)D3 status (B: -0.84, p = 0.015), and those presenting 3-to-4
risk factors are 4.3-fold less likely (B: -1.45, p = 0.001). Male gender (B: 0.48, p = 0.13) and ln
eGFR (B: -1.35, p = 0.8) were not significant independent predictors. The model was significant
(Omnibus test: 0.008), predicted correct classification in 76%, and the dependent variables
accounted for 5-to7% of the variance (Cox & Snell and Nagelkarte square). Model 2 showed
that elevated blood pressure and insulin resistance decrease the probability of being 25(OH)D3

sufficient (2.9-fold, p = 0.003 and 2.4-fold, p = 0.044, respectively); while the impact of gender,
presence of central obesity, increased AIP and ln eGRF was insignificant (Omnibus test: 0.003,
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predicted correct classification: 76%, Cox & Snell and Nagelkarte square: 8% and 12%,
respectively).

Table 1. Cohort characteristics: anthropometric data, blood pressure, standard blood chemistry variables and 25(OH)D3 levels.

Number of cardiometabolic risk factors

All 0 1–2 3–4 p (ANOVA

N 411 162 162 87

Gender (F/M) (n;%) 240/171(58%/42%) 129/33(80%/20%) 87/75(54%/46%) 24/63(28%/72%) 0.001chi

Age (years) 35.9 ± 14.1 30.0 ± 8.9 36.2 ± 13. 9*** 46.1 ± 14.6***,+++ <0.001

Weight (kg) 74.4 ± 17.1 62.9 ± 9.7 76.8 ± 15.4*** 91.5 ± 15.1***,+++ <0.001
Waist (cm) 86.2 ± 14.6 75.0 ± 6.7 87.9 ± 11.3*** 104.1 ± 11.0***,+++ <0.001

Height (cm) 172.0 ± 9.7 170.1 ± 8.5 172.6 ± 10.9 174.1 ± 8.7** 0.004
BMI (kg/m2) 25.1 ± 4.8 21.6 ± 2.1 25.7 ± 4.1*** 30.2 ± 4.3***,+++ <0.001

ICO 0.50 ± 0.08 0.44 ± 0.03 0.51 ± 0.07*** 0.60 ± 0.07***,+++ <0.001
SBP (mm Hg) 124.4 ± 14.4 114.4 ± 7.5 127.2 ± 13.3*** 137.6 ± 13.1***,+++ <0.001

DBP (mm Hg) 76.7 ± 8.5 72.0 ± 6.5 78.0 ± 7.8*** 83.4 ± 7.6***,+++ <0.001
MAP (mm Hg) 92.6 ± 9.5 86.1 ± 5.7 94.4 ± 8.4*** 101.5 ± 8.1***,+++ <0.001
PP (mm Hg) 47.7 ± 11.1 42.5 ± 7.9 48.3 ± 11.3*** 49.3 ± 11.3***,++ <0.001

FPG (mmol/l) 5.2 ± 0.6 4.9 ± 0.4 5.1 ± 0.6*** 5.7 ± 0.7***,+++ <0.001
FIns (μIU/ml) 10.0 ± 8.3 6.9 ± 2.6 9.6 ± 7.8** 16.5 ± 11.6***,+++ <0.001

QUICKI 0.351 ± 0.035 0.365 ± 0.025 0.354 ± 0.037** 0.320 ± 0.029***,+++ <0.001

Chol (mmol/l) 4.7 ± 0.9 4.4 ± 0.8 4.6 ± 0.9** 5.3 ± 0.8***,+++ <0.001

HDL-C (mmol/l) 1.4 ± 0.4 1.5 ± 0.4 1.4 ± 0.4*** 1.1 ± 0.2***,+++ <0.001
LDL-C (mmol/l) 2.7 ± 0.8 2.4 ± 0.7 2.7 ± 0.8** 3.2 ± 0.7***,+++ <0.001

VLDL-C (mmol/l) 0.5 ± 0.3 0.4 ± 0.2 0.5 ± 0.3*** 0.9 ± 0.3***,+++ <0.001
TAG (mmol/l) 1.3 ± 0.9 0.8 ± 0.3 1.2 ± 0.7*** 2.2 ± 1.1***,+++ <0.001

AIP -0.10 ± 0.33 -0.30 ± 0.21 -0.10 ± 0.30*** 0.28 ± 0.24***,+++ <0.001

Albumin (g/l) 47.8 ± 5.3 47.6 ± 5.3 48.2 ± 5.2 46.8 ± 5.6 0.26

Creatinine (μmol/l) 85.8 ± 16.0 80.7 ± 13.0 87.7 ± 17.3*** 92.0 ± 15.9*** 0030
eGFR (ml/s/1.73m2) 1.29 ± 0.24 1.34 ± 0.21 1.28 ± 0.23* 1.23 ± 0.25*** 0.001

Uric acid (mmol/l) 281 ± 75 251 ± 63 289 ± 73*** 354 ± 63***,+++ <0.001

Vitamin D3 (ng/ml) 33.4 ± 14.5 35.5 ± 14.2 32.6 ±14.3* 31.0 ± 15.1* 0.010

PTH (pg/ml) 43.1 ± 24.2 35.5 ± 19.5 45.1 ± 23.3** 53.5± 28.9***,+ <0.001
Smoking (yes/no) 101/30 (25%/75%) 40/122 (25%/75%) 43/119(27%/73%) 18/69(21%/79%) 0.59chi

Central obesity: waist-to-height ration >0.5 [31]; elevated BP: systolic BP (SBP)�130 mm Hg and/or diastolic BP (DBP)�85 mm Hg; increased

atherogenic risk: AIP�0.11 [29]; and insulin resistance: QUICKI<0.322 were considered as factors indicated increased cardiometabolic risk. 0: no risk

factor presented (n = 162); 1–2: subjects with 1 or 2 risk factors (n = 162); 3–4: subjects presenting 3 or 4 risk factors (n = 87); F: females; M: males; BMI:

body mass index; ICO: index of central obesity; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; PP: pulse

pressure; FPG: fasting plasma glucose; FIns: fasting plasma insulin; QUICKI: quantitative insulin sensitivity check index; CHOL: total cholesterol; HDL-C:

high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; VLDL-C: very low density lipoprotein cholesterol; TAG: triacylglycerols; AIP:

atherogenic index of plasma; eGFR: estimated glomerular filtration rate; Vitamin D3: plasma 25(OH)D3; PTH: intact parathormone; chi: chi-square

*: p<0.05 vs. cardiometabolic risk factors free subjects

**: p<0.01 vs. cardiometabolic risk factors free subjects

***: p<0.001 vs. cardiometabolic risk factors free subjects

+: p<0.05 vs. subjects presenting 1 or 2 cardiometabolic risk factors

++: p<0.01 vs. subjects presenting 1 or 2 cardiometabolic risk factors

+++: p<0.001 vs. subjects presenting 1 or 2 cardiometabolic risk factors; italics: statistical evaluation performed on logarithmically transformed data

doi:10.1371/journal.pone.0131753.t001
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The impact of particular combination of CM risk factors on 25(OH)D3 levels was further
investigated using SPSS AnswerTree, with age forced in as an influence variable (Fig 2).
AnswerTree selected BP as a main determinant: Subjects presenting elevated BP displayed
lower 25(OH)D3 levels in comparison with their normotensive counterparts. Insulin resistant
subjects with elevated BP displayed the lowest 25(OH)D3 levels. All of them were also centrally
obese (ICO: 0.62 ± 0.06), and all 27 subjects presenting 4 risk factors were assigned into this
group. Among insulin sensitive subjects with elevated BP males presented lower 25(OH)D3

levels than females. Normotensives without increased atherogenic risk displayed slightly lower
25(OH)D3 levels if compared with their counterparts with increased atherogenic risk. How-
ever, in the former group insulin resistance was associated with the second lowest 25(OH)D3

levels. Forty percent of these subjects were centrally obese.

Cardiometabolic risk factors and oxidative and inflammatory markers,
adipokines
Due to shortage of plasma uric acid, sRAGE, CML, AOPPs and AGE-associated fluorescence
could not be quantified in 54 subjects. With regard to the presence of cardiometabolic risk fac-
tors the groups differed significantly by all variables except for albuminemia, IL-6, hsTNF-α,
and AOPPs/Alb levels (Table 2). If compared with cardiometabolic risk factors-free subjects
those presenting 1 or 2 risk factors displayed significantly lower eGFR and adiponectin levels,
higher uric acid and hsCRP concentrations, but similar levels of leptin, resistin, CML/Alb,

Table 2. Cohort characteristics: inflammatory and oxidative stress markers, adipokines and advanced glycation end products.

Number of cardiometabolic risk factors

All 0 1–2 3–4 p (ANOVA)
N 411 162 162 87

hsCRP (mg/l) 2.3 ± 3.2 1.7 ± 2.9 2.5 ± 3.3** 3.3 ± 3.3***,++ <0.001
IL-6 (pg/ml) 2.9 ± 2.7 2.9 ± 3.0 3.0 ± 2.7 2.5 ± 1.9 0.36

hsTNF-α (pg/ml) 2.5 ± 3.3 2.2 ± 2.0 2.8 ± 3.5 2.5 ± 4.5 0.09

Adiponectin (μg/ml) 8.2 ± 4.8 9.6 ± 4.6 8.1 ± 4.9*** 5.6 ± 3.8***,+++ <0.001

Leptin (ng/ml) 15.9 ± 21.4 13.3 ± 10.5 14.7 ± 14.1 22.9 ± 39.2 ***,++ <0.001
Resistin (ng/ml) 10.7 ± 4.0 10.1 ± 3.5 10.6 ± 4.1 12.1 ± 4.4***,+ <0.001

CML/Alb (μg/g) 26.2 ± 6.7 27.4 ± 6.7 25.6 ± 6.3 24.0 ± 7.1* 0.014
AGE-Fl/Alb (AU/g) 6.3 ± 2.0 6.3 ± 2.2 6.0 ± 1.8 7.0 ± 2.2++ 0.007

AOPP/Alb (μmol/g) 1.6 ± 0.9 1.5 ± 0.9 1.7 ± 0.9 1.6 ± 0.8 0.06

sRAGE (pg/ml) 1263 ± 440 1320 ± 456 1265 ± 428 1073 ± 374**,+ 0.001

Central obesity: waist-to-height ration >0.5 [31]; elevated BP: systolic BP (SBP)�130 mm Hg and/or diastolic BP (DBP)�85 mm Hg; increased

atherogenic risk: AIP�0.11 [29]; and insulin resistance: QUICKI<0.322 were considered as factors indicated increased cardiometabolic risk. 0: no risk

factor presented (n = 162); 1–2: subjects with 1 or 2 risk factors (n = 162); 3–4: subjects presenting 3 or 4 risk factors (n = 87); hsCRP: high sensitive C-

reactive protein; IL-6: interleukine-6; hsTNF-α: high sensitive tumor necrosis factor-α; CML: Nε-(carboxymethyl)lysine; Alb: albumin; AGE-Fl: advanced

glycation end products associated fluorescence of plasma; AU: arbitrary units; AOPP: advanced oxidation protein products; sRAGE: soluble receptor for

advanced glycation end products

*: p<0.05 vs. cardiometabolic risk factors free subjects

**: p<0.01 vs. cardiometabolic risk factors free subjects

***: p<0.001 vs. cardiometabolic risk factors free subjects

+: p<0.05 vs. subjects presenting 1 or 2 cardiometabolic risk factors

++: p<0.01 vs. subjects presenting 1 or 2 cardiometabolic risk factors

+++: p<0.001 vs. subjects presenting 1 or 2 cardiometabolic risk factors; italics: statistical evaluation performed on logarithmically transformed data

doi:10.1371/journal.pone.0131753.t002
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AGE-Fl/Alb and sRAGE. Subjects bearing 3 and 4 risk factors displayed significantly lower
eGFR, adiponectin, CML/Alb and sRAGE levels; and higher uric acid, hsCRP, leptin, resistin,
and AGE-Fl/Alb levels in comparison with the risk factors-free subjects. Uric acid, hsCRP, lep-
tin, resistin, and AGE-Fl/Alb levels were significantly higher and those of adiponectin, CML/
Alb and sRAGE lower in subjects presenting high number of risk factors in comparison with
their counterparts presenting 1 and 2 risk factors.

Fig 1. Plasma 25(OH)D3 concentration according to absence or presence of cardiometabolic risk
factors.Central obesity: waist-to-height ration >0.5 [31]; elevated blood pressure (BP): systolic BP�130 mm
Hg and/or diastolic BP�85 mmHg; increased atherogenic risk: AIP�0.11 [29]; and insulin resistance:
QUICKI<0.322 were considered as factors indicated increased cardiometabolic risk. 0: no risk factor
presented (n = 162); 1–2: subjects with 1 or 2 risk factors (n = 162); 3–4: subjects presenting 3 or 4 risk
factors (n = 87). Data are given as interquartile range (box), 5th and 95th percentile (whiskers). Statistical
evaluation was performed on natural ln-transformed data. ANOVA: p<0.001, Scheffe’s post hoc test p
indicated.

doi:10.1371/journal.pone.0131753.g001

Table 3. 25(OH)D3 status and plasma levels according to presence of cardiometabolic risk factors.

Number of cardiometabolic risk factors

All 0 1–2 3–4 p

Frequencies (n; %)

Deficiency 72 (17.5%) 19 (11.7%) 31 (19.1%) 22 (25.3%) 0.053Chi

Insufficiency 118 (28.7%) 46 (28.4%) 45 (27.8%) 27 (31.0%)

Satisfactory 221 (53.8%) 97 (59.1%) 86 (53.1%) 38 (43.7%)

Levels (ng/ml)

Deficiency 15.5 ± 3.4 15.0 ± 3.3 15.4 ±3.3 16.0 ± 3.7 0.80

Insufficiency 26.3 ± 8.7 27.7 ± 10.7 24.6 ±2.7 27.0 ± 11.1 0.84

Satisfactory 43.1 ± 11.0 43.3 ± 10.3 43.0 ±11.3 42.5 ± 12.6 0.81

Central obesity: waist-to-height ration >0.5 [31]; elevated BP: systolic BP (SBP)�130 mm Hg and/or diastolic BP (DBP)�85 mm Hg; increased

atherogenic risk: AIP�0.11 [29]; and insulin resistance: QUICKI<0.322 were considered as factors indicated increased cardiometabolic risk. 0: no risk

factor presented (n = 162); 1–2: subjects with 1 or 2 risk factors (n = 162); 3–4: subjects presenting 3 or 4 risk factors (n = 87); chi: chi-square; otherwise

ANOVA p indicated; italics: statistical evaluation performed on logarithmically transformed data

doi:10.1371/journal.pone.0131753.t003
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Impact of 25(OH)D3 on oxidative and inflammatory markers, and
adipokines
GLM with ln 25(OH)D3, ln eGFR, and cardiometabolic risk factors as covariates (or gender as
a fixed factor if appropriate) did not reveal significant independent impact of 25(OH)D3 either
on oxidative and inflammatory markers, or adipokines. Neither binary logistic model nor SPSS
AnswerTree assigned either non-standard marker as independent determinant of 25(OH)D3

status.

Discussion
To the best of our knowledge this is a first study examining the 25(OH)D3 status in relation to
potential additive effect of manifested number of standard cardiometabolic risk factors in non-

Fig 2. Decision tree. Std. Dev: standard deviation; BP: blood pressure; Adj.: adjusted; df: degree of freedom;
EBP: elevated blood pressure (systolic BP�130 mmHg and/or diastolic BP�85 mmHg); NT: normotension;
IRIS: insulin sensitivity (IS)/insulin resistance (IR); AIP: atherogenic index of plasma (AIP�0.11 indicates
increased atherogenic risk [29])

doi:10.1371/journal.pone.0131753.g002
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diabetic medication-free adults. Our data suggests, that in non-diabetic medication-free adults
increasing number of cardiometabolic risk factors is associated with lower 25(OH)D3 levels.
Elevated blood pressure combined with insulin resistance were associated with the lowest 25
(OH)D3 levels; and low levels were also linked with insulin resistance in normotensive subjects
not presenting increased atherogenic risk. It remains unclear whether hypovitaminosis D in
apparently healthy medication free subjects manifests preferentially by increased BP and insu-
lin resistance, or whether subjects presenting particular clustering of cardiometabolic risk fac-
tors are more prone to develop hypovitaminosis D. In the presence of cardiometabolic risk
factors the levels of adipokines, biomarkers of inflammation, and oxidative stress were signifi-
cantly altered. However, we did not reveal a significant impact of interaction between 25(OH)
D3 levels and cardiometabolic risk factors on circulating non-standard biomarkers. This might
imply that in apparently healthy non-diabetic adults different pathomechanisms than 25(OH)
D3 deficiency per se play crucial role in the induction of microinflammation and oxidative
stress, regulation of AGEs/RAGE axis, or modulation of adipokines.

25(OH)D3 status
In comparison to other Central European studies on general population in latitudes similar to
that of Bratislava, our cohort presented mean 25(OH)D3 levels (33.4 ± 14.5 ng/ml) within the
upper reported range and a rather high (almost 54%) prevalence of satisfactory 25(OH)D3 lev-
els (>30 ng/ml) [32–34]. However, this finding might not accurately reflect 25(OH)D3 status
in general population of Slovak adults, since participation in the study was on voluntary basis
and it cannot be excluded that we investigated an “over-healthy” population. Data on vitamin
D status in general Slovak population are not available. Small studies in different patients’
groups report 64%-to-100% prevalence of levels<30 ng/ml [35–38].

25(OH)D3 and standard cardiometabolic risk factors
Blood pressure and insulin resistance. In humans vitamin D deficiency associates with

increased BP and the risk of developing hypertension (reviewed in [39, 40]). As expected, our
subjects presenting cardiometabolic risk factors had elevated BP values (including MAP and
PP) and showed lower 25(OH)D3 levels than their risk factors-free counterparts. Elevated BP
appeared consistently as the most prominent cardiometabolic risk factor associated with low
25(OH)D3 levels. It remains unclear whether this observation reflects the high susceptibility of
BP-regulating mechanisms to hypovitaminosis D per se or whether modulating factors (e.g.
genetic, environmental, life-style, etc.) not followed in present study interplay.

Observational studies in humans reported positive association between vitamin D status
and insulin secretion and insulin sensitivity (reviewed in [10, 41]). Recent meta-analyses of
prospective studies in apparently healthy adults showed that having vitamin D levels in upper
vs. lower tertile at baseline is associated with a 16% lower future risk of developing insulin resis-
tance [42]. In our study, insulin resistant normotensive subjects not presenting increased ath-
erogenic lipid profile displayed low 25(OH)D3 levels and the lowest mean 25(OH)D3 levels
were revealed in insulin resistant subjects presenting elevated BP. The latter data match those
of Abassi et al. showing that the most insulin resistant quartile of patients with essential hyper-
tension presented the lowest 25(OH)D3 levels [43]. Interestingly, all our subjects assigned to
the group with the lowest 25(OH)D3 levels were also centrally obese and 64% of them pre-
sented increased atherogenic risk. Whether particularly combination of elevated blood pressure
and insulin resistance generally associates with lower 25(OH)D3 levels remains to be confirmed
in further studies. If affirmed, it might be speculated that particularly hypertensive insulin
resistant subjects would benefit from vitamin D repletion most.
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Atherogenic dyslipidemia. Low 25(OH)D3 levels are associated with an unfavorable lipid
profile [40, 44–47]. We confirmed the data from Canadian study, which showed that rising
number of cardiometabolic risk factors is associated with worsening of lipid profile compo-
nents as well as poorer vitamin D status [48]. However, our results do not support 25(OH)D3

status as a decisive factor in an induction of unfavorable lipid profile in apparently healthy gen-
eral population; our normotensive subjects with increased atherogenic risk presented similar
25(OH)D3 levels if compared with their counterparts with low atherogenic risk. Atherogenic
profile neither exhibited significant impact on 25(OH)D3 status in the binary logistic regres-
sion analysis, nor in the hypertensive branch of the decision tree. Thus, further studies in dif-
ferent populations are definitely needed to elucidate the association between vitamin D status
and atherogenic risk with regard to the manifestation of other cardiometabolic risk factors.

Central obesity. Obese humans present generally low vitamin D status (reviewed in [49]).
It remains unclear whether local conversion or trapping from circulation represent main
source of 25(OH)D3 deposited in human adipose tissue [50]. Weight reduction is not associ-
ated with significant change in circulating 25(OH)D3 levels or its content in adipose tissue
[50]. In our cohort central obesity did not appear as independent determinant of vitamin D sta-
tus either per se or in combination with any other risk factor, even though lean to markedly
centrally obese (ICO> 0.6) subjects were included. Life-style associated factors not tracked in
our study, such as physical activity particularly if performed outdoors, dietary intake of vitamin
D, or genetic variations, and duration of obesity could play a role.

25(OH)D3 and non-standard cardiometabolic risk factors. Several lines of evidence
point to strong associations between oxidative stress, microinflammation, and cardiovascular
risk. Inflammation and oxidative stress act as cooperative and synergistic partners in the patho-
genesis of hypertension (reviewed in [21]). Obesity is closely linked to oxidative stress and low-
grade systemic inflammation with subsequent dysregulation of adipokines and inflammatory
cytokine production [51]. Insulin resistance may be at least partially mediated by mechanism
involving oxidative stress (implying particularly angiotensin II) [52], and low grade inflamma-
tion [53]. Both, inflammatory mechanisms and enhanced lipid oxidation may lead from dysli-
pidemia to atherogenesis [54, 55]. The inflammatory response, production of reactive oxygen
species and adipokines, among others, are affected by vitamin D [1, 8, 9, 11, 12].

Inflammatory and oxidative markers. Elevated levels of CRP, IL-6, TNF-α or AOPPs
(markers of phagocyte-mediated oxidative stress and inflammatory syndrome) predict future
cardiovascular events or increased risk of T2DM in apparently healthy subjects or non-diabetic
patients with decreased renal function [56–59]. In different populations (i.e. hypertensives,
obese subjects, elderly), 25(OH)D3 levels associate inversely with multiple inflammatory mark-
ers (i.e. hsCRP, hsTNF-α, AOPPs, pro-inflammatory cytokines), suggesting a potential anti-
inflammatory role for vitamin D [20, 60–62]. In our study increasing number of cardiometa-
bolic risk factors was associated with higher hsCRP, while levels of IL-6, hsTNF-α and AOPP/
Alb were similar. IL-6 and hsTNF-α showed no significant association with 25(OH)D3 levels,
while those of hsCRP and AOPP/Alb could not be reliably approximated due to non-linear dis-
tribution of these markers even after their log transformation. Thus, the clinical impact of anti-
inflammatory action of vitamin D in general population remains uncertain.

Advanced glycation end products and sRAGE. AGEs, formed by non-enzymatic glyca-
tion of proteins and under enhanced oxidative and carbonyl stress, exert inflammatory, pro-
oxidant, and atherogenic effects via interaction with specific cell-surface receptor–RAGE [63].
Circulating sRAGE may act as a decoy [63]. Rise in circulating AGE and decline in sRAGE lev-
els accompany hypertension, obesity, cardiovascular, and renal diseases; while both AGEs and
sRAGE are elevated in diabetes [64–67].
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In our study presence of� 3 cardiometabolic risk factors was associated with the highest
AGE-Fl/Alb, while with the lowest CML/Alb levels. AGE-Fl/Alb represent a bulk estimate of
circulating AGE products with intrinsic fluorescence, while CML is a non-fluorescent and the
most abundant circulating AGE compound, acting as a RAGE ligand [27]. Obesity-, elevated
blood pressure-, insulin resistance- or atherogenic lipid profile-associated enhanced oxidative
stress might trigger AGE formation. The apparently contradictory finding of lower CML/Alb
in subjects presenting cardiometabolic risk factors probably reflects trapping of lipophilic CML
into fat tissue, resulting in low levels of circulating CML in obese subjects [68, 69]. We did not
reveal significant association between AGE/Alb or CML/Alb levels and the 25(OH)D3. How-
ever, in streptozotocin-induced diabetic rats increased deposition of CML in aortic wall was
blunted by administration of cholecalciferol, affecting probably the oxidative-stress mediated
pathways [70]. To the best of our knowledge no human data on the effect of vitamin D supple-
mentation on circulating or tissue AGEs are currently available.

sRAGE levels were decreased in subjects presenting�3 cardiometabolic risk factors, but no
significant association between sRAGE and the 25(OH)D3 status was revealed. Experimental
and clinical data suggest that vitamin D might affect RAGE. In cell culture studies calcitriol
blunted the AGEs- or lipopolysaccharide-induced up-regulation of RAGE mRNA and protein
and counteracted their stimulating effect on NF-κB pathway [71, 72]. In streptozotocin-
induced diabetic rats calcitriol treatment attenuated the increased expressions of cardiac
RAGE, probably via modulating effect on angiotensin II receptor 1 [73]. Administration of cal-
citriol to 25(OH)D3 deficient women with polycystic ovary syndrome was associated with rise
in circulating sRAGE and an increase in sRAGE positively correlated with that of serum 25
(OH)D3 [74]. The mechanisms are unclear, but active vitamin D enhances the expression of
matrix metalloproteinase-9 (MMP-9) shedding the cell-surface located RAGE [75, 76]. Thus,
elucidation of potential functional relationship between the 25(OH)D3 status and RAGE or
sRAGE in apparent health requires further studies.

Adipokines. Large population studies indicate a direct relationship between serum 25
(OH)D3 and adiponectin [77, 78]. A smaller study reported a negative correlation with leptin,
no relationship to adiponectin and resistin in healthy population, and no significant relation-
ship in morbidly obese subjects [79]. In our study adipokine levels were significantly altered in
the presence of cardiometabolic risk factors, but no association with the 25(OH)D3 status was
revealed. Reasons for discordance in clinical data remain unclear.

Limitations
The strength of our study is the large number of investigated non-diabetic medication-free
adults not supplemented with 25(OH)D3, recruited from restricted geographical area of West-
ern Slovakia; and a wide scale of investigated non-standard cardiometabolic risk factors. How-
ever, the study encounters several limitations. 25(OH)D3 status determination and the
classification of presence of cardiometabolic risk factors was based on a single examination.
We recruited approximately 50% less subjects presenting 3-to-4 cardiometabolic risk factors in
comparison with other 2 groups, mirroring the fact that generally such subjects are on medica-
tion. Our subjects were not completely independent—family and household members partici-
pated. Nutritional intake of vitamin D was not ascertained. Being cross-sectional in its nature,
our study allows commenting only on associations–pathomechanisms involved, causality or
the direction of potential causal associations cannot be determined. Additional limitations are
discussed above in relation to pertinent subject.
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Conclusion
In non-diabetic medication-free adults specific combination of manifested cardiometabolic
risk factors rather than their number associates with lower 25(OH)D3 levels. Elucidation of
hypovitaminosis D association with particular combinations of classical cardiometabolic risk
factors might be of clinical importance in identification of the subjects who are most likely to
benefit from vitamin D supplementation. The modulatory impact of 25(OH)D3 on classical as
well as non-standard cardiometabolic risk factors (e.i. inflammatory and oxidative stress mark-
ers, adipokines and AGE/RAGE axis) definitely requires further studies, as it might be dispa-
rate in apparent health and under disease-imposed burden.
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