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INTRODUCTION

Regulatory control orchestrated by chromatin-binding 
factors, including transcription factors (TFs) and chromatin 
remodelers, underlies the gene expression programs 
responsible for maintaining cell identity, executing cellular 
functions and responding to environmental stimuli. These 
DNA:Protein interactions are directed through epigenetic 
features1, such as histone modifications and DNA 
methylation (DNAme), which establish chromatin 
landscapes, modulating the binding of specific factors, and 
thereby sculpting the functional genome according to the 
needs of the cell. Importantly, epigenetic dysregulation has 
been linked to cellular dysfunction in disease, cancer and 
aging, where aberrant chromatin landscapes transform the 
binding landscapes of TFs2, altering the normal biological 
processes of the cell3. As such, understanding the 
complexity and dysregulation of TF binding across different 

cell types and cell states remains a central challenge in 
human biology. There are over 1,600 potential TFs encoded 
in the human genome, with DNA binding motif sequence 
information, obtained from various in vitro, bulk or 
bioinformatic analyses, established for approximately 1,100 
of these4. However, DNA sequence motif alone is 
insufficient for predicting TF binding4, which preferentially 
occurs in open chromatin5 and is additionally shaped by TF-
TF6 as well as TF-nucleosome7 interactions. Thus, profiling 
TF binding in native chromatin contexts is crucial for 
unraveling the physiologic regulation, and disease-
associated dysregulation, of gene expression. However, 
profiling of these networks across diverse cell types and 
states is lacking, due to technical limitations of current 
methods for mapping DNA:Protein interactions in single 
cells. Chromatin immunoprecipitation with sequencing 
(ChIP-seq) and cleavage under targets & tagmentation 
(CUT&Tag) are powerful approaches for mapping genome-
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wide interactions of target proteins with DNA. These 
methods identify genomic regions bound by an individual 
protein of interest through sequencing short DNA fragments 
that are cross linked or tagmented. In addition, DamID8,9

molecular footprinting techniques harnessing DNA 
methyltransferase activity have been used to map TF 
binding. However, due to their various protocol 
requirements, these methods cannot be easily incorporated 
into available high-throughput single-cell workflows, limiting 
application to bulk analysis, or in single cells to the profiling 
of only the chromatin factors that display the strongest 
interactions with DNA, such as histones. Profiling of TF 
binding patterns in single cells in primary samples has been 
mainly restricted to inferential approaches based on 
expression levels of key downstream TF target genes10–12 or 
through motif analysis of ATAC-seq peaks13,14. While 
analysis of ATAC-seq peaks can be highly informative about 
the general chromatin landscape, for confident identification 
of specific TF binding sites, more direct methods are 
recommended14,15. Combining computational TF binding 
inference analysis with single-cell multi-omic approaches 
that enable simultaneous capture of chromatin accessibility 
and gene expression within the same single cell allows for 
the characterization of genomic regulation across multiple 
molecular layers (from chromatin landscape to RNA)16. 
Incorporating direct TF binding measurements into such a 
single-cell framework would provide an unprecedented 
window into the exact mechanisms driving genome 
function, transcription networks and pathway regulation. 
Moreover, this multifaceted analysis spanning different 
molecular modalities as a readout of direct TF binding would 
accelerate the identification of key factors that mediate 
normal cellular activity, as well as those that are disrupted 
during disease. To address these limitations, we present a 
new method to accurately map DNA:Protein interactions in 
low-input samples or single cells that is amenable for direct 
application to primary human samples. To directly profile TF 
or chromatin factor binding in single cells, we fused the 
base-editing deaminase DddA that catalyzes C-to-U single-
nucleotide changes to secondary nanobodies targeting an 
antibody-labeled DNA binding protein of interest, amenable 
to integration into single-cell genome accessibility 
workflows such as microfluidic-based scATAC-seq, 
combinatorial barcoding Paired-seq17 or Share-seq16, or 
whole-genome sequencing approaches, such as DLP+18 or 
Primary Template Amplification19. As a proof of concept, we 
incorporate D&D into the 10x Genomics scATAC-seq 
workflow, enabling the capture of accessible regions of the 
genome where most gene regulation occurs5,20. Upon 
genome-wide antibody binding to the TF, nanobody-
tethered base editor enzyme deaminates proximal 
cytosines to uracil, leaving a permanent genomic signature 
at regions of TF binding that can be identified through 
downstream single-cell sequencing of the tagmented loci. 
Compatibility with existing droplet-based single-cell 
sequencing workflows will allow for broad use of Docking 
and Deamination followed by sequencing (D&D-seq) across 
systems. We demonstrate the sensitivity and specificity of 
the D&D enzyme in a deamination assay using DNA oligos 
or phage DNA, and perform bulk experiments to obtain 
genome-wide TF binding profiles showing concordance with 
ChIP-seq data. We test the robustness of single-cell D&D-
seq through cell-line mixing experiments, identifying 
canonical GATA1 binding patterns in erythroid cells. We 
further apply D&D-seq to primary human peripheral blood 
mononuclear cells (PBMCs), recovering high enrichment of 

CTCF binding motifs coinciding with D&D edits. In addition, 
utilizing single-cell D&D and ATAC data, the D&D-C.Origami 
pipeline successfully predicts 3D chromatin structure in 
human primary samples across different cell subtypes. 
Finally, we integrate single-cell genotyping21 into the D&D-
seq framework to simultaneously capture genotypes 
together with TF binding and chromatin accessibility from 
the same single cell, profiling CTCF binding in an IDH2-
mutant clonal hematopoiesis of indeterminate potential 
(CHIP) sample. We envision that the experimental tools and 
computational analyses developed here can be broadly 
applied for the interrogation of the interplay between TF or 
chromatin remodeler binding and chromatin landscapes, as 
well as defining the impact of somatic mutations on TF 
binding in single cells, directly from primary samples. We 
expect that the versatility of D&D-seq will allow for further 
integration with existing or newly developed single-cell 
multiomics methods to expand the profiling of downstream 
modalities including gene expression, opening new 
avenues for the study of gene regulation in both health and 
disease.

RESULTS

Docking & Deamination (D&D-seq) allows for mapping 
DNA:Protein binding via molecular foot-printing

CUT&Tag-derived approaches22,23, including NTT-seq24 and 
scCUT&Tag-Pro25, are suitable for profiling stable and 
abundant chromatin binders, such as histones, in single 
cells. These methods are based on CUT&Tag26, an 
approach that generates a library from DNA fragments 
colocalizing with a chromatin factor of interest by 
fragmenting out DNA surrounding the antibody-bound 
chromatin factor. This process is facilitated by pA-Tn5 fusion 
protein, where protein A (pA) has an affinity to antibodies 
and Tn5 is a transposase that fragments and tags DNA with 
sequencing-ready adapters. As Tn5 binds to DNA with high 
affinity, pA-Tn5 staining and tagmentation are performed 
under high stringency conditions (e.g., 300-500 mM NaCl) 
to prevent signal from open chromatin regions mediated by 
direct binding of Tn5 to DNA. However, these stringent 
conditions also limit the antibody-tethering activity of the pA-
Tn5, resulting in inefficient tagmentation at the chromatin 
factor-bound sites. In addition, high-salt conditions disrupt 
weak interactions, such as those between DNA and TFs27, 
or prevent binding of antibodies with low affinity for their 
targets. As such, these methods are limited in their ability to 
profile weak DNA:Protein interactions, including those 
involving TFs and their DNA binding sites. To address this 
challenge, we developed D&D-seq, a new method for 
mapping TF binding in single cells. As an alternative 
approach to tagmentation plus barcoding of fragments at 
the genomic location bound by the target protein, we 
reasoned that binding patterns of target proteins can be 
captured by tethering a base-editing enzyme to a target 
protein in a precise manner. Briefly, this enzyme is the 
fusion of the double-stranded DNA deaminase DddA28,29

with secondary nanobodies that can recognize species-
specific FC domains of immunoglobulins, including rabbit, 
mouse, goat or rat (referred to as nb-DddA). The fusion 
protein is thus capable of binding to primary antibodies and 
catalyzing cytosine deamination in the vicinity of the site that 
is bound by the targeted TF or chromatin remodeler. This 
deamination event results in the conversion of cytosine to 
uracil on the genomic DNA, which can be then identified 
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Fig. 1 | Docking & Deamination allow for transcription factors binding map via molecular foot-printing. a) Schematic illustration of D&D-seq 
technology. TF: transcription factor. BE: base editor (deaminase). b) Illustration of the split DddA base editor comprising N-terminal (DddA_NT) and C-
terminal (DddA_CT) regions. DddA_NT is fused to nanobodies and is activated by addition of the C-terminal peptide. c) In vitro deamination assay (Supp. 
Fig. 1c) to quantify deamination efficiency in the presence or absence of Zn2+. The bars represent the average DNA intensity (n = 2) of the cleaved product 
quantified by ImageJ for split DddA11 Rb-DddA_NT, DddA_CT, or both. d) In vitro deamination assay (Supp. Fig. 1c) to quantify deamination efficiency 
for the split DddA11 deaminase and the uracil-targeting USER enzyme in different dinucleotide contexts. The bars represent the average DNA intensity (n 
= 2) of the cleaved product quantified by ImageJ. e) Motif enrichment analysis of bulk D&D-seq for CTCF in K562 cells. Genome-wide D&D-seq reads 
were analyzed for enrichment of the CTCF binding motif using MEME.  f) Same as (e) for GATA2. g) Same as (e) for GATA2.  h) Molecular footprint of 
bulk D&D-seq for CTCF in K562 cells showing count of C-to-U edits at aggregated CTCF sites compared to a background ATAC region with no CTCF 
binding site.  i) Same as (h) for GATA1. j) Same as (h) for GATA2. k) Genome browser tracks for representative regions of the human genome (left, chr 2 
region; right, chr 1 region). D&D-seq was performed on K562 cells for CTCF (light blue), GATA1 or GATA2 (red). Encode ChIP-seq data for the 3 proteins 
(black) are used as reference. Sequencing data were normalized as bins per million (BPM) mapped reads.

through sequencing, providing a molecular footprint of the 
target of interest on the genomic DNA. To showcase the 
versatility of this approach, we chose to integrate it with the 
standard ATAC-seq workflow, which provides high-
resolution insights into accessible regions of the genome, 
where most transcription factors bind5, making ATAC-seq an 
ideal method for capturing active genomic regions while 
simultaneously recording TF molecular footprints (Fig. 1a).  
To design the fusion enzyme, we selected engineered 
DddA11 that has increased activity and more versatile DNA 
editing context compared to the original DddA29. To achieve 
a switch-like control over enzyme activity, we use a split 
enzyme design, where the deaminase is separated into two 
polypeptides (Fig. 1b, Supplementary Fig. 1a, 1b). This 
allows for the DddA enzyme to be maintained in an inactive 
state upon DNA binding, avoiding non-specific deamination 

due to random interaction of the DddA enzyme with the 
genomic DNA. The activity of the enzyme can be controlled 
by the addition of the C-terminal small peptide to the 
reaction, which through heterodimerization reconstitutes the 
split enzyme and its catalytic activity28–30. We chose the split 
site with the longest N terminus and linked the nanobodies 
with the N terminal protein (nb–DddA_NT) so that the C 
terminal peptide (DddA_CT) is 25 amino acids long (Fig. 
1b), short enough to be synthesized. We truncated the last 
5 amino acids of DddA_CT in the original construct because 
it is a structurally disordered region (PDB 6u08), and was 
shown to be functionally redundant by Yin et al30. The 
integration of D&D-seq with ATAC-seq allows profiling of 
DNA:Protein interactions specifically at regions of open 
chromatin, where a large fraction of TF binding occurs5, 
while simultaneously providing chromatin accessibility 
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profiling from the same single cells. To first evaluate enzyme 
base editing specificity, we assessed the deaminase activity 
of DddA across nucleotide contexts. We tested recombinant 
nb–DddA_NT activity using a deamination assay. This 
assay showed that nb–DddA_NT is only active when DddA_
CT is present (Fig. 1c, Supplementary Fig. 1c, 1d). 
Furthermore, we showed that the addition of Zn2+ 
increases the deaminase activity (Fig. 1c, Supplementary 
Fig. 1c, 1d). Consistent with previous studies29,30, we 
observed that nb–DddA preferentially deaminates cytosines 
that are in the TpC context (Fig. 1d). To assess enzymatic 
activity, we tested the activity of nb–DddA at different 
temperatures and incubation times (Supplementary Fig. 
1f, 1g, 1h), determining that the activity was greater at 37°C 
and 50°C compared to 30°C and 4°C. Together, these 
results show that our D&D-deaminase recapitulates the 
base-editing activity of the unmodified enzyme with high 
fidelity. For bulk D&D-seq, isolated cells are first fixed and 
permeabilized to allow all the reagents to enter the cell. 
Then, the sample is incubated with a primary antibody 
specific to the targeted DNA-binding protein. After washing 
the unbound antibody, the sample is incubated with nb–
DddA_NT. This allows for the deaminase to localize in close 
proximity with the target. After washing the nb–DddA_NT in 
excess, we activate the deaminase by incubating the 
samples with DddA_CT and Zn2+. Followed by washing, 
the sample can be processed with standard ATAC-seq 
methods. During the ATAC-seq protocol, genomic DNA is 
exposed to a highly active transposase (Tn5 or TnY). The 
transposase simultaneously fragments DNA, preferentially 
inserts into open chromatin sites, adding the adaptors 
compatible with downstream amplification and sequencing. 
Open chromatin is then identified from the sequenced DNA 
and data analysis can provide insight into gene regulation 
using the multimodal data. In this way, we profile accessible 
chromatin and at the same time record the protein binding 
events on accessible genomic DNA (Fig. 1a). To evaluate 
nb–DddA activity in cells, we next tested nb–DddA in a bulk 
D&D-seq experiment targeting either CTCF, GATA1 or 
GATA2 transcription factors in K562 cells. We identified an 
increased C>T (or G>A) mutation signature in DNA 
compared to other mutations or to a no-deaminase ATAC 
control (Supplementary Fig. 1i, 1j, 1k). We further 
characterized the dinucleotide and trinucleotide context in 
all mutated sites and found that nb–DddA deaminates not 
only in a TC context, but also in CC and GC contexts 
(Supplementary Fig. 1l, 1m). We reasoned that this is due 
to high local concentration of DddA tethered around the 
targeted TFs. To confirm that the deaminase signal is TF-
site-specific, we performed motif enrichment analysis using 
peaks called from reads with DddA-specific edits. Motif 
enrichment analysis by MEME showed strong CTCF and 
GATA motifs in the respective peaks (Fig. 1e, 1f, 1g). A 
deamination footprint analysis of edit events in a 200 base-
pair window around all the HOCOMOCO-defined31 CTCF, 
GATA1 or GATA2 binding sites in the genome showed the 
expected bimodal distribution of C edit events, where the 
binding sites for the targeted TF are at the center of the two 
modes, with low editing frequency in background accessible 
regions lacking binding sites (Fig. 1h, 1i, 1j). Furthermore, 
we used ENCODE20 CTCF or GATA1 ChIP-seq data from 
K562 cells to define on-target and off-target peaks, and 
identified significantly higher deaminase activity in on-target 
peaks compared to the off-target peaks or to the 
background (Fig. 1k). These results support the efficient 
activity of nb–DddA and provide evidence that TF binding 

can be profiled with high specificity in native chromatin 
conditions.

D&D-seq allows for single-cell DNA:Protein binding 
profiling

We next tested the ability of D&D-seq to record TF binding 
in single cells when incorporated into the 10x Genomics 
single-cell (sc) ATAC-seq workflow. We performed cell line 
mixing experiments, selecting two distinct cell lines 
(lymphocyte cell line CA46 and erythroblast cell line K562) 
and two TF targets (CTCF and GATA1) to allow us to assess 
the targeting specificity and potential cross-contamination of 
signal in D&D-seq. The two cell lines were individually 
crosslinked, permeabilized, and stained with a CTCF 
antibody for CA46 and a GATA1 antibody for K562. Cells 
were then washed, equally mixed and incubated in the 
D&D-seq buffer containing the activating C-terminal peptide 
of DddA and the Zn2+ cofactor necessary for the activation 
of the deamination reaction. In this manner, we are able to 
record the presence of CTCF or GATA1 on the genomic 
DNA of each of the tested cell lines. After this step, the 
sample can be processed with custom or commercially 
available single-cell ATAC workflows with minimal 
modifications to the original protocol. We profiled K562 (n = 
1,732 cells) and CA46 (n = 4,108 cells) (Fig. 2a), obtaining 
5,263 +/- 2,633 (mean +/- standard deviation) fragments per 
cell for K562 and 5,437 +/- 2,588 (mean +/- standard 
deviation) fragments per cell for CA46 (Fig. 2b), reflecting 
high quality tagmentation data (Supplementary Fig. 2a, 
2b, 2c). Cell lines were identified by gene accessibility score 
of known marker genes (Fig. 2c). We projected cells into a 
low-dimensional space using latent semantic indexing (LSI) 
and uniform manifold approximation and projection (UMAP) 
using Seurat, and clustered cells using a shared nearest 
neighbor (SNN) approach. There were two clear clusters 
corresponding to the two cell types showing good 
separation between CA46 and K562 cells, as defined by 
highly accessible markers for lymphoid (Fig. 2d) and 
erythroid cells (Fig. 2e), demonstrating that the D&D-seq 
reaction does not affect the overall performance of the 
scATAC. Importantly, at the single-cell level, we were able to 
map protein binding events in all the cells analyzed, 
suggesting that the deamination reaction has a relatively 
high efficiency (Methods).  While the absolute number of 
edits per cell is relatively low (Fig. 2f, 2g, 2h, 2i), this is 
comparable to established tagmentation-based single-cell 
transcription factor binding inference methods. 
Furthermore, the data can be effectively integrated through 
pseudobulking or meta-cell analysis, enabling robust 
downstream interpretations. Since the antibody staining 
step was performed before mixing the two cell lines, we 
were able to assess the presence of cross-contamination 
potentially occurring during droplet encapsulation, 
barcoding, and library preparation reactions. Our results 
showed that the signals for CTCF and GATA1 are mutually 
exclusive and are retained exclusively in the subpopulation 
stained with the respective specific antibody, demonstrating 
that the specificity of the signal is maintained at the cellular 
level (Fig. 2f, 2g, 2h, 2i). To provide support for the 
specificity of D&D-seq, we performed de novo motif 
discovery analysis on the pseudo-bulk D&D-seq mutational 
peaks (Fig. 2j, 2k, 2l, 2m). We observed significant 
enrichment of the CTCF binding site (e-value 1.3e-171) in 
CA46 cells (Fig. 2j) and the GATA1 binding site (e-value 
2.1e-89) in K562 cells (Fig. 2l). We next orthogonally 
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Fig. 2 |  D&D-seq allow for single cell mapping of DNA:Protein interaction.  a) UMAP of cell line mixing study of CA46 (n = 4,108 cells) and K562 (n 
= 1,732 cells) cells in the ATAC space. b) Violin plot showing the number of ATAC fragments per cell for each subpopulation from (a). c) Accessibility scores 
for marker genes defining the subpopulation lineage (FDR < 0.05). d) UMAP projection of gene accessibility score for CA46 marker genes RUBCNL and 
KLF12.e) UMAP projection of gene accessibility score for K562 marker genes NUP214 and PRAME.f) Projection of CTCF D&D edit events into the UMAP 
space. g) Violin plot of CTCF D&D edit events in CA46 and K562 cells. h) Projection of GATA1 D&D edit events into the UMAP space. i) Violin plot of 
GATA1 D&D edit events in CA46 and K562 cells.  j) Motif enrichment analysis for D&D-seq reads in CA46 cells. k) Molecular footprint of pseudo bulk 
D&D-seq for CTCF in CA46 cells showing count of C-to-T edits at aggregated CTCF sites compared to a background ATAC region with no CTCF binding 
site. l) Motif enrichment analysis for D&D-seq reads in K562 cells. m) Molecular footprint of pseudobulk D&D-seq for GATA1 in K562 cells showing count 
of C-to-T edits at aggregated GATA1 sites compared to a background ATAC region with no GATA1 binding site. n) Pseudobulk genome browser tracks for 
representative regions of the human genome (chr1). scD&D-seq was performed on a mixture of K562 and CA46 cells for GATA1 (red) or CTCF (light blue), 
respectively. Encode ChIP-seq data for the 2 proteins (black) as reference. ATAC peaks are in gray. Sequencing data were normalized as bins per million 
(BPM) mapped reads. o) Genome-wide Pearson correlation between pseudobulk scD&D-seq and Encode ChIP-seq for CTCF and GATA1 in K562 cells. 
Peaks are defined by ENCODE ChIP-seq for CTCF and GATA1. p) Fraction of fragments falling in ENCODE ChIP-seq peak regions for CTCF for D&D-seq 
(top) and uliCUT&RUN (bottom). No antibody (Ab) control indicates cells that were not stained with the CTCF antibody.
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validated our findings using a motif-centric, rather than de 
novo, approach. Here, we used the total reads obtained 
from the single-cell experiment to calculate the frequency of 
D&D events in a 200 base-pair window around all the 
HOCOMOCO-defined31 CTCF or GATA binding sites in the 
genome, and compared this with the frequency of C-to-T 
events observed in all the accessible peaks measured in 
our experiment. This analysis revealed the presence of the 
expected bimodal distribution of C deamination events, 
where the binding sites for the protein of interest represent 
the center of the two modes (Fig. 2k, 2m, top). However, 
when the same analysis was performed for accessible 
regions lacking known binding sites, we observed negligible 
edit event frequency and the absence of clearly-defined 
distribution patterns (Fig. 2k, 2m, bottom). Moreover, when 
we repeated this analysis but for the non-targeted factor for 
each cell type, we observed no GATA1 binding signal in 
CA46 cells and no CTCF binding signal in K562 cells 
(Supplementary Fig. 2d). These results demonstrate 
across two TFs that our D&D-seq approach faithfully 
recapitulates TF binding at the single-cell level. We next 
sought to evaluate the specificity of the deamination 
reaction at the site of target protein binding. To do so, we 
collapsed the reads from a specific cluster to obtain pseudo-
bulk alignments. We next extracted the reads where we 
identified C-to-T conversion events and generated a D&D 
coverage plot. The peaks obtained with our in situ 
footprinting approach showed high concordance with bulk 
ChIP-seq reference data obtained from the ENCODE 
consortium20 (Fig. 2n, 2o), suggesting that base editing 
events occur only in the proximity of the targets of interest, 
with minimal off-target activity. We quantified the similarity 
between our single-cell D&D-seq reads and those from 
ENCODE, showing high correlation between CTCF signals 
from each data type and between GATA1 signals for each 
data type, but low correlation across the CTCF and GATA1 
signals (Fig. 2o). We note that the correlation values we 
observed between our single-cell D&D-seq reads and those 
from ENCODE were comparable to the results obtained 
using well-established technologies on histones, such as 
CUT&Tag on H3K27me3 or H3K4me326, which is often used 
as a benchmarking target due to its high abundance and 
high-quality results (Supplementary Fig. 2e). The lack of 
technologies with similar capabilities, especially for single 
cell applications, limits direct benchmarking of D&D-seq 
with the current state-of-the-art methods for profiling DNA:
Protein interactions. Despite this gap, attempts have been 
made to profile the chromatin occupancy of non-histone 
proteins in low input samples by modifying well-established 
bulk protocols. Among those, ultra-low input cleavage under 
target and release using nuclease (uliCUT&RUN) is a 
variant of CUT&RUN, with key modifications to reduce 
background signal, increase output and decrease the 
amount of starting material required to generate protein 
occupancy profiles from mammalian cells32. This protocol 
was used to profile the genomic locations of the insulator 
protein CTCF from populations of mouse embryonic stem 
cells (mESCs) ranging in number from 500,000 to 1033. In 
order to provide further benchmarking for D&D-seq, we 
iteratively randomly subsampled (n=100) the single-cell 
CA46 subpopulation, stained with the CTCF antibody, to 
generate matching datasets with the same number of cells 
analyzed by uliCUT&RUN. As negative control, the same 
number of K562 cells, which represent cells that were not 
stained with CTCF antibody, were subsampled to match the 
uliCUT&RUN negative control, cells that were not stained 

with antibody. To evaluate the specificity of the two 
protocols, we calculated the fraction of the reads in the 
peaks (FRiP), using a reference peak annotation obtained 
from a high-quality ChIP-seq. A high fraction of reads in 
peaks indicates that the majority of the reads are located in 
the regions of interest, and that the experiment has a high 
signal-to-noise ratio. On the other hand, a low fraction of 
reads in peaks may indicate that the majority of the reads 
are located in non-specific regions, and that the experiment 
has a low specificity. D&D-seq data showed that the majority 
of the base-edited reads map to regions where CTCF was 
previously mapped, consistently reaching ~60% FRiP 
across analyses. Moreover, the signal-to-noise ratio was 
largely unaffected by the number of the cells analyzed, 
showing similar values for the 5,000-, 500-, 50-, and 10-cell 
sample sizes, with mean FRiP equal to 56.75%, 56.78%, 
56.83%, and 57.00% respectively (Fig. 2p, top). As 
expected, the cell line that was not stained with the CTCF 
antibody showed very low values of FRiP in all the input 
conditions, indicating that the majority of the edited reads 
were not specific for CTCF. Importantly, at least for this 
specific metric, D&D-seq outperforms uliCUT&RUN, which 
scored 13.69%, 13.69%, 13.89%, and 14.04% FRiP for the 
5000-, 500-, 50-, and 10-cell sample sizes, reflecting a 
majority of reads mapped to regions of the genome that are 
not bound by CTCF (Fig. 2p, bottom). In conclusion, these 
data confirm the specificity of the scD&D-seq signal, 
indicating that our method performs at a level comparable to 
the current state-of-the-art approaches. However, beyond 
achieving similar accuracy, D&D-seq offers significant 
advantages, as it is capable of simultaneously capturing a 
wider range of biological features at single-cell resolution, 
thus enabling a deeper exploration of complex regulatory 
mechanisms that were previously inaccessible.

Single-cell DNA:Protein interaction profiling in primary 
human cells

We tested D&D-seq for analysis of primary human PBMCs. 
We selected CTCF as an initial target due to its ubiquitous 
presence on the genome in all cell types and cell states, and 
the presence of a defined consensus DNA binding 
sequence34. For this experiment, mobilized PBMCs 
collected from healthy donors were crosslinked, 
permeabilized, and stained with a CTCF-specific polyclonal 
antibody. The sample was then processed with the D&D 
reaction, followed by standard 10x Genomics scATAC with 
minimal modification (see Methods). We obtained high-
quality single cells (n = 5,358 cells), with 15,534 +/- 5,934 
(mean +/- standard deviation) fragments per cell. We 
projected cells into a low-dimensional space using LSI and 
UMAP, clustering cells using the chromatin accessibility 
data (Fig. 3a). We assigned cell states based on chromatin 
accessibility profiles of established marker genes and 
retrieved all the expected subpopulations, demonstrating 
that the addition of the D&D reaction does not impact the 
overall quality of the chromatin accessibility assay 
(Supplementary Fig. 3a, 3b). Critically, we mapped CTCF 
binding sites in this complex primary tissue (Fig. 3b, 
Supplementary Fig. 3c). We extracted the reads with in 
situ C-to-T transition labeling and identified CTCF binding 
sites in close proximity to C-to-T deamination events (Fig. 
3c, 3d). These results demonstrate the direct applicability of 
D&D-seq in primary human samples. We next speculated 
that the availability of chromatin accessibility and CTCF 
binding from the same single cells could be used to 
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Fig. 3 | D&D-seq allows for DNA:Protein interaction mapping and 3D chromatin inference in primary human cells. a) UMAP of primary PBMCs 
study (n = 5,358      cells) in the ATAC space. HSPC, hematopoietic stem/progenitor cells; cDC, conventional dendritic cells; NK, natural killer cells. b)
Projection of CTCF D&D edit events into the UMAP space. c) Distribution of C to U D&D events around CTCF binding site (top) and ATAC (bottom) across 
all the genome. d) Motif enrichment analysis for D&D-seq reads. e) D&D-C.Origami-predicted (left) and experimental (right) Hi-C matrices of CD8 T cells. 
f) Pearson correlation of 100 randomly chosen CD8 T cells regions experimental Hi-C data (ENCODE) and: C.Origami 3D chromatin predictions generated 
with CTCF ChIP-seq data (ENCODE), CTCF D&D-seq or in the absence of CTCF information. Boxes represent the interquartile range, lines represent 
the mean, and error bars represent the 1.5 interquartile ranges of the lower and upper quartile.

enhance machine-learning based algorithms developed to 
predict chromatin 3D structure in bulk, paving the way for 
these methods to be used by the single-cell genomics field. 
In particular, we focused on the C.Origami pipeline35, which 
utilizes chromatin accessibility data coupled with CTCF 
ChIP-seq data to feed a deep neural network that performs 
de novo prediction of cell-type specific 3D chromatin 
organization. We took advantage of our D&D-seq protocol 
to generate a cell-type specific CTCF binding profile that 
can be used as a genomic feature by the C.Origami 
algorithm to generate a single-cell pseudo-bulk Hi-C 
genomic contact map. The D&D-C.Origami pipeline 
successfully generated a contact matrix by using scD&D 
and scATAC data as input. The predicted structures closely 
recapitulate publicly available experimental Hi-C data. Both 
short and long-range interactions were efficiently predicted 
by D&D-C.Origami in human primary CD8 T cells (Fig. 3e). 
To validate and quantify the accuracy of the D&D-C.Origami 
approach, we generated 3D chromatin predictions for 100 
random 2-Mb chromatin regions in all major cell subtypes 
(including B cells and monocytes, Supplementary Fig. 3d, 

3e, 3f, 3g). The input data consisted of ATAC-seq regions 
and either CTCF ChIP-seq or CTCF D&D-seq. 3D 
chromatin inference without CTCF information served as a 
negative control. The C.origami pipeline was able to infer 
3D chromatin structure with high accuracy, exhibiting a high 
correlation with experimental data, with comparable 
accuracy using scD&D-seq data instead of ChIP-seq data 
(Fig. 3f, Supplementary Fig. 3e, 3g). We thus envision 
that scD&D-seq will enable the broad exploration of 
chromatin 3D structure changes during major remodeling 
events, such as changes in differentiation state or aging.

Linking genotype to DNA:Protein interaction profiles 
and chromatin landscapes in single cells

Given the compatibility of the D&D workflow with high-
throughput single-cell platforms such as 10x Genomics, it is 
possible to incorporate this versatile backbone technology 
into other single-cell multiomics frameworks that capture 
multiple modalities. To this end, we reasoned that 
integrating single-cell genotyping capability would enable 
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Fig. 4 | Multiomic application of D&D-seq to human primary clonal hematopoiesis samples. a) Integrated chromatin accessibility uniform manifold 
approximation and projection (UMAP) after reciprocal latent semantic indexing (LSI) integration of patient samples (n = 2 replicates, 15,807      cells) 
illustrating the expected hematopoietic populations. b) Integrated UMAP colored by GoT-ChA-assigned IDH2 genotype as wild type (WT; n = 4,177 cells; 
blue) or mutant (MUT; n = 1,114 cells; red) and not assignable (NA; n = 10,516 cells; grey). c) Percentage of cells genotyped as IDH2 mutant (MUT; red) 
for each cell subtype. d) Validation of GoT-ChA results showing percentage of mutant cells genotyped using bulk targeted sequencing for IDH2 in each 
cell subtype.e) Projection of CTCF D&D edit events into the UMAP space. f) Number of D&D edit events recorded for each cell subtype. g) Motif 
enrichment analysis for D&D-seq reads. h) Uniform manifold approximation and projection (UMAP) of the CD8 T cell fraction of the sample (n = 7,546 
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the extension of D&D-seq to study the effects of somatic 
variants on gene regulation. Given the mixture of mutated 
and wild-type cells within clonally mosaic tissues, single-cell 
multi-modal methods that capture both genotype and 
phenotype together are required to provide biological 
insights into mechanisms of clonal outgrowth in normal, 
aging or diseased tissues36. To address this challenge, we 
previously developed Genotyping of Transcriptomes 
(GoT)37 and Genotyping of Targeted Loci and Chromatin 
Accessibility (GoT-ChA)21 to enable high-throughput single-
cell genotyping together with transcriptome profiling or 
chromatin accessibility profiles. Leveraging this conceptual 
framework for linking single-cell genotype to molecular 
phenotype, we incorporated our D&D-seq approach into 
single-cell genotype-aware multi-omics, to link somatic 
mutations to changes in TF binding, and applied this 
workflow to profile a human CHIP sample. Briefly, in GoT-
ChA, isolated cells are subjected to transposition of 
genomic DNA (gDNA) and loaded into microfluidics devices 
(Supplementary Fig. 4a, steps 1-4). During cell barcoding 
reactions, additional gene-specific primers are added to 
capture a locus of interest with an in-droplet PCR reaction, 
with a handle that is compatible with the 10x scATAC 
platform (Supplementary Fig. 4a, step 5). The product is 
then split, with an aliquot used for an amplicon genotype 
library and the remaining 90% used for scATAC library 
construction and sequencing (Supplementary Fig. 4a, 
steps 6-7). The scATAC and genotyping libraries can then 
be analytically integrated via shared cell barcodes, linking 
chromatin accessibility to targeted genotyping at single-cell 
resolution. To incorporate genotyping into the D&D-seq 
framework, GoT-ChA primers are added during the scATAC 
in-drop PCR step. To test D&D-GoT-ChA, we profiled CTCF 
binding in PBMCs from a patient with CHIP carrying an 
IDH2R140Q mutation. The mutation was identified by targeted 
panel sequencing and had a variant allele frequency of 
0.15. Integration of GoT-ChA with D&D-seq allowed us to 
build a multiomic dataset that includes the genotype of 
individual cells, along with accessible chromatin status and 
CTCF binding pattern. The simultaneous implementation of 
targeted genotyping and D&D-deamination did not affect 
the quality of the chromatin accessibility data, which we 
used to resolve the tissue into highly granular cell 
populations, identifying all the major cell subtypes expected 
for this sample (Fig. 4a). The experiment was performed in 
two technical replicates, and after quality check and batch 
correction, the data from the individual experiments were 
merged into a single dataset of 15,807 high-quality cells. 
The resulting dataset showed appropriate QC metrics, with 
a mean of 7,592 fragments per cell (+/- 3,971, standard 
deviation), enrichment around transcriptional start sites, and 
expected library size distribution (Supplementary Fig. 4b). 
Accessibility in proximity of key marker genes was used to 
guide cell annotation, allowing us to identify all the major cell 
types (Supplementary Fig. 4c). The genotyping library 
obtained by GoT-ChA targeted amplification was 
sequenced and processed following our previously 
published pipeline (https://github.com/landau-lab/Gotcha)21. 
We successfully genotyped 33.59% of single cells (5,291 

out of 15,807 cells), identifying IDH2R140Q-mutant and wild-
type cells. Genotyping data were assigned to individual cells 
and projected into the accessibility latent space to visualize 
the distribution of wild-type and mutant cells in the tissue 
(Fig. 4b). This analysis revealed an enrichment of mutant 
cells in the CD8 T cell subcluster, showing that the IDH2
mutation was almost exclusively found in this specific cell 
type (Fig. 4c, Supplementary Fig. 4d). To validate this 
finding, peripheral blood cells from the same donor were 
immunolabeled and split into the main subpopulation by 
FACS (Methods, Supplementary Note). Genomic DNA 
was isolated from natural killer (NK), monocytes, CD8 T 
cells, CD4 T cells, and B cells and processed for standard 
genotyping by bulk nanopore sequencing. The bulk 
genotyping data matched the single-cell genotyping data 
obtained with D&D-GoTChA (Fig. 4d), further validating the 
precision of our single-cell approach. Next, we analyzed the 
CTCF binding pattern across cells. The CTCF molecular 
footprinting signal was present in all the single-cell clusters 
and evenly distributed across all the cell types, as expected 
from this factor (Fig. 4e, 4f). We identified 5,631 CTCF 
positive peaks, and the motif enrichment analysis of the 
footprinted reads again revealed the specificity of our 
deamination assay, showing a significant enrichment of 
CTCF binding sites in the proximity of editing events (Fig. 
4g, Supplementary Fig. 4e). IDH-mutant cells have high 
levels of 2-hydroxyglutarate (2-HG) that interfere with the 
TET family of 5′-methylcytosine hydroxylases38. TET 
enzymes catalyze a key step in the removal of DNA 
methylation39. Previous in vitro studies have shown that 
IDH-mutant cells exhibit hyper-methylation at CTCF binding 
sites, compromising the binding of this methylation-
sensitive insulator protein40,41. Reduced CTCF binding is 
associated with loss of insulation between topological 
domains and aberrant gene activation40, although the extent 
and functional significance of IDH-mutant mediated 
alterations of epigenetic states remain unclear in vivo. Our 
D&D technology allows us, for the first time, to address this 
question by analyzing differences in CTCF binding between 
IDH wild-type and mutant cells in primary human cells. As 
the vast majority of mutant cells were detected in CD8 T 
cells, we focused our analyses on this specific cell type (Fig. 
4h). First, we observed that CD8 T cells form two distinct 
clusters characterized by the differential presence of wild-
type and mutant cells. Therefore, we reassigned the identity 
of these two clusters as CD8 wild-type enriched and CD8 
mutant enriched clusters to assess IDH2-driven phenotypic 
changes (Fig. 4h, Supplementary Fig. 4f). We assessed 
CTCF binding in CD8 T cells by comparing the CTCF D&D 
binding signals (C>T edit read counts) between IDH2 wild 
type (WT) and mutant (IDH2R140Q, MUT). Notably, the vast 
majority of statistically significant binding sites differentially 
bound by CTCF exhibit a decrease in the CTCF binding 
signal between mutant and wild-type cells (Fig. 4i), which 
corroborates previous reports suggesting that CTCF 
binding is reduced in IDH-mutant glioma and acute myeloid 
leukemia, mediated by DNA hypermethylation at CTCF 
binding sites40,41. For example, the binding site in close 
proximity to the GIT1 gene showed the strongest reduction 

cells) with genotypes annotated as mutant-enriched or wild type-enriched. i)  Differential CTCF binding regions in mutant versus wild-type CD8 T cells. 
Total of 1,102 CTCF peaks with more than five D&D edits and five cells were tested using LMM (see Methods). Gene regions with false discovery rate < 
0.25 are highlighted in red. j) Heatmap displaying D&D C.Origami Hi-C predicted interactions enriched in mutant versus wild-type CD8 T cells at the 
genomic region on chr 17 encompassing the GIT1 locus. k) Co-accessible regions determined from ATAC data (purple lines) in wild-type CD8 T cells at 
the GIT1 locus. CTCF binding events and ATAC signal detected with D&D-seq are displayed in the bottom tracks. l) Co-accessible regions determined 
from ATAC data (purple lines) in mutant CD8 T cells at the GIT1 locus. CTCF binding events and ATAC signal detected with D&D-seq are displayed in the 
bottom tracks. m) Heatmap displaying pairwise ATAC-seq peak co-accessibility in wild-type CD8 T cells at the region corresponding to k and l co-
accessibility plots (top-left). Zoom-in heatmap displaying pairwise ATAC-seq peak co-accessibility within a, b, c, and d peaks (bottom-right). Co-
accessibility score was smoothed by averaging three adjacent peaks. n)  Heatmap displaying pairwise ATAC-seq peak co-accessibility in mutant  CD8 T 
cells at the region corresponding to k and l co-accessibility plots (top-left). Zoom-in heatmap displaying pairwise ATAC-seq peak co-accessibility within a, 
b, c, and d peaks (bottom-right). Co-accessibility score was smoothed by averaging three adjacent peaks.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2024.12.31.630903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.31.630903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chi & Yoon et al. bioRxiv, Jan, 202510

in binding. GPCR-kinase interacting protein 1 (GIT1) is a 
scaffold protein that interacts with proteins such as RAC1, 
PAK, and paxillin to regulate actin cytoskeleton 
remodeling42. This is crucial for T cell migration, synapse 
formation, and activation43,44. Furthermore, this protein has 
been implicated in modulating T cell-mediated inflammatory 
responses45. To further explore the functional consequences 
of CTCF loss in this genomic domain, we took advantage of 
our ability to simultaneously profile and integrate differential 
CTCF binding, chromatin accessibility, and genotyping to 
identify changes in cis-regulatory DNA interactions affecting 
the GIT1 topologically associated domain (TAD) that may be 
a consequence of IDH2 mutation. To evaluate the potential 
alterations in 3D genomic interactions between mutant and 
wild-type cells, we once again utilized the C.Origami 
algorithm35 to generate single-cell pseudo-bulk Hi-C 
genomic contact maps based on our CTCF D&D-seq 
profiles. Notably, we observed a significant alteration of 3D 
genome contacts in mutant-enriched T cells compared to 
wild-type-enriched T cells at the GIT1 locus. In greater 
detail, wild-type cells tended to form structures resembling 
canonical TADs (Fig. 4j, red pixels), while the interactions 
formed by mutant cells were more evenly distributed 
throughout the entire genomic region (Fig. 4j, blue pixels). 
To evaluate how aberrant CTCF binding in this region may 
affect gene regulation, we utilized the Cicero algorithm46 to 
evaluate the co-accessibility of regulatory elements present 
in the chromatin hubs in proximity to the perturbed CTCF 
elements. Here, we expanded the genomic window from the 
GIT1 locus to include additional up-/downstream CTCF 
binding sites that were bound by CTCF in both wild-type and 
mutant cells. A comparison of co-accessible peaks between 
wild-type and mutant T cells in this region, showed that the 
chromatin architecture was substantially reshaped in 
mutant T cells (Fig. 4k, 4l) across four main accessible 
regions (red boxes). To further visualize this observation, we 
compared the pairwise co-accessibility landscape of the 
GIT1 TAD by plotting smoothed co-accessibility scores of all 
the possible pairwise interactions of ATAC peaks in this 
region. In wildtype cells these interactions appeared more 
well-defined, while in mutant cells that lost CTCF binding 
events around the GIT1 locus, co-accessibility patterns 
appeared more disorganized (Fig. 4m, 4n). The co-
accessibility periodicity observed in wild-type cells appears 
compromised in mutant cells, likely reflecting a less defined 
topological domain organization, perhaps due to the loss of 
CTCF binding and its insulator function, which may prevent 
active genomic loci from interacting in a more random 
manner (Fig. 4n). Similarly, we observed the same behavior 
at the CNIH2 locus, where well-defined co-accessibility in 
wild-type cells became disorganized in mutant cells due to 
the loss of CTCF binding (Supplementary Fig. 4h, 4i, 4j, 
4k). This consistent pattern implies that the mutation-driven 
disruption of chromatin organization is not limited to a 
specific locus but rather reflects a broader phenotype 
resulting from the presence of IDH2 mutation, and 
consequently disruption of CTCF binding. These 
observations align with in vitro studies performed by acute 
depletion of CTCF, which demonstrated that CTCF is 
essential for looping between CTCF target sites and the 
insulation of TADs47. Moreover, additional interactions were 
observed with an upstream peak within NUFIP2 gene locus 
in the mutant T cells, while absent in the wild type (Fig. 4k-
n). Thus, in wildtype cells, where both CTCF binding sites in 
the region are bound by CTCF protein, we observe a more 
coordinated orchestration of co-accessibility within small 

genomic area and limited interactions with upstream 
regions (Fig. 4m). In mutant cells, however, co-accessible 
peaks in the GIT1 TAD were disrupted with loss of the CTCF 
insulator function and formed new interactions with 
upstream of GIT1, especially with NUFIP2 gene, suggesting 
the formation of a new gene regulatory network upon loss of 
CTCF binding in this locus (Fig. 4l). NUFIP2 was previously 
reported to regulate ICOS expression in mice, the inducible 
T-cell co-stimulatory receptor which is a critical regulator of 
T cell proliferation and cytokine production. 

DISCUSSION

Single-cell mapping of chromatin factors has the potential to 
uncover the rules governing gene network regulation 
directly within individual cells, broadening our ability to 
understand cell biology and identify specific vulnerabilities 
within disease states. However, existing single-cell 
compatible chromatin profiling technologies, such as NTT-
seq24 and scCUT&Tag26, require complex workflows and 
very stringent buffer conditions to avoid non-specific 
tagmentation that could result in unusable datasets 
contaminated with fragments from open chromatin regions. 
These stringent, high-salt conditions can potentially disrupt 
genuine biological interactions of interest, such as the 
association of factors that are more weakly bound to DNA. 
While the CUT&Tag approach is effective for profiling highly 
abundant and stably bound features of chromatin, such as 
histone modifications, it is limited in profiling less abundant 
and less stable complexes, including TFs and chromatin 
remodeling complexes. Importantly, no existing technology 
enables comprehensive genome-wide profiling of non-
histone chromatin-associated factors in single cells, 
resulting in a critical gap in the single-cell toolkit in mapping 
TF and chromatin regulator binding across different cell 
types and physiological or disease contexts. To address 
these challenges, our Docking & Deamination followed by 
sequencing (D&D-seq) approach overcomes existing 
limitations by introducing a technology that records the 
presence of specific non-histone DNA binders directly in the 
DNA. This breakthrough allows us to profile chromatin-
associated factors across a range of affinities, capturing 
both strong interactions as well as transient interactions that 
would otherwise be disrupted under high-salt conditions. 
Furthermore, D&D-seq integrates seamlessly into common 
single-cell workflows, supporting its broad adoption and 
enabling its integration with other molecular modalities for 
multi-omics profiling of gene regulatory networks at single-
cell resolution. The D&D-seq approach provides significant 
technical and biological advances. Technically, it produces 
datasets that deliver accurate quantification of DNA:Protein 
interactions at single-cell resolution, contain sufficient 
information to identify cell-type-specific binding patterns, 
and match high-quality ChIP-seq data. For example, our cell 
line mixing experiment showed that D&D-seq successfully 
identified cell-specific TF binding patterns for CTCF, GATA1, 
recapitulating profiles generated using gold-standard 
protocols, such as ENCODE’s ChIP-seq. We further 
validated these results in primary human peripheral blood 
cells, demonstrating our protocol’s ability to profile the cell-
type-specific binding pattern of non-histone DNA-binding 
proteins, such as CTCF, with high efficiency and accuracy. 
The richness of these datasets allowed us to apply 
predictive machine learning algorithms originally designed 
for bulk experiments to pseudo-bluked single-cell data, 
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enabling the inference of chromatin 3D structure for each 
cell subpopulation. Crucially, D&D-seq opens new avenues 
for addressing fundamental biological questions that were 
previously inaccessible. For example, it can be applied to 
explore the dynamic regulation of chromatin remodeling 
complexes like SWI/SNF or Polycomb Repressive 
Complexes (PRC1 and PRC2) in heterogeneous cellular 
populations. Profiling these complexes at single-cell 
resolution is critical for understanding how they contribute to 
cell fate decisions during development or how they are 
dysregulated in diseases such as cancer. Similarly, D&D-
seq can be used to study transient and context-dependent 
TF binding events, such as those of pioneer factors (e.g., 
FOXA1) that initiate chromatin opening or stress-responsive 
TFs (e.g., NRF2) that activate in response to environmental 
signals. Additionally, D&D-seq has the potential to uncover 
novel insights into epigenetic mechanisms in diseases, 
including neurodegenerative disorders and immune 
dysfunctions, where epigenetic rewiring is thought to play a 
role in pathology48,49. For example, profiling TFs and 
chromatin remodelers in single-cell populations of neurons 
or immune cells could reveal disease-specific regulatory 
circuits, enabling the identification of new therapeutic 
targets. Similarly, D&D-seq can be applied to study 
developmental disorders by mapping TF interactions during 
critical differentiation stages, where investigating 
interactions of factors such as SOX2 or NANOG in 
embryonic stem cells could shed light on the regulatory 
landscapes underlying pluripotency and differentiation. 
These applications highlight the transformative potential of 
single-cell profiling, as they enable researchers to untangle 
the intricate regulatory networks underpinning cell-type 
specificity, state transitions, and pathological alterations 
across different biological systems. Our work also 
demonstrates the power of integrating D&D-seq with single-
cell genotyping. For example, we resolved the wild-type and 
mutant fractions of T cells in CHIP samples harboring an 
IDH2 mutation. Using D&D-seq, we validated in vitro 
findings40,41 and directly observed aberrant CTCF binding 
profiles in mutant cells in vivo. Differential binding of CTCF 
at sites susceptible to IDH2-mediated changes in DNA 
methylation disrupted co-accessible regulatory regions and 
altered chromatin organization at critical loci, such as the 
GIT1 (Fig. 4k, 4l, 4m, 4n) and CNIH2 (Supplementary Fig. 
4h, 4i, 4j, 4k) TADs. Interestingly, CD8 T cell-specific 
enhancers were found in both CTCF binding sites which 
were lost in the mutant T cells, suggesting dysregulation of 
enhancer interactions in this domain. In the mutant, 
enhancers at CTCF binding sites form a new co-
accessibility with an upstream enhancer locus on NUFIP2, 
which is reported to regulate the expression of the inducible 
T-cell co-stimulatory receptor gene, ICOS50. ICOS plays an 
essential role in T cell proliferation and cytokine production 
in effector-memory T cells likely contributing to the elevated 
inflammatory state in CHIP51. Such differential enhancer 
regulation networks caused by methylation are well-studied 
in the imprinting of IGF2-H19, in which CTCF binding directs 
enhancers to H19 on the maternal allele while methylation 
at CTCF binding sites on the paternal allele redirects 
enhancers to IGF2, leading to distinct gene expressions52. 
This example underscores the potential of D&D-seq to 
uncover the molecular consequences of genetic mutations 
in human diseases and provide mechanistic insights into 
altered chromatin regulation. Notably, the flexibility of D&D-
seq enables integration with other single-cell modalities, 
offering unparalleled opportunities for multi-omics analysis. 

For instance, combining D&D-seq with CITE-seq or ASAP-
seq allows simultaneous profiling of DNA-protein 
interactions and surface protein expression53,54, while 
integration with SHARE-seq, Paired-Tag, or CoTECH could 
link chromatin profiling with transcriptomic 
measurements16,55,56. This adaptability ensures compatibility 
with major single-cell technologies, such as the 10x 
Genomics Chromium system or split-and-pool approaches, 
expanding the range of biological questions that can be 
addressed relating to gene regulation across modalities, 
enabling analysis of gene regulation dynamics across the 
central dogma of DNA to RNA to protein16,17. Future 
integration of D&D-seq with tagmentation-based 
technologies, such as CUT&Tag26 or NTT-seq24, could 
enable profiling of DNA-protein interactions in regions with 
specific histone post-translational modifications. While our 
current work focused on integration with ATAC-seq due to 
the known enrichment of TF biding in open chromatin, 
integrating D&D-seq with single-cell whole-genome 
amplification methods (e.g., PTA, DLP+, DEFND-seq) holds 
promise for genome-wide mapping of DNA:Protein 
interactions18,19,57. These advancements will further expand 
the applicability of our tool, enabling researchers to tackle 
diverse questions in chromatin biology and gene regulation. 
A key limitation of D&D-seq is the relatively low number of 
editing events per cell. While our method allows for the first 
time to capture DNA:Protein interactions in single cells,  the 
lower per-cell resolution makes it less suitable for studying 
individual cells with high granularity. The number of mapped 
binding events per cell may arise from antibody efficiency, 
circumvented in bulk methodology by using millions of cells 
as input. Despite this current limitation, D&D-seq excels in 
analyses that aggregate data across cells, such as pseudo-
bulking or meta-cells58, which enable the discovery of 
complex biological patterns that were previously 
inaccessible. For example, the single-cell application 
allowed us to characterize a small subpopulation of CD8 T 
cells enriched in IDH2 mutant cells in a primary CHIP 
sample. These cells exhibited a global reduction in CTCF 
binding, which perturbed chromatin architecture and 
reshaped the co-accessibility of specific topologically 
associated domains (TADs). However, we envision that 
future developments could significantly enhance the 
number of events per cell. For example, employing more 
active deamination enzymes with higher catalytic efficiency 
could amplify signal detection. Additionally, incorporating a 
secondary antibody staining step could boost the signal, 
allowing for a more comprehensive capture of DNA-protein 
interactions. These enhancements would further broaden 
the scope of D&D-seq, enabling its application to even more 
detailed and high-resolution studies at the single-cell level. 
In conclusion, D&D-seq represents a novel and versatile 
approach for multi-omics chromatin profiling, capable of 
measuring genome-wide distribution of non-histone 
chromatin-binding factors in bulk and single-cell samples. 
By tethering a DNA deaminase protein to specific sites in 
the genome, D&D-seq generates single-cell high-resolution 
DNA:Protein binding profiles with unprecedented accuracy. 
Its compatibility with diverse workflows and potential for 
integration with other modalities make it a transformative 
tool for addressing complex questions in chromatin biology. 
We anticipate that D&D-seq will empower discoveries 
across experimental systems and human tissues, providing 
new insights into DNA-protein interactions and their roles in 
health and disease.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2024.12.31.630903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.31.630903
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 Chi & Yoon et al. bioRxiv, Jan, 2025

Cloning of nb-DddA constructs
Previously published sequences coding for the DddA11 
enzyme were split at position 1397, and the C terminus of 
DddA11 (1290-1397) was synthesized as a gene fragment 
(Integrated DNA Technologies (IDT), Supplementary Note) 
flanked by restriction enzyme sites EcoRI and SpeI. The 
gene fragments were digested with EcoRI and SpeI for 
1 hour at 37 °C, ligated for 1 hour at room temperature with 
pTXB1-alnbOc-Tn5 (Addgene, 184285), pTXB1-
nbMmKappa-Tn5 (Addgene, 184286), or 3×Flag-pA-Tn5-Fl 
(Addgene, 124601) digested with the same enzymes. The 
ligated product was transformed into competent cells (New 
England Biolabs, C2987) per the manufacturer’s instruction. 
The final plasmid products (pTXB1-nb-DddA_NT) were 
confirmed by Sanger sequencing (Eton Bio) or Whole 
Plasmid Sequencing using Oxford Nanopore Technology 
with custom analysis and annotation (Plasmidsaurus). 

nb-DddA production
The pTXB1-nb-DddA_NT vectors were transformed into 
BL21(DE3)-competent Escherichia coli cells (NEB, C2527), 
and nb-DddA_NT was produced via intein purification with 
an affinity chitin-binding tag24,59. First, transformed bacterial 
colonies were grown overnight in 5 ml Luria broth (LB). Next 
day, 5 ml of LB culture was added to 400 ml and grown at 
37 °C to optical density (OD600) = 0.6. nb-DddA expression 
was induced with 0.5 mM isopropyl-ß-D-
thiogalactopyranoside (IPTG) and 50 µM ZnCl2 at 30 °C for 
4 hours. After induction, cells were pelleted and then frozen 
at −80 °C overnight. Cells were then lysed by sonication in 
30 ml HEGX (20 mM HEPES-KOH pH 7.5, 0.8 M NaCl, 10% 
glycerol, 0.2% Triton X-100) with a protease inhibitor 
cocktail (Roche, 04693132001). The lysate was pelleted at 
10,000g for 20 minutes at 4 °C. The supernatant was 
transferred to a new tube, and 600 µl of neutralized 10% 
polyethyleneimine (Sigma-Aldrich, P3143) was added 
dropwise to the bacterial extract, gently mixed and 
centrifuged at 12,000g for 40 minutes at 4 °C to precipitate 
DNA. The supernatant was loaded on a 2-ml chitin column 
(NEB, S6651S), followed by washing with 12 ml of HEGX. 
Then, 3 ml of HEGX containing 100 mM DTT was added to 
the column with incubation for 48 hours at 4 °C to allow 
cleavage of nb-DddA from the intein tag. After incubation, 
2 ml HEGX was added to elute nb-DddA directly into a 10-
kDa molecular weight cutoff (MWCO) spin column (Thermo 
Scientific, 88527). Protein was dialyzed three times using 
15 ml of 2× dialysis buffer (100 HEPES-KOH pH 7.2, 0.2 M 
NaCl, 0.2 mM EDTA, 2 mM DTT, 20% glycerol) and 
concentrated to 0.5-1 ml by centrifugation at 5,000 g. The 
protein concentrate was transferred to a new tube, mixed 
with an equal volume of 100% glycerol, and stored at 
−20 °C. After purification, the protein was denatured at 95 
°C for 5 minutes, analyzed by SDS-PAGE gel (BIORAD, 
4561085) and imaged by BIORAD ChemiDoc Touch 
Imaging System (Supplementary Fig. 1b).

Deamination assay
DNA substrates, including lambda phage DNA (NEB, 
N3011) or 5' 6-FAM-labeled 30-mer dsDNA oligonucleotides 
(IDT, Supplementary Note) were used for testing nb-DddA 
deamination activity. Deamination reactions of 250-1000 ng 
DNA were performed in 50 μl of deamination buffer (40 mM 
Tris-HCl pH 7.4, 50 mM KCl, 1 mM MgCl2, 1 mM 
dithiothreitol (DTT), 20 µM ZnCl2) with 50 µM nb-DddA_NT 
and 100 µM DddA_CT (Eton Bio, HPLC-purified, purity 
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METHODS

Cell culture
Human K562 (ATCC, CCL-243) and CA46 (ATCC, CRL-
1648) cell lines were maintained according to standard 
procedures in RPMI-1640 (Thermo Fisher Scientific, 11-
875-119) with 10% FBS (Thermo Fisher Scientific, 10-437-
028) at 37 °C with 5% CO2. Cell lines in culture were 
screened biweekly for mycoplasma contamination using the 
MycoAlert PLUS Mycoplasma Detection Kit (Lonza, LT07-
703).

Primary cell acquisition and processing
Frozen PBMCs used for scD&D-seq were thawed into 
DMEM with 10% FBS, spun down at 4 °C for 5 minutes at 
400g and washed twice with PBS with 2% BSA. Live cells 
from the PBMCs were enriched by the Dead Cell Removal 
Kit (Miltenyi, 130-090-101) per the manufacturer's 
instructions. 
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>95%, Supplementary Note). The reactions were 
incubated at 37 °C for 1 hour unless otherwise indicated. 
For lambda phage DNA, the products were then purified 
with 1.6X Ampure beads (Beckman Coulter, A63881), 
treated with 1 μl of T7 endonuclease (NEB, M0302) in 30 μl 
T7 buffer, further incubated at 37 °C for 15 minutes per the 
manufacturer’s instructions, and analyzed by an agarose 
gel (Invitrogen, A42135). For 6-FAM-labeled dsDNA 
oligonucleotides, 1 μl USER enzyme (NEB, M5508) was 
added to the deaminase-treated products, incubated at 
37°C for 1 hour, denatured at 95°C for 5 minutes, and 
analyzed by 15% polyacrylamide TBE-Urea gel (BIORAD, 
4566055). The cleaved DNA fragments were imaged by 
BIORAD ChemiDoc Touch Imaging System.

Antibodies
Antibodies used were CTCF (1:100, Active Motif, 61932), 
GATA1 (1:100, Abcam, ab11852), and GATA2 (1:100, 
Invitrogen, PA1-100).

D&D-seq
Cell fixation, Permeabilization, and Antibody binding
For all the following centrifugations, cells were centrifuged 
in a swing-bucket centrifuge at 300g for 5 minutes before 
fixation and 600g for 5 minutes after fixation. About 200K to 
1 million cells were collected and resuspended in 400 µl 
PBS. Then, 16% methanol-free formaldehyde (Thermo 
Fisher Scientific, PI28906) was added for fixation (final 
concentration 0.1%) at room temperature for 5 minutes. 
Glycine (final concentration 125 mM) was added to stop the 
cross-linking, followed by a wash with 1 ml of PBS. Fixed 
cells were permeabilized in 200 µl permeabilization buffer 
(20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, 0.1% 
NP40, 0.1% Tween-20, 1% BSA, 1× protease inhibitors) on 
ice (7 minutes for cell lines, 5 minutes for primary cells), 
followed by a wash with 200 µl cold wash buffer (20 mM 
HEPES pH 7.6, 150 mM NaCl, 0.5 mM spermidine, 1% 
BSA, 1× protease inhibitors). After cell counting, 100K-400K 
cells were transferred to PCR tubes and resuspended in 
100 µl antibody buffer (20 mM HEPES pH 7.6, 150 mM 
NaCl, 2 mM EDTA, 0.5 mM spermidine, 1% BSA, 1× 
protease inhibitors), with 1 µl (1:100 dilution) of the 
antibodies. The cells were incubated at 4 °C with slow 
rotation overnight. 

D&D binding and activation
The cells were washed once with 200 μl wash buffer, and 
another time with 200 μl D&D binding buffer 
(Supplementary Note). The cells were resuspended in 50 
μl D&D activation buffer (Supplementary Note) with 100 
uM DddA_NT, and incubated at room temperature on a 
rotator for 1 hour. The cells were then washed with 200 μl 
D&D binding buffer, resuspended in 50 μl DnD activation 
buffer (Supplementary Note), and incubated at 37 °C for 1 
hour for deamination. 

Bulk ATAC
Tn5 adaptors were purchased from IDT. Adaptors (100 uM) 
(Supplementary Note) were annealed in TE buffer to form 
mosaic-end, double-stranded (MEDS) oligos by incubating 
at 95 °C for 5 minutes and then cooling at 0.2 °C per second 
to 12 °C. MEDS-A and MEDA-B were were mixed 1:1, and 
2 µl was transferred to a new tube and mixed with 18 µl of 

TnY (in-house) enzyme after 1 hour at room temperature to 
allow for transposome assembly60. 

After D&D activation, the cells were washed once with 200 
μl 1x Tris-TD buffer (component) and resuspended in 50 μl 
1x Tris-TD buffer with 9 μl loaded TnY (TnY volume 
depends on its  concentration and needs to be titrated to get 
the optimal tagmentation). To initiate tagmentation, the 
reaction was incubated at 37 °C for 1 hour. To extract DNA, 
1 μl 10% SDS, 2 μl proteinase K (NEB, P8107S), and 3 μl 
0.5M EDTA were added to the reactions, which were then 
incubated at 55 °C for 1 hour, followed by column-based 
DNA purification per the manufacturer’s instruction (Zymo, 
D5205). For library preparation PCR, we used uracil-
tolerant DNA polymerase (NEBNext Q5U Master Mix, NEB 
M0597S) and Nextera-compatible indexing primers 
(Supplementary Note) to amplify the purified DNA. To 
increase the efficiency of the initial gap fill-in step, we spiked 
in 1 μl of non-hot-start polymerase Bst 3.0 (NEB, M0374). 
The PCR steps are: 72°C for 5 min; 98°C for 30 s; 12 
cycles of 98°C for 10 s, 55°C for 30 s and 72 °C for 30 s; 
followed by 72 °C for 5 min.

Single-cell ATAC
After D&D activation, the cells were resuspended in 1x 
nuclei buffer and counted using trypan blue and a Countess 
II FL Automated Cell Counter. For the remaining steps, we 
follow single-cell ATAC-seq per 10x protocol (version 
CG000209 Rev F, 10x Genomics) with the following 
modifications.
1. During the GEM generation and barcoding reaction 
(step 2.1), 2 μl of uracil-tolerant DNA polymerase (NEBNext 
Q5U Master Mix, NEB M0597S) was added to the 
barcoding reaction mixture to facilitate the first few rounds 
of PCR, where we expect to have some uridine in the 
reaction.  

Sequencing
The sequencing libraries were sequenced on a NovaSeq 
6000, NovaSeq X, or NextSeq 2000 with dual indexed, 
paired-end 100 or 150-bp settings. Specifically, i5: 8 bp (16 
bp for single-cell sequencing), i7: 8 bp, read1: 100 or 
150 bp, read2: 100 or 150 bp. 

Genotyping of Targeted loci with Chromatin 
Accessibility (GoT–ChA)
We performed GoT–ChA according to the previously 
published paper with minor modifications21. Briefly, we 
performed whole cell fixation, permeabilization, antibody 
incubation, D&D binding and activation as aforementioned 
bulk D&D-seq. After D&D activation, the cells were 
resuspended in 1× diluted nucleus buffer (10x Genomics) 
and counted using trypan blue and a Countess II FL 
Automated Cell Counter. Afterwards, the cells were 
processed according to the Chromium Next GEM Single 
Cell ATAC Solution user guide (version CG000209 Rev F, 
10x Genomics) with the following modifications:

1. During the GEM generation and barcoding reaction 
(step 2.1), 1 µl of 22.5 µM GoT–ChA primer mix was added 
to the barcoding reaction mixture. The primers used are 
IDH2 locus-specific primers IDH2_R140_F1 (or IDH2_
R140_F2) and IDH2_R140_R1 (or IDH2_R140_R2)
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monocytes, CD56 for NK cells) using the BD 
FACSymphony™ S6 Cell Sorter (Supplementary Note).
The genomic DNA of the sorted cells was extracted using 
Puregene cell kit (QIAGEN, 158043) per the manufacturer’s 
instruction, and PCR-amplified using KAPA 2X mix (Roche, 
07958927001) and IDH2_R140_F2 + IDH2_R140_R2 
(Supplementary Note) primers. The linear PCR amplicon 
sequencing was performed by Plasmidsaurus using Oxford 
Nanopore Technology with custom analysis, and the 
genotype ratio was quantified by the number of reads 
mapped to IDH2 wild type and IDH2R140Q.   

Bulk Data analysis
Raw bulk D&D-seq FASTQ data were analyzed using 
FastQC for initial quality control61. Nextera transposase 
sequence and homopolymer G were removed using 
CutAdapt with 
“CTGTCTCTTATACACATCTCCGAGCCCACGAGAC” for 
R1 and 
“CTGTCTCTTATACACATCTGACGCTGCCGACGA” for R2 
and "G{12}" parameters whenever identified in the FastQC 
report62. After trimming adapter and polyG sequences, 
processed FASTQ files were re-analyzed using FastQC and 
aligned to the Human reference genome (GRCh38) using 
BWA-MEM263. Read alignments were subsequently sorted 
and indexed using samtools. To call D&D edits in bulk 
datasets, bam files were analyzed as described in the 
following Extraction of D&D signal section. 
For TF motif discovery, genomic regions of 400 bp to 1 kb 
(indicated in the figures) centered at the peak summits were 
used to query the genome using MEME64. To visualize the 
genomic tracks on IGV, bigwig files were generated using 
the DeepTools bamCoverage function with the –
normalizeUsing BPM option set65. ChIP-seq peak 
coordinates for CTCF, GATA1 and GATA2 for K562 cells 
were downloaded from ENCODE20.

Single-cell data analysis
Preprocessing and annotation of 10x scATAC-seq data
Raw scATAC-seq datasets were aligned to the Human 
reference genome (GRCh38) and quantified using 
CellRanger-ATAC (version 2.1.0). The resulting peak/cell 
matrix was filtered for low quality cells and normalized using 
Signac (version 1.13.0)66. In detail, cells having 1) reads 
aligned to the blacklist region more than 0.05%, 2) less than 
20% of reads aligned to peaks, 3) transcription start site 
enrichment score less than 3, 4) nucleosome signal higher 
than 4, 5) outliers having too many (average of peak counts 
+ 2*standard deviation of peak counts) or fewer peaks 
(average of peak counts - 1*standard deviation of peak 
counts) were filtered out (Supplementary Fig. 2b, 3a, 4b). 
Multiplets were additionally annotated using AMULET and 
removed67. The preprocessed data were normalized by 
latent semantic indexing analysis, projected to low 
dimensions using uniform manifold approximation (UMAP), 
and clustered using the smart local moving (SLM) algorithm. 
Gene activity based on chromatin accessibility was inferred 
in order to annotate markers of each cluster. Finally, motif 
activity score was computed using ChromVAR with the 
JASPAR2020 core database for Homo sapiens68,69.
For the cell line data, eight clusters were defined with a 
clustering resolution of 0.6, and annotated as one of two cell 
lines based on the marker gene activity. Cluster 7, which 
was found in both K562 and CA46 clusters, was removed. 
The remaining number of cells was 5,840 cells (CA46, n = 

(Supplementary Note). These primers allow for 
exponential amplification of the GoT–ChA fragments 
relative to the linear amplification of ATAC fragments. In 
addition, to facilitate the first few rounds of PCR, where we 
expect to have some uridine in the reaction, we spiked in 2 
μl of uracil-tolerant DNA polymerase (NEBNext Q5U Master 
Mix, NEB M0597S) into the barcoding reaction mixture. 
2. During the post-GEM incubation clean-up (step 
3.2), 45.5 µl of elution solution I is used to elute material 
from SPRIselect beads. A total of 5 μl is used for GoT–ChA 
library construction, and the remaining 40 µl is used for 
ATAC library construction as indicated in the standard 
protocol. 
3. To generate the GoT–ChA library, two additional 
PCRs were performed on the 5 µl set aside during step 3.2. 
The first PCR aims to amplify genotyping fragments before 
sample indexing and uses P5 and IDH2_R140_N1 (or 
IDH2_R140_N2) primers (Supplementary Note) with the 
following thermocycler program: 95 °C for 3 min; 15 cycles 
of 95 °C for 20 s, 65 °C for 30 s and 72 °C for 20 s; 
followed by 72 °C for 5 min and ending with hold at 4 °C.
After a 1.2× SPRIselect clean-up, biotinylated PCR product 
is bound and isolated using Dynabeads M-280 Streptavidin 
magnetic beads (Thermo Fisher Scientific, 11206D). In 
brief, the beads are washed three times with 1× sodium 
chloride sodium phosphate-EDTA buffer (SSPE, VWR, 
VWRV0810-4L), added to the purified PCR product and 
incubated at room temperature for 15 minutes. The beads 
are then washed twice with 1× SSPE buffer and once with 
10 mM Tris-HCl (pH 8.0) before resuspending in water. The 
bead-bound fragments are then amplified and sample 
indexed using P5 and RPI-X primers (Supplementary 
Note) with the following thermocycler program: 95 °C for 
3 min; 6–10 cycles of 95 °C for 20 s, 65 °C for 30 s and 
72 °C for 20 s; followed by 72 °C for 5 min and ending 
with hold at 4 °C.
Final libraries were quantified using the Qubit dsDNA HS 
Assay Kit (Thermo Fisher Scientific, Q32854) and the High 
Sensitivity DNA chip (Agilent Technologies, 5067-4626) run 
on a Bioanalyzer 2100 system (Agilent Technologies) and 
sequenced on a NovaSeq 6000 or NovaSeq X system at the 
Weill Cornell Medicine Genomics Resources Core Facility 
with the following parameters: paired-end 100 or 150 
cycles; read 1N, 100 or 150 cycles; i7 index, 8 cycles; i5 
index, 16 cycles; read 2N, 100 or 150 cycles. ATAC libraries 
were sequenced to a depth of 25,000-35,000 read pairs per 
cell and GoT–ChA libraries were sequenced to 5,000 read 
pairs per cell. A list of the primer sequences used in this 
study is provided in Supplementary Note.

Cell sorting + Genotyping
Cryopreserved peripheral blood mononuclear cells from a 
CHIP donor with IDH2R140Q mutation were thawed and 
stained. Briefly, the cells were resuspended in staining 
buffer (BioLegend, 420201) and incubated with Human 
TruStain FcX (10 min at 4 °C; BioLegend, 422302) to block 
Fc receptor-mediated binding. Then, the cells were stained 
with CD8-BV650 (Biolegend, 344730), CD4-FITC 
(Biolegend, 344604), CD19-PE (BD biosciences, 561741),  
CD14-APC (Thermo Fisher, 47-0149-41), CD56-BV786 (BD 
biosciences, 564058) (1:100 for up to 106 cells in a final 
volume of 100 µl) for 20 minutes at 4 °C, and DAPI 
(Invitrogen, D1306). The samples were then sorted for 
DAPI− and single-marker positive cells (CD8 for CD8+ T 
cells, CD4 for CD4+ T cells, CD19 for B cells, CD14 for 
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4,108 and K562, n = 1,732). For PBMC data, 18 and 16 
clusters were identified with a clustering resolution of 0.8 in 
replicate 1 and 2, respectively. Clusters were annotated 
based on marker gene activity and cell type prediction using 
Azimuth with a Human PBMC reference dataset70,71. For 
replicate 1, two clusters were additionally removed because 
two different cell types were mixed (cluster 7, CD8 T cell and 
monocyte) or it had overall low quality and lacked markers 
(cluster 13). The total of 5,413 cells in replicate 1 and 
10,394 cells in replicate 2 remained. 

Genotyping of IDH2 mutation using GoT–ChA
Raw FASTQ files were first analyzed using FastQC to 
examine overall data quality and mutant allele at the 
targeted locus61. Based on a FastQC report, position of 
mutant allele, a read file with mutant allele, and primer 
sequence were identified. Input FASTQ files were then 
processed using the GoT–ChA analysis pipeline (https://
github.com/landau-lab/Gotcha)21. In detail, raw data were 
first split into smaller files and quality filtering was performed 
with the “FastqFiltering” function. The R1 FASTQ file for 
replicate 1 and R3 FASTQ file for replicate 2 were used for 
genotyping with c(37:39) as a mutation site. After quality 
control of raw data, mutation state is annotated with the 
“BatchMutationCalling” function based on the provided wild-
type/mutant and primer sequences. For both replicates, the 
primer sequence was set as 
“GATGGGCTCCCGGAAGACAGTCCCCCCCAGGATGTT”
, and “CCG” and “CTG” were set as wild-type and mutant 
sequences, respectively. Results from each split data were 
merged into a single barcode and read count matrix using 
“MergeMutationCalling”. Genotype of each cell was 
assigned by manually setting thresholds based on 
distribution of log-transformed read counts 
(Supplementary Fig. 4d). 

Extraction of D&D signal
To summarize genome edits introduced by D&D in scATAC-
seq data, a bam file produced by CellRanger was split into 
each cell type based on barcode sequence and cell 
annotation using sinto. For bulk ATAC-seq data, bam files 
aligned to the genome using BWA-MEM2 were analyzed63. 
After splitting bam files, the following five steps were 
performed to analyze D&D-mediated genomic variants 
(Supplementary Fig. 2a). All steps are integrated in the 
D&D analytic pipeline.

1) First, each bam file was preprocessed to remove 
uninformative and low quality read alignments. Duplicated 
reads were marked and simultaneously filtered using 
“picard MarkDuplicates” with a REMOVE_
DUPLICATES=true parameter. Read alignments with high 
mapping quality Phred score (>= 20), primary alignment, 
reads aligned to intact chromosomes, and those with 
properly aligned mates were retained using samtools 
(version 1.19). 
2) Next, all single nucleotide variants (SNVs) found in 
each filtered bam file were collected using “bcftools 
mpileup” with following parameters, -a FORMAT/AD,
FORMAT/DP,INFO/AD --no-BAQ --min-MQ 1 --max-depth 
8000. The pileup result subsequently converted into the vcf 
format reporting SNVs supported by at least two reads 
supporting variants from minimum three aligned reads. 
These thresholds can be adjusted by users based on their 
data.

3) Germline mutations were then filtered based on loci 
and alleles from the gnomAD database and variant allele 
frequency higher than 10%. If available, custom databases 
in vcf format can be provided to additionally filter 
uninformative mutations. 
4) Preprocessed bam files from step 1 were analyzed 
using MACS2 (version 2.2.9.1) to call peaks with -f BAM --
nomodel parameters. Peaks were then filtered with blacklist 
region annotation using bedtools (version 2.31.1)72. Motif 
analysis was performed using MEME Simple Enrichment 
Analysis (SEA)73 with HOmo sapiens COmprehensive 
MOdel COllection (HOCOMOCO)31 v11 core motif set to 
identify binding sites in peaks. Optionally, users can perform 
motif analysis using HOMER2 (https://doi.org/10.1038/
s41586-024-07662-z) or a reference bed file generated by 
ChIP-seq.
5) Peaks harboring motifs of interest or overlapping 
with ChIP-seq reference tracks were classified as target 
peaks. Target peaks were resized to 200 bp (up/
downstream 100 bp from the motif center or peak summit 
with ChIP-seq) and overlaid with C-to-T and G-to-A variants 
identified in step 3. When multiple motif positions were 
found, a position with the highest motif score was chosen. 
Peaks without binding motifs of interest are classified as 
background peaks and were resized to 200 bp by taking +/- 
100 bp from the peak summit. 

Evaluation of D&D signal 
To compare D&D edit counts between target and 
background regions, edit counts per peak were summarized 
and signal-to-noise ratio (SNR) were calculated by dividing 
the number of C-to-T and G-to-A by the number of other 
variants. First, edits per peak were calculated by dividing 
SNV counts by the number of peaks in resized target and 
background peak regions. We assume that the frequencies 
of non-D&D edit (edits other than C-to-T) are consistent 
across the target and background regions, so this can be 
used to normalize the D&D edit counts. In this manner, SNR 
was then calculated by dividing the D&D edit counts by the 
mean of non-D&D edit counts. Footprint analysis for D&D 
edits was performed by counting the number of D&D edits 
in each base pair from randomly sampled target and 
background peaks, +-100 bp from the center of the motifs. 
The random sampling was repeated for 10 times and mean 
and standard deviation were used for visualization. For both 
the cell mixing experiment and primary blood cells, we used 
200 randomly selected peaks. The number of subsampled 
peaks can be set by the user. 

Benchmark analysis with ultra-low-input cleavage 
under targets and release using nuclease 
(uliCUT&RUN) 
Raw uliCUT&RUN data for CTCF and negative controls with 
no primary antibody were downloaded from GEO 
(GSE111121)33. The quality of raw FASTQ files was 
assessed using FastQC61 and the adapter sequence in both 
reads was trimmed using CutAdapt62 with -a 
AGATCGGAAGAG -A AGATCGGAAGAG -m 21
parameters. Trimmed reads were aligned to the mouse 
reference genome (mm10) using BWA-MEM2 with 10 as 
the minimum seed length (-k 10)63. Read alignments with 
high mapping quality Phred score (>= 20), primary 
alignment, reads aligned to intact chromosomes, and those 
with properly aligned mates were retained from the resulting 
bam files using samtools (version 1.19). The processed bed 
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file of CTCF ChIP-seq was downloaded from an 
independent study which used the same cell line (E14 
mouse embryonic stem cells, GSE11431)74. Because the 
bed file was aligned to mm8, the genomic coordination was 
updated to mm10 using LiftOver75, sorted and merged for 
overlapping coordination using bedtools72, and modified to 
SAF format to use it as a custom reference for alignment. 
Processed bam files were aligned to the SAF using 
FeatureCounts (Subread package version 2.0.4) with -p --
countReadPairs -F SAF parameters76. Fraction of fragments 
in peaks was calculated by dividing the assigned fragment 
counts by the total fragment counts. The total of 4,105 CA46 
cells with D&D edits from the cell mixing experiment were 
sampled to 10, 50, 500, and 5,000 cells with replacement 
and repeated for 100 times. K562 cells with D&D edits (n = 
1,290) were downsampled to 10, 50, 500, and 1,000 cells in 
the same manner. To compare D&D to uliCUT&RUN, all 
reads harboring C-to-T or G-to-A tentative D&D edits with 
matched downsampled cell barcodes were collected. The 
fraction of fragments in peaks was calculated as described 
above using K562 CTCF ChIP-seq from ENCODE.

Evaluation of CTCF binding in CD8 T cells 
In our integrated PBMC dataset, CD8 and CD4 T cells 
formed a continuous cluster without a clear separation (Fig. 
4a). Because the IDH2 mutation in these samples was 
specifically enriched in the CD8 T cell population (Fig. 4b-
d), we re-clustered CD4 and CD8 T cell populations to 
extract high confident CD8 T cells and removed clusters 
expressing CD4 T cell or non-T cell markers and mixed CD4 
and CD8 T cells. The remaining CD8 T cell cluster (n = 
7,546) consisted of 2,132 (534 WT, 329 MUT, and 1,269 not 
genotyped) cells from replicate 1 and 5,414 (853 WT, 486 
MUT, and 4,075 not genotyped) cells from replicate 2. 
These cells were further grouped into MUT-enriched (n = 
6,437 cells) and WT-enriched (n = 1,109 cells) based on the 
clustering and genotype proportions (Fig. 4h). To compare 
differential CTCF binding between MUT and WT CD8 T 
cells, we leveraged the linear mixture model (LMM) from the 
GoT-ChA analytic pipeline which considers sample-specific 
batch effect and variability in cell numbers. LMM analysis 
was applied to 1,102 CTCF peaks harboring more than 5 
D&D edits and found in more than 5 cells. We used a 
permissive false discovery rate (FDR) threshold of FDR ≤ 
0.25, which identified 104 CTCF peaks with differential 
CTCF bindings between MUT and WT (Fig. 4i). Co-
accessible peaks were identified using Cicero46. First, ATAC 
peaks in two replicates were merged using 
GenomicRanges::reduce and new count matrices were 
generated using Signac workflow for both replicates. Count 
data were loaded in R using the Monocle 3 workflow. Batch 
effect was normalized by aligning two replicates using 
align_cds with preprocess_method = "LSI", alignment_
group = "Dataset" and reduce_dimension with preprocess_
method = "Aligned" parameters. Cicero object was 
generated with batch corrected CellDataSet and UMAP 
coordinates from Monocle 3 and co-accessible peaks were 
inferred using the run_cicero function as described in the 
Cicero workflow (https://cole-trapnell-lab.github.io/cicero-
release/). 

Hi-C contact map predictions
To generate Hi-C contact map predictions, we used the 
pseudobulked ATAC reads and D&D reads for each cell type 
as the input for C.origami35. The bam files of ATAC-seq and 

D&D reads were first converted to bigwig files using 
DeepTools with the command bamCoverage --
normalizeUsing RPKM --binSize 1 --bam $bamfile -o 
$bigwig65. The bigwig file for D&D reads were then 
normalized against the bigwig of the ATAC and log2-
transformed with a pseudocount of 1 using the command 
bigwigCompare --binSize 1 -b1 $DnD.bigwig -b2 $ATAC.
bigwig -o $DnD.normalized.bigwig. The ATAC bigwig files 
and the normalized D&D bigwig files were used as the 
inputs for inference of HiC contact maps using C.origami. 
For predictions generated without incorporating CTCF 
binding information, the ATAC bigwig files, along with a 
bigwig file containing zeros for all regions, were used as 
input.

Code Availability:
Python and R scripts used in this study to analyze D&D-seq 
data are available on GitHub (https://github.com/
sangho1130/DnD/). Detailed parameter settings and 
thresholds used in the analyses are described in the 
Methods. All analyses were performed using Python and R 
in a mamba virtual environment. Detailed software versions 
are also described in the Methods.

Data Availability:

Raw data and processed data files generated from cell lines 
will be made available at Gene Expression Omnibus (GEO). 
Processed data files generated from patient samples will be 
deposited at GEO. Patient raw sequencing data containing 
genomic sequences generated in this study will be 
deposited at the European Genome–Phenome Archive. The 
GRCh38 reference genome was used for alignment of 
single-cell ATAC–seq data (refdata-cellranger-atac-
GRCh38-1.2.0), freely available from the 10x Genomics 
website (https://support.10xgenomics.com).

ChIP-seq datasets of CTCF (ENCFF111JKR), GATA1 
(ENCFF844WTT), GATA2 (ENCFF997NUA) in K562 cell, 
human primary CD4 T cell (ENCSR470KCE), CD8 T cell 
(ENCSR116AKQ), B cell (ENCSR075NRV), monocyte 
(ENCSR162KZY), and NK cell (ENCSR856TKC); ATAC-
seq dataset of K562 cell (ENCFF077FBI); Hi-C datasets of 
human primary CD4 T cell (ENCSR335JYP), CD8 T cell 
(ENCSR321BHC), B cell (ENCSR847RHU), monocyte 
(ENCSR236EYO), and NK cell (ENCSR971CJS) are from 
ENCODE.
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Supplementary Figure 1 | Docking & Deamination allow for mapping of transcription factor binding via molecular footprinting. a) Schematic 
representation of the pTXB1-nanobody-DddA11_NT plasmid. b) SDS-PAGE of purified Rb-DddA_NT protein. The upper band is uncleaved Rb-DddA_NT 
with intein and chitin-binding domain (CBD) (54 KDa). The lower band is cleaved Rb-DddA_NT (26 KDa).  c) Scheme of in vitro deamination assay using 
36-bp 6-carboxyfluorescein (FAM)-labeled DNA oligos treated with Rb-DddA_NT for conversion of C to U, followed by treatment with uracil-specific USER 
enzyme to create single-stranded nicks at U sites. Successful deamination can be detected by assessing single-stranded DNA, including generation of an 
18 nt ssDNA fragment, on a denaturing gel. d) TBE-urea gel electrophoresis of DNA oligo treated with Rb-DddA_NT with or without Rb-DddA_CT and 
Zn2+. Rb-DddA_NT was activated upon addition of Rb-DddA_CT and Zn2+ further increased the activity. dsDNA, double-stranded DNA; ssDNA, single-
stranded DNA. e) TBE-urea gel electrophoresis of DNA oligos containing different 5’ DNA contexts for the target cytosine treated with Rb-DddA_NT and 
Rb-DddA_CT. Rb-DddA preferentially deaminates cytosines that are preceded by thymines. f) Scheme of in vitro deamination assay using lamba phage 
DNA. g) E-gel of lamba phage DNA treated with Rb-DddA_NT+CT (DddA) overnight at different temperatures (°C). RT, room temperature. h) E-gel of 
lamba phage DNA treated with Rb-DddA_NT+CT (DddA) at 37°C for different duration (min). In lane 4, only Rb-DddA_NT is added as a negative control.
i) DNA mutation signature of bulk K562 CTCF DnD-seq. Target regions are defined by ATAC peaks with CTCF motif (Methods). j) Same as (i) for GATA1.
k) Same as (i) for GATA2. l) Dinucleotide context frequency of deaminated cytosine in K562 bulk CTCF DnD-seq data. m) Trinucleotide context frequency 
of deaminated cytosine in K562 bulk CTCF DnD-seq data.
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Supplementary Figure 2 | D&D-seq is compatible with existing droplet-based single-cell chromatin profiling technologies. a) Analytical workflow 
of scD&D-seq data. Reads from the same cell types were extracted from the bam file, followed by preprocessing and quality controls, variant pile-ups and 
filtering, peak calling, annotation, and finally evaluation of DnD reads. b) Quality control metrics of cell mixing scATAC-seq study, including number of 
counts in peaks (nCount_peaks), TSS enrichment scores (TSS.enrichment), fraction of reads in blacklist (blacklist_fraction), nucleosome signal scores 
(nucleosome_signal), and percentage of reads in peaks (pct_reads_in_peaks). c) Fragment length distribution of nucleosome signal scores (NS) <4 and 
> 4. d) Molecular footprint of pseudo-bulk D&D-seq for GATA1 in CA46 cells and CTCF in K562 cells showing count of C-to-T edits at aggregated sites 
showing no GATA1 binding signal in CA46 cells and no CTCF binding signal in K562 cells. e) Genome-wide Pearson correlation between CUT&Tag from 
26 and ENCODE ChIP-seq for H3K27me3 and H3K4me3 in K562 cells. Peaks are defined by ENCODE ChIP-seq for H3K27me3 and H3K4me3.  
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Supplementary Figure 3 | D&D-seq allows for DNA-protein interaction mapping in primary human cells. a) Quality control metrics of human primary 
PBMCs scATAC-seq, including number of counts in peaks (nCount_peaks), TSS enrichment scores (TSS.enrichment), fraction of reads in blacklist 
(blacklist_fraction), nucleosome signal scores (nucleosome_signal), and percentage of reads in peaks (pct_reads_in_peaks). b) Fragment length 
distribution of nucleosome signal scores (NS) <4 and > 4.  c) Number of CTCF D&D edits per cell, separated by cell types. d) D&D-cOrigami-predicted 
(left) and experimental (right) Hi-C matrices of B cells. e) Pearson correlation of 100 randomly chosen B cells regions experimental Hi-C data (ENCODE) 
and: c.Origami 3D chromatin predictions generated with CTCF ChIP-seq data (ENCODE), CTCF D&D-seq or in the absence of CTCF information. Boxes 
represent the interquartile range, lines represent the mean, and error bars represent the 1.5 interquartile ranges of the lower and upper quartile. f) D&D-
cOrigami-predicted (left) and experimental (right) Hi-C matrices of monocytes. g) Same as e) but for monocytes.
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Supplementary Figure 4 | Multiomic application of D&D-seq to human primary clonal hematopoiesis samples.a) Schematic of D&D-GoT-ChA. b)
Quality control metrics of scATAC-seq, including number of counts in peaks (nCount_peaks), TSS enrichment scores (TSS.enrichment), fraction of reads 
in blacklist (blacklist_fraction), nucleosome signal scores (nucleosome_signal), and percentage of reads in peaks (pct_reads_in_peaks). c) Differential 
gene activity score based on chromatin accessibility for cluster-specific marker genes. d) Distribution of WT and MUT read counts from GoT-ChA, 
separated by cell type. Thresholds are used to define MUT, WT and NA (Methods), with mutant cells in the top two quadrants. e) DNA footprint of on-target 
and background peaks. f) UMAP of the CD8 T cell fraction of the sample (n = 7,546 cells) with genotypes annotated. g) Heatmap displaying D&D 
C.Origami Hi-C predicted interactions enriched in mutant versus wild-type CD8 T cells at the genomic region on chr 11 encompassing the CNIH2 locus. 
h) Co-accessible regions determined from ATAC data (purple lines) in wild-type CD8 T cells at the CNIH2 locus. CTCF binding events and ATAC signal 
detected with D&D-seq are displayed in the bottom tracks. i) Co-accessible regions determined from ATAC data (purple lines) in mutant CD8 T cells at the 
CNIH2 locus. CTCF binding events and ATAC signal detected with D&D-seq are displayed in the bottom tracks. j) Heatmap displaying pairwise ATAC-seq 
peak co-accessibility in wild-type CD8 T cells at the at the region corresponding to h and i co-accessibility plots. Co-accessibility score was smoothed by 
averaging three adjacent peaks. k) Heatmap displaying pairwise ATAC-seq peak co-accessibility in mutant CD8 T cells at at the at the region 
corresponding to h and i co-accessibility plots. Co-accessibility score was smoothed by averaging three adjacent peaks
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