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Age-dependent e�ects of gut
microbiota metabolites on brain
resident macrophages

Dilara Hasavci and Thomas Blank*

Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany

In recent years, development of age-related diseases, such as Alzheimer’s

and Parkinson’s disease, as well as other brain disorders, including anxiety,

depression, and schizophrenia have been shown to be associated with

changes in the gut microbiome. Several factors can induce an alteration in

the bacterial composition of the host‘s gastrointestinal tract. Besides dietary

changes and frequent use of antibiotics, the microbiome is also profoundly

a�ected by aging. Levels of microbiota-derived metabolites are elevated in

older individuals with age-associated diseases and cognitive defects compared

to younger, healthy age groups. The identified metabolites with higher

concentration in aged hosts, which include choline and trimethylamine, are

known risk factors for age-related diseases. While the underlying mechanisms

and pathways remain elusive for the most part, it has been shown, that these

metabolites are able to trigger the innate immunity in the central nervous

system by influencing development and activation status of brain-resident

macrophages. The macrophages residing in the brain comprise parenchymal

microglia and non-parenchymal macrophages located in the perivascular

spaces, meninges, and the choroid plexus. In this review, we highlight the

impact of age on the composition of the microbiome and microbiota-

derived metabolites and their influence on age-associated diseases caused by

dysfunctional brain-resident macrophages.
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Introduction

The loss of homeostasis, reduced function, and susceptibility to mortality are all

signs of aging. Inflammatory, metabolic, and degenerative illnesses associated with frailty

and cognitive decline are examples of age-related diseases. The molecular and cellular

markers of aging in mammals have been established at a fundamental level (López-

Otín et al., 2013), but they are associated with shifts in the microbiome, impacting the

pace of age-related decline. The intestinal barrier, which is made up of epithelial cells,

mucus, commensal bacteria, immune cells, and antibodies keeps the gut microbiota

contained inside the gastrointestinal lumen in homeostatic conditions (Vancamelbeke

and Vermeire, 2017). The gut microbiota releases a great diversity of metabolites to

overcome this constraint and to impose effects on the host, including the central nervous
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system (CNS). Parenchymal microglia and perivascular,

meningeal, and choroid plexus macrophages, representing non-

parenchymal CNS-associated macrophages (CAMs), are among

the innate immune cells of the brain (Kierdorf et al., 2019).

Together, they significantly influence cerebral inflammation

and can be targeted by gut-derived metabolites, especially with

increasing age (Mossad and Blank, 2021). Activities connected

with macrophages’ highly developed lysosomal compartment

are among their main tasks. Microglia and macrophages express

a number of receptor families that help them degrade old,

necrotic tissues and harmful substances from the circulation

and their surrounding milieu (Prinz et al., 2017). The CNS

is usually only mildly affected by transient activation of

brain macrophages. Aging, on the other hand, is associated

with chronic systemic inflammation and persistent brain

macrophage activation, which can cause major physiological,

behavioral and cognitive dysfunctions (Li and Barres, 2018;

Mrdjen et al., 2018). In light of this, systematic identification

of intestinal microbiota metabolites that reach the brain and

exploration of their functions during the aging process has

become a critical scientific field of interest.

Parenchymal microglia in aging

With an estimated number of 3.5 million in the CNS,

microglia account for ∼10% of cells in the adult mouse brain

(Lawson et al., 1990). They derive from primitive myeloid

progenitors arising from the yolk sac and maintain their

population in the adult brain by self-renewal (Ajami et al.,

2007; Ginhoux et al., 2010; Gomez Perdiguero et al., 2013;

Ginhoux and Guilliams, 2016). They have essential functions in

the brain ranging from development and homeostasis to several

pathologies in the CNS. Microglia regulate survival, as well as

apoptosis of neuronal cells, synaptic pruning, synaptogenesis,

and myelination (Li and Barres, 2018; Prinz et al., 2019) by

rapidly responding to neuronal injury and invading pathogens.

Therefore, microglia are considered to be a contributing factor

to several disorders of the CNS during neurodevelopment

and neurodegeneration (Prinz et al., 2019; Sierra et al., 2019).

Under physiological conditions, microglia are highly ramified

cells with long, thin processes and a small soma. Continuous

motion, protrusion, and retraction of the processes allow

microglia to scavenge large areas of their microenvironment for

damage-associated and pathogen-associated molecular patterns

(DAMPs, PAMPs). Additionally, their processes are important

for the establishment of cell-cell interactions between microglia

and cells of the vascular system, astrocytes, and neurons (Tam

and Ma, 2014; Colonna and Butovsky, 2017). Upon infection

or trauma and in neurodegenerative pathologies, microglia

encounter DAMPs or PAMPs, which induce morphological

conversion into an amoeboid structure allowing migration

and phagocytosis at the site of injury (Nimmerjahn et al.,

2005; Tremblay et al., 2011). Besides morphological changes,

an alteration of gene expression was observed, resulting in

increased expression of major histocompatibility complex II

(MHCII) antigens. Further, activated microglia release pro-

inflammatory cytokines amplifying the inflammatory response

(Hayes et al., 1987; Kim and Joh, 2006). While released pro-

inflammatory cytokines, including members of the interleukin

(IL) family, like IL-1β and IL-6 or tumor necrosis factor-α

(TNF-α), are intended to prevent further damage to cells of the

CNS, elevated levels of these cytokines can also damage glial

cells and neurons. Therefore, chronically activated microglia

or an imbalance in release of pro- and anti-inflammatory

cytokines is considered a contributing factor to development and

progression of neurodegenerative diseases (Smith et al., 2012).

While the role of microglia in neurodegenerative disease and

during aging of the brain is undisputed, the functional dynamics

of microglia during aging remain elusive. Microglia in aged,

healthy individuals display dystrophic morphologies showing

fragmentation and retraction of processes, less branching, and

de-ramification, all associated with senescence (Sheng et al.,

1998; Miller and Streit, 2007). The activation of microglia in

an age-dependent manner was already described three decades

ago in aged non-human primates (Sheffield and Berman, 1998),

rodents (Perry et al., 1993; Ogura et al., 1994), and humans

(Streit and Sparks, 1997). In addition, a downregulation of

sensome genes was observed, resulting in reduced ability to

survey the brain parenchyma (Streit et al., 2004; Hickman

et al., 2013). Additionally, an increase of microglial MHCII

expression has been observed in aged non-human primates,

suggesting a higher sensitivity to different stimuli (Sheffield and

Berman, 1998). Recent studies also revealed that microglia of

the aged brain release higher baseline levels of pro-inflammatory

cytokines, such as TNFα, IL-1β, IL-6, and IL-12b, as well

as anti-inflammatory mediators including TGFβ1 and IL-10

counterbalancing each other to maintain a steady state. The

same is observed in brains from humans with Alzheimer’s

disease (AD) (Streit et al., 2004; Miller and Streit, 2007; Costa

et al., 2021).

Non-parenchymal macrophages in
aging

Besides microglia, non-parenchymal macrophages occupy

different strategic niches in the choroid plexus (cpM8),

subarachnoid space and pia mater (mM8), and perivascular

(pvM8) spaces, thereby covering the whole CNS. They

can be differentiated by their localization and expression of

overlapping, as well as unique marker genes (Prinz et al.,

2017). Fate-mapping studies regarding the ontogeny of non-

parenchymal macrophages reveal that pvM8, as well as mM8

mainly derive from embryonic hematopoietic precursors and

constantly self-renew (Goldmann et al., 2016). CpM8 however,
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originate from both adult hematopoietic stem cells (HSCs) and

embryonic myeloid progenitors (Goldmann et al., 2016; Prinz

et al., 2017). Brain-resident macrophages not only differ in

localization from microglia, but also in their transcriptomic

profile. CpM8, mM8, and pvM8, but not microglia, highly

express mannose receptor (CD206), which is involved in

recognition of pathogens and endocytosis (Linehan et al., 2000;

Galea et al., 2005; Faraco et al., 2016). Further, non-parenchymal

macrophages in the brain are CD163 positive and express CD45

at a higher level thanmicroglia (Chinnery et al., 2010; Goldmann

et al., 2016). Besides transcriptional distinction from microglia,

single-cell RNA-sequencing shows that the gene expression

differs between populations itself. PvM8 and mM8 both can

be distinguished from cpM8 by expression of lymphatic vessel

endothelial hyaluronic receptor-1 (LYVE1) (Zeisel et al., 2015;

Goldmann et al., 2016). In the healthy CNS, brain-resident

macrophages react to DAMPs and PAMPs via receptors on their

surface by induction of pro-inflammatory cascades. Similar to

microglia, the signaling cascade drives morphological changes

toward an amoeboid phenotype and leads to elevated levels of

pro-inflammatory cytokine secretion (Prinz and Priller, 2014).

The different subsets are suggested to be involved in monitoring

of the CNS and clearance of cellular debris and pathogens

(Nayak et al., 2012; Kierdorf et al., 2019). During aging,

senescent macrophages progressively lose their ability of a pro-

inflammatory response as well as phagocytic and chemotactic

functions (Shaw et al., 2013).

Influence of the microbiome on CNS
macrophages

Recent research has found that the microbiome influences

the properties and function of CNS macrophages. Studies in

germ-free (GF) mice revealed the importance of the microbiome

inmicroglial development andmaturation, as well as function in

the adult brain. Microglia from adult GF and specific pathogen-

free (SPF) mice display different morphologies including branch

points, dendrite length, segment number, and cell volume.

Additionally, the transcriptomic profile of microglia in GF

mice shows a downregulation of several genes involved in cell

activation and induction of immune response (Erny et al., 2015).

The lack ofmature gene expression in thesemicroglia is linked to

the absence of microbiota in the gut intestinal tract and disrupts

their ability to respond to immunostimulants (Erny et al., 2015).

When challenged with lipopolysaccharides (LPS), microglia

from GF mice show a decreased expression of IL-1β, IL-6,

and TNF-α and reduced amoeboid morphology, associated with

activation. These findings suggest a crucial role of themicrobiota

in microglial maturation and function during immune response

(Erny et al., 2015). It is interesting to note that microglia

also have sex- and age-dependent responses to microbiota.

For example, male mice’s microglia are more sensitive to

microbiome loss in the embryonic stage, but femalemice’s lack of

microbiota causes themost significant changes in transcriptomic

profiles during maturation. Dimorphic alterations in microglial

markers reveal a link between gut microbiota and gender-

biased CNS diseases (Thion et al., 2018). In fact, several

neurological diseases associated with microglial dysfunction

are accompanied by dysbiosis, an imbalance of the microbial

community in the gastrointestinal tract (GIT) (Hsiao et al.,

2014; Sampson et al., 2016). One of the most prominent

neurological diseases associated with aging is AD (Nichols et al.,

2019). Men and women with AD have different cognitive and

psychiatric symptoms, and women experience faster cognitive

deterioration after being diagnosed with AD dementia (Ferretti

et al., 2018). In AD mice, fecal microbiomes show striking

increases in Verrucomicrobia and Proteobacteria as well as

significant decreases in Ruminococcus and Butyricicoccus. This

indicates altered microbiota composition and diversity, while

the observed reduced SCFA levels point toward alterations in

several metabolic pathways (Zhang et al., 2017). Similar to the

findings in AD mouse models, microbial taxa are also altered

in AD patients compared to control subjects. However, the data

seem somewhat conflicting because the phylum Bacteroidetes

was reported to be either increased (Vogt et al., 2017) or slightly

decreased in AD patients (Zhuang et al., 2018), depending on

the study. One of the key symptoms of AD, the amyloid-beta

(Aβ) burden, is influenced by the gut microbiome. Studies in

GF and SPF 5x familial AD (5xFAD) mice (Oakley et al., 2006),

a mouse model for AD, uncovered a reduced pathology in GF

(Mezö et al., 2020) or antibiotics-treated animals (Guilherme

et al., 2021) marked by lower Aβ plaque burden. In support

of these findings, deficiency of bacteria in the GIT leads to

an elevated uptake of Aβ by microglia (Mezö et al., 2020).

These results could only be observed in young mice and

seem to be age-dependent since the Aβ load in aged mice

becomes indistinguishable between GF and SPF mice. Biological

age and gender seem to be important factors influencing

microglial function under pathological and non-pathological

conditions. Similar studies have focused on non-parenchymal

macrophages in the CNS. The function of CNS-associated

macrophages (CAMs) was analyzed in 5xFAD mice under SPF

and GF housing conditions. It was revealed that cpM8 are

responsive to the absence of the microbiome. Additionally,

gut microbiota influences the Aβ uptake of pvM8 in 5xFAD

mice (Sankowski et al., 2021). Further, CAMs in GF mice

lack an appropriate response to immunostimulants typically

characterized by expansion and expression of CD74. These

findings suggest that the innate immune response depends

on the presence of microbiota in the GIT and absence of

the microbiome disrupts innate immunity (Sankowski et al.,

2021). The gut microbiota has a major influence on CNS

macrophages during development until adulthood and their

metabolites govern the inflammatory response in the CNS,

which is mediated by macrophages. Brain macrophages may
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act as crucial mediators between the gut microbiome and CNS

disorders as seen in the case of AD.

Gut-brain-axis in aging

Countless bacteria, viruses, yeasts, bacteriophages, and fungi

inhabit our bodies. While microorganisms can be found on

almost all environmentally exposed surfaces of our body, the

gastrointestinal tract (GIT) shows the highest number and

density of microbiota. These communities have significant

impact on numerous physiological mechanisms, such as

function of the immune system and metabolism (Zhuang et al.,

2018; Dabke et al., 2019). The gut modulates several functions

in the brain by bacteria-derived metabolites, hormones, and

neuroactive substances reaching the CNS via the vagus nerve,

enteric nervous- and circulatory system, and immune system

(Long-Smith et al., 2020). Conversely, the central nervous

system modulates gut function through the hypothalamic-

pituitary-adrenal axis, as well as the autonomic nervous system

(Mart’yanov et al., 2021). The composition and activity of

microbiota in the GI tract is highly dynamic and influenced by

internal factors, such as age and genetics of the host, as well

as external factors including dietary changes, and over-use of

antibiotics (David et al., 2014; de la Cuesta-Zuluaga et al., 2019;

Vich Vila et al., 2020). Accordingly, each microbiome is unique

and remarkably varies in composition between individuals,

even under healthy conditions. An alteration of the bacterial

community in the gut, medically termed dysbiosis, is strongly

associated with several host diseases including disorders of

the CNS (Sudo et al., 2004; Bäckhed et al., 2005; Clarke

et al., 2013; Sommer and Bäckhed, 2013; Hsiao et al., 2014;

Singh et al., 2016; Fang et al., 2020). The blood-brain barrier

(BBB), which connects the CNS to the periphery, is crucial

for the protection against pathogens and potentially neuron-

harming immune reactions (Daneman and Prat, 2015). This

function is achieved by precise regulation of in- and efflux

of molecules, ions, and cells (Engelhardt and Liebner, 2014).

Bacteria-derived metabolites are also able to pass the BBB and

are important in CNS development and homeostasis, but also

play a role in the development and progression of diseases

of the CNS (Heijtz et al., 2011; Rutsch et al., 2020; Mei-Sin

Tran and Mohajeri, 2021). The bidirectional communication

between the CNS and the intestinal microbiome is referred

to as the gut-brain axis (Sudo et al., 2004; Skonieczna-

zydecka et al., 2018) and is indispensable for maintenance

of homeostasis of the gut and CNS (Martin et al., 2018;

Cryan et al., 2019). There is growing evidence, that the BBB

is significantly affected by the composition of gut bacteria.

Germ-free mice, as well as mice treated with broad-spectrum

antibiotics, display dysregulated tight-junctions resulting in

enhanced BBB permeability (Braniste et al., 2014). Importantly,

during the aging process and even more so in the context of

neurodegenerative disorders, the BBB is getting increasingly

more defective, which enables the entry of neurotoxic gut-

derived products into the brain where they elicit inflammatory

and immune responses (Zlokovic, 2011). According to reports,

with increasing age, the brain endothelium gradually becomes

dysfunctional, linked to abnormal BBB alterations (Cai et al.,

2017; Edwards et al., 2019). The extracellular matrix (ECM) of

the basal membrane or basal lamina, which is thought to be

homogeneous and thin, covers the brain endothelium. In the

course of aging in healthy humans, laminin concentrations fall

while collagen IV concentrations raise, increasing the ECM’s

thickness (Candiello et al., 2010). ECM promotes the production

of occludin, a member of tight junction proteins, which helps

to maintain BBB integrity. Thus, alterations in the ECM lead

to disruptions in the BBB, causing increased permeability

(Candiello et al., 2010; Sanchez-Covarrubias et al., 2014). As

we age, additional physiological functions start to deteriorate,

which becomes evident in reduced intestinal function, as well

as declining immunity, and significant changes in the microbial

composition in the GIT. Many of these age-related phenomena

can be traced back to dysbiosis. The microbiome of aged

individuals is characterized by decreased diversity, together

with an increased abundance of bacteria associated with pro-

inflammatory effects microorganisms, comprising including

Enterobacteriaceae and Clostridia and reduced numbers of

Bifidobacterium and Lactobacillus, both beneficial genera

(O’Toole and Jeffery, 2015; Odamaki et al., 2016). Recent

studies suggest an association between age-related changes of

the gut-microbiome and several pathologies and diseases, e.g.,

cancer, insulin resistance, diabetes, cardiovascular disease, and

neurodegenerative diseases (Gérard and Vidal, 2019; Vivarelli

et al., 2019; Cheng et al., 2020; Fang et al., 2020; Kazemian et al.,

2020).

Gut metabolites in aging

Bacteria in the GIT contribute greatly to the degradation

of indigestible compounds by synthesis of a variety of enzymes

(Rowland et al., 2018). Besides support of digestion, gut

microbiota produce numerous metabolites. These bioactive

substances have profound effects on the host including the

regulation of metabolic pathways by, for example, feedback

mechanisms, absorption of nutrients and the microbiota

composition itself (Perino et al., 2021; de Vos et al., 2022).

Advanced metabolomics tools uncovered a large number of

bacteria-derived metabolites including short-chain fatty acids

(SCFAs), choline metabolites and bile acids (Tang et al., 2019).

As the natural consequence of age-associated changes in the

composition of microbiota in the gut, levels of bacteria-derived

metabolites are altered. Metabolomics of fecal matter derived

from aged individuals with age-matched or mismatched gut-

microbiome revealed significant differences in eight metabolites
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(Yoshimoto et al., 2021). Three of these metabolites were

enriched in stool samples from individuals with an elderly

gut-type. Trimethylamine (TMA) and its precursor choline, as

well as propionic acid were all abundantly present. Choline

and TMA also induced the expression of interleukin (IL) 8

and IL-21, both pro-inflammatory cytokines inducing colorectal

cancer cell growth and survival (Rubie et al., 2007; Mager

et al., 2016). In-vitro analyses of these metabolites revealed

that they negatively influence the mucosal layer of the gut

epithelial layer by suppression of tight junction-related genes

in human normal colonic epithelial cells (HCoEpiCs). Further,

cholic acid, enriched in the younger microbiome group, leads to

an upregulation of these genes in HCoEpiCs (Yoshimoto et al.,

2021). Consequently, with increasing age, various metabolites,

either from dietary sources or generated directly by the gut

microbiota, are able to reach the blood circulation and ultimately

the brain. This process is inhibited at younger ages when the

integrity of the gut epithelium, as well as the BBB are still

intact. We have verified N6-carboxymethyllysine (CML) as one

of these metabolites, which is found in processed food and

shows higher levels in human sera and brains with increased

age. The greater levels of CML in old mice were mediated

by a microbiota-dependent rise in intestinal permeability and

triggered microglial reactive oxygen species (ROS) production,

which inhibited mitochondrial function and impaired ATP

production and storage (Mossad et al., 2022). While these data

suggest that elevated levels of certain age-associated metabolites

contribute to increased gut permeability during aging in-vitro,

human in-vivo studies are conflicting. More recently, in-vivo, as

well as ex-vivo human studies showed no significant differences

in permeability of the small intestine, colon, or whole gut

between young and aged individuals (Wilms et al., 2020). On

the contrary, Man et al. discovered a correlation between aging

and changes in permeability of the small intestine (Man et al.,

2015). Further assessing the significance of aging with respect

to intestinal barrier function will be needed to form a more

comprehensive view on gut permeability in aged individuals.

Short-chain fatty acids

SCFAs are saturated fatty acids and products of anaerobic

bacterial fermentation of dietary fibers (Louis and Flint, 2009).

They mainly comprise of acetate, propionate and butyrate

(Fernandes et al., 2014; Luu et al., 2019). Generally, the role

of SCFAs in the physiology of the host involves maintenance

of gut barrier integrity and support of GIT homeostasis

(Donohoe et al., 2011; Den Besten et al., 2013). Most of the

SCFAs in the gut are absorbed by colonocytes, where they

influence colonic blood flow, water and salt uptake, and gut

motility (Salminen et al., 1998). Further, SCFAs are able to

reach the BBB via the bloodstream, where they can directly

act on the integrity of the BBB (MacFabe, 2012). Studies

in colonized germ-free mice showed the influence of SCFAs

on the permeability of the BBB. By colonization of germ-

free animals with butyrate-producing bacteria, tight-junction

proteins are upregulated leading to decreased BBB permeability

(Braniste et al., 2014). Fecal levels of SCFAs are significantly

reduced in aged individuals, which can be attributed to age-

related changes in microbial composition (Salazar et al., 2013,

2019). Surprisingly, the bacterial communities in young and

elderly humans show both similar numbers of SCFA producing

bacteria (Salazar et al., 2019). This divergent trend in levels

of bacteria and SCFAs suggests a reduction in metabolic

activity of gut-resident bacteria with age. Reduced levels of

SCFAs are associated with several diseases such as AD and

Parkinson’s disease (Marizzoni et al., 2020; Chen et al., 2022).

Like other metabolites, SCFAs can cross the BBB and interact

with microglia. High levels of SCFAs in the brain inhibit

the inflammatory response of peripheral monocytes, but low

levels, as reported in the elderly, are related with systemic CNS

inflammation (Wenzel et al., 2020). At the same time, data

strongly suggest a crucial role for SCFAs in modulating the

BBB integrity itself, as seen in the cases of the SCFA butyrate

(Park and Sohrabji, 2016) and propionate (Hoyles et al., 2018).

Augmenting the access of butyrate and propionate to the BBB

during aging should antagonize the unfavorable consequences

of a compromised BBB for brain function.

Trimethylamine N-oxide

Choline-derived Trimethylamine N-oxide (TMAO) is an

amine oxide and osmolyte, which is enriched in certain foods,

such as marine crustaceans and fish (Velasquez et al., 2016).

Besides direct uptake of TMAO through diet, the microbiota

in the GIT is able to produce trimethylamine (TMA), the

precursor of TMAO. These bacteria process choline, lecithin and

carnitine derived from red meat and other animal products to

TMA, which is converted into TMAO by host hepatic enzymes

(Koeth et al., 2014). High levels of TMAO, regardless of the

source, are mostly associated with cardiovascular disease (Tang

et al., 2013). However, several other age-related pathologies have

been reported to be closely linked to elevated TMAO levels

including arteriosclerosis (Tang et al., 2013), Alzheimer’s disease

(Xu andWang, 2016) and cancer (Guertin et al., 2017). Levels of

circulating TMAO have been found to be significantly increased

in aged humans, as well as in mice and rats (Li et al., 2017; Li

et al., 2018) suggesting a correlation between age and TMAO

production. Studies in mice showed that treatment with TMAO

negatively influences cognition and working memory (Li et al.,

2018; Govindarajulu et al., 2020). Further, TMAO promotes

neuronal senescence and synaptic damage while downregulating

the expression of proteins associated with synaptic plasticity

and inhibition of the mTOR signaling pathway (Li et al., 2018).

These TMAO-induced processes contribute, at least partially, to
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age-related deterioration of the brain and cognitive dysfunction.

Individuals with mild to severe cognitive impairment and AD

patients show elevated levels of TMAO in their cerebrospinal

fluid (CSF), indicating an involvement of TMAO in neurological

decline (Vogt et al., 2017). This hypothesis is strengthened

by a recent study showing plasma levels negatively correlating

with cognitive function, which is mediated by inflammatory

signaling in microglia (Brunt et al., 2021). Additionally, an

increase of oxidative stress driving mitochondrial impairments

has been observed in the hippocampus of TMAO-treated mice.

While the negative effects of ROS are typically neutralized

by antioxidants, an imbalance leads to oxidative stress, which

is associated with a variety of age-related diseases (Liguori

et al., 2018). In a rat model similar observations were made

when treatment with TMAO raised pre-operative and post-

operative plasma levels of TMAO, which exacerbated microglia-

mediated neuroinflammation (Meng et al., 2019). Contrasting

these detrimental effects, data using an integrated in vitro/in

vivo approach indicate that TMAO can improve BBB integrity

and shield the brain from inflammatory insults by increased

expression of the tight junction regulator annexin A1. Chronic

TMAO exposure would thus limit microglial responsiveness in

a brain region-specific way and protect the aging brain from

inflammatory insults (Hoyles et al., 2021). This assumption is

based on data indicating that microglia of the entorhinal cortex

are sensitive to the presence of TMAO while microglia in the

neighboring hippocampus appear not to be affected (Hoyles

et al., 2021).

δ-Valerobetaine

Most recently a precursor of TMAO, δ-Valerobetaine, a

small metabolite, was the subject of several studies investigating

the influence of this gut-derived metabolite on the host.

The production of δ-Valerobetaine in mammals relies on

gut-resident bacteria (Servillo et al., 2018; Liu et al., 2021).

Incubation of monocultures of gut-resident bacteria with the

precursor of δ-Valerobetaine revealed that several taxa including

Lactobacilli, Escherichia coli, and Bifidobacterium longum are

able to convert Nε, Nε, Nε-trimethyllysine to δ-Valerobetaine

(Liu et al., 2021). δ-Valerobetaine is found in the circulation

and different organs including brain and liver of SPF mice,

but absent in GF mice. Conventionalization of GF mice with

bedding of SPF mice, however, leads to comparable levels of δ-

Valerobetaine in the serum and organs (Liu et al., 2021). Mossad

et al. showed the age-dependency of δ-Valerobetaine levels in

serum and brain of mice and humans. The heightened levels of

δ-valerobetaine in aged individuals were reversed by fecal matter

transplantation (FMT) from young to aged mice, confirming the

source of δ-valerobetaine as the bacteria in the GIT. Further,

treatment of young mice with δ-valerobetaine revealed that high

concentrations of this metabolite in the serum are strongly

associated with cognitive impairment and negatively impacts

learning and memory processes (Mossad et al., 2021). The role

of δ-valerobetaine in age-related cognitive impairment remains

elusive. In hepatic cells, however, δ-valerobetaine decreases

cellular carnitine and mitochondrial acyl-coenzyme A, both

crucial for mitochondrial fatty acid oxidation. This study also

showed that high δ-valerobetaine concentrations correlate with

levels of di- and triacylglycerides in several organs, including the

brain. Both of which are associated with AD (Wood et al., 2015;

Zhang et al., 2020).

Amino acid metabolites

Amino acids are a crucial part of macronutrients in

mammalian diets and essential for production of peptides

and synthesis of bioactive molecules involved in signaling

pathways and metabolism (Wu et al., 2014). Gut-resident

bacteria influence bioavailability by utilizing amino acids

derived from the host or dietary sources for synthesis of various

metabolites (Wikoff et al., 2009; Dai et al., 2011). Importantly,

several nutritionally essential amino acids can be synthesized

de novo by bacteria in the GIT (Metges, 2000). Particularly

interesting is tryptophan, an aromatic amino acid, which is

derived from protein-rich foods (Shabbir et al., 2013). The

metabolism of tryptophan by gut-resident bacteria contributes

greatly to the synthesis of 5-Hydroxytrypanim (serotonin),

tryptamine, and kynurenines, all involved in the bi-directional

communication of the gut-brain axis (Slominski et al., 2002;

Agus et al., 2018). Among the already mentioned bioactive

molecules, tryptophan-metabolizing bacteria synthesize indoles,

ligands for the aryl hydrocarbon receptor (AhR) important in

neurological processes. AhR signaling is involved in several

neurological processes. In microglia, AhR signaling indirectly

controls astrocyte activation via regulation of transforming

growth factor β (TGF-β) and vascular endothelial growth factor

B (VEGF-B) expression (Rothhammer et al., 2018). Stimulation

of astrocytes via indoles binding to the AhR receptor has been

shown to reduce severity of multiple sclerosis (MS) symptoms

and brain inflammation in a MS mouse model (Rothhammer

et al., 2016). Indoles can cross the BBB under non-pathological

conditions as seen from experiments where oral administration

of indole increased adult neurogenesis in WT C57BL/6J mice

via AhR signaling (Wei et al., 2021). This observation makes

it very likely that indoles can also reach the brain during aging

and modify microglia function. In support of this assumption,

it has to be noted that the aging brain displays elevated type I

interferon-levels, which can be sensed by microglia and favor

AhR expression (Baruch et al., 2016; Deczkowska et al., 2017).

Lipopolysaccharide (LPS)

Lipopolysaccharides are crucial elements of gram-negative

bacteria’s outer membrane. They are substantial amphipathic

glycoconjugates, often made up of a core oligosaccharide
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and a distal polysaccharide linked to a hydrophobic lipid

domain. Due to the fact that these molecules include both

lipid and sugar molecules, they are sometimes referred to

as lipoglycans (Kuhn, 2019). Dysbiosis of the gut microbiota

associated with aging increases the paracellular permeability

of the gut and permits LPS to escape into the bloodstream.

In addition, the BBB becomes more permeable with age,

allowing circulating pro-inflammatory LPS to enter the brain

tissue (Thevaranjan et al., 2017). In a mouse model with

accelerated aging, microglia also exhibit greater proliferation

along with an elevated and uncontrolled inflammatory response

to peripheral inflammatory stimuli, such as LPS (Raj et al.,

2015). LPS is further a well-known ligand for toll-like receptors

(TLRs) 4 that, when activated, causes microglia to generate pro-

inflammatory cytokines (Papageorgiou et al., 2016). Functional

transcriptomics predicted that LPS is the most important

upstream regulator of lipid droplets inmicroglia (Marschallinger

et al., 2020). A hydrophobic core of neutral lipids, primarily

triglycerides and cholesteryl esters, surrounds a phospholipid

monolayer adorned with proteins known to govern lipid droplet

function. These lipid-droplet-accumulating microglia, present

in aged brains, have phagocytosis abnormalities, create more

ROS, and release higher levels of pro-inflammatory cytokines

(Marschallinger et al., 2020). The decreased phagocytic ability of

lipid droplet-containing microglia proposes a putative feedback

loop in which excessive lipid droplet build-up in these cells

slows phagocytosis rates. In the aging brain, lipid droplets

are not restricted to microglia only but are also present in

perivascular and meningeal macrophages. There is no current

data on the functional consequences for both cell types available

(Shimabukuro et al., 2016).

Conclusions

There is now increasing evidence that metabolites produced

in the gut can enter the brain and impact brain macrophages. In

consequence, it is important to better understand the underlying

mechanisms of age-related dysbiosis, which causes changes in

gut-derived metabolites and ultimately influence the CNS, as

well as immune and endocrine responses of the host. Several

studies have found that microbial metabolites can affect gut–

brain responses, affecting the morphology and function of

brain macrophages. These changes include their polarization

and phagocytic capacity, which, in turn, controls behavior and

emotional processes. The notion that age-related changes in

gut microbial ecology and function, as well as the participation

of specific bacterial species, might be predictive for pertinent

clinical problems is a basic issue that has to be resolved. A

roadblock in today’s microbiota-based biomedical research is the

modest and long-term impact on psychological and cognitive

performance. Probiotic and microbiota-based therapies may

take months to years to affect neuropsychiatric illnesses, while

the influence of the microbiome on host coagulation can be seen

fairly rapidly. In this regard, integrating multiple metabolomic,

metagenomic, metatranscriptomic, and proteomic methods

to facilitate a more detailed portrayal of the multifaceted

microbial ecosystem and key metabolites in order to verify their

therapeutic potential as adjuvant in the treatment of age-related

gut–brain axis pathologies will be a promising strategy.
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