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Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The
use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no
appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow
studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the
nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of
coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the
sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents
the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can
study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the
skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that

carry out the different cellular processes present in the expression experiments.

1. Introduction

Organisms have evolved to vary internal and external cell
environments by carefully controlling the abundance and
activity of these proteins to suit their conditions. To simplify
this task, genes whose products function together are often
under common regulatory control. This regulatory control is
such that these genes are coordinately expressed under the
appropriate conditions. The experimental observation that a
set of genes is coexpressed frequently implies that the genes
share a biological function and are under common regulatory
control [1]. These regulators that govern the expression of
sets of coexpressed genes that carry out the appropriate cell
functions are also regulated and synchronized among them.
Nevertheless, the regulation and synchronization among
the regulatory mechanisms is much more complex. These
regulatory mechanisms are not directly regulated by the

other regulatory mechanisms, but by the coexpressed genes
product of their activation cascade. These coexpressed genes
switch from the inhibition to the allowance of a regulatory
mechanism depending on if they reach or lose certain
expression levels. Furthermore, these regulatory mechanisms
are multiregulated. The final activation or deactivation of
a regulatory process will depend not only on internal and
external factors to the cell but also on the expression level
of a set of coexpressed genes. For this reason, to study
the synchronization and regulation among the regulatory
mechanisms based on gene expression is really difficult.
Furthermore, many proteins have multiple roles in the cell
and act with distinct sets of cooperating proteins to fulfil each
role. The genes that synthesize these proteins are therefore
coexpressed with different sets of genes, each one governed
by a distinct regulatory mechanism, in response to the
varying demands of the cell. The experimental conditions will
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determine the regulatory mechanism activated in each case
and thus the set of coexpressed genes that will be activated.
An increased number of different experimental conditions
for the same genes will provide less genes in each set of
coexpressed genes, more different sets, and higher alternation
of the activation and deactivation of the coexpressed genes.
But irrespective of the conditions, how can we study the effect
of their activation and deactivation on the rest of sets of
coexpressed genes?

Microarray technology, as well as the new techniques of
next generation sequencing (NGS), allows us to obtain large
size gene expression arrays [2]. These gene expression arrays
contain the expression levels of thousands of genes for tens
of sample conditions. The usual analyses of these data are
focused on the differentially expressed genes [3] as well
as on the use of clustering methods to obtain the sets
of coexpressed genes. It is of vital importance to detect
these clusters of coexpressed genes, among other reasons,
because, as mentioned before, these clusters of coexpressed
genes carry out the different cellular functions [1]. There
are powerful coexpression analysis tools for this purpose
[4, 5]. As expression arrays allow simultaneous analyses of
thousands of genes, we can study genes responsible for very
diverse cellular functions. Therefore, it makes it easier for
the researcher to understand the cellular behaviour in the
performed experiments from a holistic point of view, that is,
involving the largest number of cellular processes possible.
Without this holistic point of view it is very difficult to deal
with the multiple functions, phenotypes, or states of the living
beings, in which a large amount of genes are collaborating.
This holistic point of view can be useful to characterize phe-
notypes previously unknown, like for instance the description
of the “fish fever” in zebrafish [6]. Nevertheless, even though
clustering methods allow us to obtain coexpressed genes and
thus differentiate diverse cellular processes, clustering meth-
ods explain very little of the expression relationships between
the different sets of coexpressed genes. As a consequence, the
researcher is constrained to study each one of the coexpressed
gene sets individually, losing much of the potential that the
technologies for obtaining gene expression arrays offer.

Current statistical technologies allow us to study inclu-
sion relationships between clusters of coexpressed genes, that
is, to study which clusters of coexpressed genes would be
more correlated and which others would be more uncorre-
lated [7]. But they do not go much beyond that. The main
obstacle to the tools that attempt to study the regulation
of coexpressed genes is that the low number of copies of
the regulatory genes impedes the correct capture of their
expression by technologies to obtain gene expression. Fur-
thermore, the coexpression of genes is strongly linked to the
chromatin structure, especially in multicellular organisms.
This chromatin structure depends on a complex network of
cellular signalling and posttranscriptional modifications of
proteins (phosphorylation, acetylation, ubiquitination, etc.).
So, even having detected the regulatory genes, we would have
an incomplete puzzle. All of this makes it enormously difficult
for the tools to be able to obtain information about the regu-
lation among the sets of coexpressed genes and the processes
they carry out. Then, without these regulatory elements, how
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can we describe a regulatory network among the processes
performed by the sets of coexpressed genes? Based on the
dependences between the gene expressions product of this
complex regulation. Furthermore, these final genes present
expression ranges wide enough so the fluctuations of their
expression dependences can be analysed.

With the developed tools, we expect to detect the complex
expression dependences between the different sets of coex-
pressed genes, synthesize them, and make them easier for the
researcher to interpret. With this purpose we will provide the
researcher with networks that show the expression depen-
dences between all the coexpressed gene sets of the network.
In this way, the researcher will be able to study the alternation
or synchronism among all these sets of coexpressed genes.

Our methodology is based on the following three princi-
ples. First, the interdependence between sets of coexpressed
genes cannot be described by linear expression relationships.
Second, if two genes maintain an expression relationship
with a certain type of curve, the genes coexpressed with
these two genes maintain expression relationships of the same
type between them. Third, the curve type of the intergroup
expression relationships will describe the dependence of
activation and deactivation between these sets of coexpressed
genes. Thus, the strategy proposed here is focused on the
detection of nonlinear expression relationships between sets
of coexpressed genes.

Activation and deactivation dependences between sets of
coexpressed genes can be very complex; some of the most
common ones are those in which a set of coexpressed genes
act as a trigger of another set of coexpressed genes; the case
of antagonist processes, where the coexpressed gene set that
carries out each process needs to be totally deactivated so
the other set can express; or sets of coexpressed genes that
activate or deactivate another set of coexpressed genes when
losing their basal values of expression. In any case, the system
does not anticipate any type of expression relationship. Since
the system is able to recognize curves of very different
shapes, it can process unknown activation and deactivation
relationships as reliably as when processing the best known
relationships.

There are multiple works that highlight the relevance of
the analysis of nonlinear expression relationships [8-10]. In
the last cited work [10] the difference of considering the
nonlinear relationships with respect to considering only the
linear relationships can be observed very clearly.

As it is shown in the mentioned paper [10], nonlinear
expression relationships allow detecting new hubs in gene
networks, because they allow relating genes by complex
expression relationships and to discover new relationships
that otherwise would not be possible to detect. Now, the
next step in the analysis based on nonlinear expression
relationships is to deepen in the study of complex expression
dependences between sets of coexpressed genes. In order to
perform this task we need to detect the types of curve of the
expression relationships, since the type of curve describes the
type of relationship between the sets of coexpressed genes and
thus between the processes that these sets of genes carry out.

The ultimate goal of our approach is that researchers
are able to know the networks of processes hidden in their
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experimental data, as well as the activation and deactivation
relationships between all of these processes. Furthermore, if
the researcher is particularly interested in specific genes, the
system will allow him/her to study the way the expression of
a gene activates and deactivates different processes from the
process that this gene, and those genes coexpressed with it,
carry out.

2. Methodology

2.1. The Suitable Expression Data to Be Analysed. The appro-
priate data to be analysed by our methodology must come
from large sample series (i.e., expression matrices with a high
number of sample conditions). This large sample series will
not consist of repetitions of the same sample condition; on
the contrary, it must include the highest number of different
sample conditions. A sample series with few experiments
or with repetitions of the same experiment will not allow
detecting coexpressed genes and even less to detect complex
expression relationships. Note that de-noise, normalization,
and similar procedures should be considered before using our
tools.

The examples provided in the paper and supplemen-
tary materials use the data from AT _matrix. This matrix
is the correlation between survival (A_matrix) and expres-
sion (T_matrix). A_matrix contains the growth inhibitory
activities of 118 compounds tested on 60 tumour cell lines.
This compound set includes most of the drugs currently
in clinical use for tumour treatment. The microarray data
(T_matrix) reflect the level of expression 0f 1376 genes, plus 40
individually assessed targets (proteins) and 40 other targets
in the previous 60 tumour cell lines. AT _matrix links both
matrices using the 60 tumour cell lines as a sample space to
generate a correlation matrix of 1416 rows (genes and targets)
by 118 columns (substances) [13]. These expression data were
chosen because they cover a wide range of phenotypes shared
by many different human tumour tissues.

2.2. PCOP. The mathematics behind this system uses the
principal curves of oriented points (PCOP) calculation [10]
to describe the expression relationships inner pattern. The
principal curves is a nonlinear and nonvariable-dependent
analysis technique, which is very suitable for the nonlinear
analysis of expression relationships [14]. PCOP is defined by
the generalization, at local level, of the following principal-
component property: for a normal multivariable distribution
X, if X is projected over a hyperplane, the total variance of the
projection is minimised when the hyperplane is orthogonal
to the first principal component. In this way, a principal
oriented point (POP) is found for each local area, and the
curve that goes throughout all of the POPs is the PCOP. The
PCOP method provides the uncorrelation factor f. The f
calculation considers not only the data dispersion around
the curve, but also how well the curve pattern describes the
morphology of the data cloud for any continuous curve type
[10]. Thus, this f value provides an excellent measure for the
nonlinear correlations.

2.3. Genes Coexpressed with a Pair of Genes with a Nonlinear
Expression Relationship between Them. All the nonlinear
expression relationships are detected for each gene of the
expression array. These nonlinear expression relationships
are classified by the type of curve. The curvature points of
the PCOP are used to identify and classify the nonlinear
expression relationships. Curvature points are those POPs in
the PCOP in which a change in slope occurs. The detection
of curvature points in expression relationships identifies the
nonlinear expression relationships. The type of curve is
described by the function of the curve: y = €*, y = —e%,
y=-In(x), y=x% y=-x> y=x"1=x+ y* and so on.
The genes coexpressed with each gene are also detected (none
curvature points are detected in the PCOP of two coexpressed
genes). This will allow us to study the nonlinear expression
relationships between a user’s gene of interest and different
sets of coexpressed genes.

The correlation degree provided by the PCOP calculus is
what guarantees us that the linear expression relationships
(coexpressed genes) as well as the nonlinear expression
relationships (intergroup expression relationships) are not
a product of chance and have a biological meaning. For
this reason, we require a high correlation degree for the
linear expression relationships as well as for the nonlinear
expression relationships. We are also restrictive in the clas-
sification of the expression relationships as linear expression
relationships and the consequent consideration of two genes
as coexpressed genes. Even a small curvature in the relation-
ship of two coexpressed genes can cause a diversity in the
typology of the expression relationships of these two genes
with the genes of another set of coexpressed genes, more con-
cretely, being A and B, two coexpressed genes whose linear
expression relationship has a small curvature, and being C, a
set of coexpressed genes that maintain nonlinear expression
relationships with A and B. The expression relationships of
gene A with set C may describe a different typology with
respect to the expression relationships of gene B with set C.

2.4. Cliques of Nonlinear Expression Relationships between
Genes. A clique in an undirected graph is a subset of its
vertices such that every two vertices in the subset are
connected by an edge. If we consider a graph of all the
nonlinear expression relationships with a high correlation,
we obtain its cliques. These cliques will not relate sets of
coexpressed genes yet, but genes individually. Nevertheless,
as the cliques are not relating pairs of genes but several genes
in a network of nonlinear expression relationships, the cliques
will be the seed to relate the sets of coexpressed genes between
all of them. The genes of a clique must be at least three
and they must maintain nonlinear expression relationships
between all the genes of the clique.

2.5. Pairs of Isomorphic and Linear Cliques of Nonlinear
Expression Relationships. Once the cliques are detected, they
are grouped in pairs by relating genes that belong to the same
set of coexpressed genes.

The cliques that will form each pair will meet two
conditions.



(1) Each one of the genes of a clique will be coexpressed
with a different gene of the other clique, forming pairs
of coexpressed genes.

(2) The type of curve that relates two pairs of coexpressed
genes will be the same in both cliques.

This provides us with pairs of cliques. Each gene of a
clique will be coexpressed with a different gene of the other
clique forming pairs of coexpressed genes. Then, the exp-
ression relationships that relate genes from different pairs of
coexpressed genes will maintain the same type of curve for
the two genes of the pair.

2.6. Cliques of Isomorphic and Linear Cliques of Nonlin-
ear Expression Relationships among Genes. On the previous
section we obtained the nonlinear expression relationships
between pairs of coexpressed genes. Now, we obtain sets
of coexpressed genes that maintain nonlinear expression
relationships between them by grouping these pairs of coex-
pressed genes into sets of coexpressed genes. If we consider
a graph where the vertices are the cliques of nonlinear
relationships between genes and the edges link the pairs of
linear isomorphic cliques, now we will calculate the cliques
of this new graph obtaining the cliques of cliques. Thereby
we obtain the skeleton of each set of coexpressed genes and the
nonlinear expression relationships between the skeletons. The
different networks among sets of coexpressed genes will be
formed from the relationships between the skeletons of each
set of coexpressed genes.

The genes of the skeleton of a set of coexpressed genes
are those genes of the set that maintain a high-correlated
nonlinear expression relationship with the skelefon of the
other sets. The genes of the set of coexpressed genes that are
not part of the skeleton will be coexpressed with the genes of
the skeleton. These genes coexpressed with the skeleton will
maintain the same type of nonlinear expression relationship
with the other sets of coexpressed genes the closer they are to
a y = x relationship with respect to the genes of the skeleton.
Deformations of this y = x relationship between the genes
of the set and its skeleton genes will produce a distortion of
the expected curve. A higher variance in the coexpression
with respect to the skeleton genes will also imply a higher
variability in the expected type of curve.

The higher the number of genes of the skeleton is,
the more representative the processes carried out by the
coexpressed gene sets are. Thanks to the second condition
of the linear-isomorphic-cliques definition we can make sure
that the relationships between the genes of the skeleton of
different sets of coexpressed genes maintain the same type
of curve for all the genes of the skeleton. In the same way,
we can also make sure that the genes coexpressed with the
skeleton maintain expression relationships also of the same
type (although it will depend on the correlation degree and
how close to y = x the coexpressed gene is).

The correlation degree to consider the expression rela-
tionships coexpressed enough will depend on the number of
genes of the expression array. It is useful for small expression
matrices, where nonlinear expression relationships between
sets of coexpressed genes can be detected although these
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expression relationships have high entropy. The aim is to
always detect enough nonlinear expression relationships to
be able to find the skeletons that relate the sets of coexpressed
genes.

The threshold to consider an expression relationship as
linear or nonlinear will also depend on the number of genes,
being (this threshold) more restrictive for the linear ones
in matrices with less genes. Thus, large sets of coexpressed
genes with very sharp curves between them can be formed
for large expression matrices, whereas smaller sets of coex-
pressed genes, as well as more subtle nonlinear expression
relationships between the sets, will be considered for small
matrices.

The expression relationships have been filtered by the
uncorrelation factor provided by the PCOP calculation to be
considered correlated enough [10]. The threshold formula is

0.12 x

1600 num genes \ 8
(P e M

num genes - 40000

The threshold formula for the curvature to consider whether
the relationships are linear or nonlinear is

160 — ( (15.0/20000) + (14.0/18400) )
2 X num genes '

2)

However, a formula that depends only on the number of
genes is not enough to guarantee the quality of the analysis
extracted from the data because the data correspond to
very different experiments with different nature. The diverse
nature of the experiments is a qualitative variable that
cannot be quantified with a formula. For this reason the
correlation threshold calculation uses an online correction:
from the relationships already analysed and the number
of relationships pending to be analysed, the system makes
an estimation of the number of relationships that would
finally pass the threshold. From the calculated estimation, the
system modifies automatically the threshold.

A higher number of genes in the expression array increase
the number of coexpressed genes and nonlinear expression
relationships, which facilitates finding skeletons. But in any
case, the number of expression relationships with high corre-
lation, as well as the number of linear expression relationships
with respect to the nonlinear ones, will always depend on the
nature of the experiments of the sample series.

3. Results and Discussion

The system allows to study sets of coexpressed genes that
maintain nonlinear expression relationships among them, as
well as to study the nonlinear expression relationships that
a concrete gene of interest maintains with different sets of
coexpressed genes. This can be studied for this target gene
as well as for the genes coexpressed with it. There have
been found 4573 nonlinear relationships and 20269 pairs of
coexpressed genes (all highly correlated) from the microarray
of 1416 genes used in the examples.

3.1. Searching for the Complex Expression Relationships
between a Target Gene and Sets of Coexpressed Genes. The
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study of the expression relationships between sets of coex-
pressed genes can start from the researcher’s genes of interest.
All the nonlinear expression relationships that a gene of
interest maintains with different sets of coexpressed genes
will be shown. These relationships will be shown classified
by curve type, because each curve type implies a different
activation/deactivation relationship. There will be shown
only the nonlinear expression relationships that maintain a
sufficient correlation degree.

We will study the activation and deactivation relationship
between our gene of interest and different sets of coexpressed
genes starting from these high-correlated nonlinear expres-
sion relationships. Two lists of coexpressed genes will be
shown in a new view for each high-correlated nonlinear
expression relationship of the gene of interest (Figure 1). The
first list will show the genes coexpressed with the gene of
interest. The second one will show the genes coexpressed
with the gene that maintains the high-correlated expression
relationship with the gene of interest. Then, the user can
study the expression relationships between the two sets of
coexpressed genes. The user can select genes from both
lists of coexpressed genes to study in detail their expression
relationship using a different interface [11, 12] (Figure 3). The
first list of coexpressed genes is ordered by their correlation
degree with the gene of interest and the second list is ordered
by their correlation with respect to the gene nonlinearly
related to the gene of interest.

Anicon shows the type of nonlinear relationship between
the two main genes and, by extension, between the two
sets of coexpressed genes. The curve type is very important,
since it determines the role of the genes in each expression
dependence.

3.2. The Curve Type Indicates the Type of Activation and
Deactivation Relationship between Sets of Coexpressed Genes.
The system obtains the inner pattern of the curve for any type
of expression relationship and classifies it. The only require-
ment is that the data cloud must be continuous. A y = ¢&*
relationship will provide an activation relationship between a
set of genes and the other set; in other words, the first set of
coexpressed genes must overexpress so the second set starts
to express. In a y = —e” relationship, instead of an activation
of the second set, there will be a deactivation. A y = —In(x)
relationship indicates a mutual-exclusion dependence; that
is, one of the two sets of genes must be deactivated so the
other set of coexpressed genes expresses. Note that these types
of relationships are different from the positive and inverse
coexpression relationships. This difference is precisely what
allows us to detect different sets of coexpressed genes as well
as the complex expression dependences between them. On
the other hand, a y = —e” relationship, a y = —x relationship,
and a y = —In(x) relationship explain completely different
activation/deactivation dependences.

A y = x* relationship would indicate a deactivation of the
second set of coexpressed genes by the overexpression as well
as the underexpression of the first set. A y = —x” relationship
would indicate an activation of the second set of genes, for the
overexpression as well as the underexpression of the first set.
Whereas in the relationships of type |e*|, the overexpression

of the set of coexpressed genes affects the other set. In the
relationships of type |x*|, the overexpression as well as the
underexpression of the genes has an inhibitory or activatory
effect on the other set of coexpressed genes.

Other relationships, such as those of type y = x” or 1 =
x* + y*, will indicate other complex expression dependences
between different sets of coexpressed genes. Real examples of
each type of curve are shown in the supplementary material
available at http://platypus.uab.es/nlnet.

As pointed out in the introduction, one of the three
principles of our methodology is as follows. The type of curve
between two genes is also maintained between the genes
coexpressed with each one of them. Let us see an example:
HLA genes are indicative of cell maturation marking the cell
so it is recognised by the immune system [15]. HLA genes
mark the cell making possible the inflammation of the tissue
and the activation of the immune system. GRAMDIA is not
a well-known membrane receptor that inhibits programmed
cell death and it is linked to disease resistance [16]. HLA-F
and GRAMDIA maintain a nonlinear expression relationship
of type y = e” (Figure 3(a)). This points out that, possibly, the
function associated with GRAMDIA can only be performed
once the cell is marked by HLA genes. HLA-F and HLA-
A are coexpressed genes (Figure 3(b)), and GRAMDIA is
coexpressed with NREP (Figure 3(c)). Thus, HLA-A and
NREP will also maintain a nonlinear expression relationship
of type y = €* (Figure 3(d)). C50rf13 (NREP) expression
is linked to hypertrophic scar [17]. This points out that
hypertrophic scar and the function associated with NREP
can only be performed once the cell is marked by HLA
genes [18]. Even though the relationship of these genes with
hypertrophic scar was already known [17, 18], there was no
knowledge about how it was regulated.

Hypertrophic scarring (HS) is a result of increased fibro-
genesis, which is thought to be caused by an exaggerated
inflammatory response [19-21]. There is a clear association
between specific HLA alleles and cutaneous fibrosis. Specific
examples of cutaneous fibrosis include hypertrophic scars
(HS) among others [18].

The relation of HLA and hypertrophic scar is already
documented, but using our tool we found that this relation
is mediated by NREP, because HLA genes must be overex-
pressed to activate NREP (a gene directly linked to HS [17]).

In this way, it is valuable that even though the tech-
nologies to obtain gene-expression arrays do not capture
regulatory genes because of the low variability in their gene
expression, these technologies do allow studying the regula-
tion between processes through the genes that perform these
processes (coexpressed genes that result from the activation
cascade started by regulatory genes). This is because these
final genes do maintain wide enough expression ranges,
which allows our high-throughput tool to analyse the expres-
sion dependence between the sets of coexpressed genes.

3.3. Studying the Complex Expression Relationships between
Sets of Coexpressed Genes. The different networks of non-
linear expression relationships among sets of coexpressed
genes are classified by the number of sets and the curve
types of the expression relationships between the sets. Once a
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Uncheck All Genes coexpressed with the gene pair = Detailed expression relationship among genes

FIGURE I: This view shows a nonlinear expression relationship where a researcher’s gene of interest participates. The gene of interest is displayed
on the top of the view on the left side. The column on the left side displays the genes coexpressed with the gene of interest, while the column
on the right displays a set of coexpressed genes that maintain a nonlinear expression relationship with the gene of interest. The coexpressed
genes are ordered by their correlation degree with their respective gene at the top (the f value obtained by the PCOP calculation). The icon
shows the curve type of the nonlinear expression relationship. Each curve type implies a different expression dependence: mutual exclusion,
trigger, double trigger, and so on. All the expression relationships relating genes from the two sets of coexpressed genes should be of the type
shown by the icon. By selecting genes from the two sets, their expression relationship can be studied in detail in a new interface (Figure 3).

k4

" Cliques of Cliques I_/|/|/

id Name id Name 1d Name
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[J7e3 FSTL1: — [J714 DUSP1: — [Jess GLIPR1: —
[J729 COL4A1L: = [J7=s MS4A7: = [J70s ZNF687: —
[ess ESTs — [J732 DNER: — [J7as SID —
[]sze STMN4: = [dm MT2A: = [Jes3 ADAMS: —
[e7z RGS12: ~— [J710 MT1X: — [J724 TPM1: —
[J7e2 FNDC3B: Y [71e Céorf108: = [Je7e PCSKS: —
522 UBE2A: ~— [J74s ITGA3: — [Jees SCHIP1: —
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[]s38 STMN4: ~— [J779 H.sapiens — [J718 ARHGEF17: —
Uncheck All Genes coexpressed with the gene pair | Detailed expression relationship among genes

FIGURE 2: This view shows networks of concrete types of nonlinear expression relationships between sets of coexpressed genes. The icons
at the top show the curve-type pattern of the networks listed. The networks will always form a complete graph. The pink line separates the
networks found for the curve-type pattern. The columns contain the genes of the skeleton of each set of coexpressed genes. The genes of the
different skeletons can be selected to study their expression relationship in detail [11, 12] (Figure 3). The genes of the different skeletons can be
selected to study the expression relationships between the rest of coexpressed genes of the two sets, opening the view of Figure 1 for the two
skeleton genes.

network type is selected, the networks found in the expression
matrix that maintain this pattern in the intergroup expression
relationships are displayed.

In the view that shows the networks (Figure 2), the genes
that belong to the skeleton of each set of coexpressed genes
are displayed in different columns. Each column displays the
genes of the skeleton of each set of coexpressed genes. By

selecting genes from the different skeletons, the expression
relationships between them can be studied. Starting from the
genes of the skeleton, the expression relationships between the
rest of coexpressed genes of the sets can also be studied. By
selecting one gene from the skeleton of two different sets of
coexpressed genes, the genes coexpressed with each one of
the genes of the two skeletons will be shown (in the way shown



BioMed Research International

0.3494 —

HLA-F

0.224 —

0.0986 —

—0.0268 —

-0.1522 —

-0.2776 —

GRAMDI1A

I I I I I I
-0.2306 —-0.1052 0.0202 0.1456 0271 039

()

-0.403
-0.356

0.4933 — N
C5orfl13

0.3359 —

0.1785 —

0.0211 —

-0.1362 —

—-0.2936 —

GRAMDI1A

I I I I I
-0.1986 -0.0412 0.1161 02735 0.4309

(©)

-0.451

-0.356

0.3294 —

HLA-A

0.2038 —

0.0782 —

—-0.0472 —

—0.1728 —

—0.2984 —

HLA-F
—0.424 T T T T T T
—-0.403 -0.2774 -0.1518 —-0.0262 0.0992 0.2248 0.35

()

HLA-A
0.3629 —
0.2055 —
0.0481 —

—-0.1092 —

—-0.2666 —

C5orf13

—0.424 T T T T T T
—-0.451 -0.2936 -0.1362 0.0211 0.1785 0.3359 0.49

(d)

FIGURE 3: Four expression relationships are shown. The different sample conditions of the expression matrix (the sample series) constitute
the data cloud. The PCOP describes the expression-relationship inner pattern. (b) and (c) show coexpressed genes. HLA-A and HLA-F are
coexpressed genes (b) and GRAMDIA and NREP are also coexpressed genes (c). (a) and (d) show nonlinear expression relationships of
y = €” type, an activation relationship. Since HLA-F and GRAMDIA maintain a nonlinear expression relationship of type y = e* (a), HLA-F
is coexpressed with HLA-A (b), and GRAMDIA is coexpressed with NREP (c), therefore HLA-A and NREP (C5o0rf13) maintain a nonlinear
expression relationship of the same type (d). HLA-A and GRAMDIA would also maintain a nonlinear relationship of type y = ¢*, and HLA-
F and NREP would maintain a nonlinear relationship of the same type. This is the key point of our approach: all the nonlinear expression
relationships that relate genes from two sets of coexpressed genes will have the same type of curve.

in Figure 1). All of them should maintain the same type of
nonlinear expression relationship between them. These listed
genes can also be selected to study their nonlinear expression
relationships in detail [11, 12]. In this way, it can be studied
whether the genes coexpressed with the skeleton maintain the
type of curve or whether it is distorted or lost. The genes
coexpressed with the genes of the skeleton of the two sets
appear ordered by their correlation degree with the gene of

the skeleton of each set. The higher the correlation between
a coexpressed gene and the gene of its skeleton is, the lower
the variations of the curve types between this gene and the
genes of the other set with respect to the curve type between
the genes of both skeletons are.

In Figure 3 we can see the key point of our approach:
all the nonlinear expression relationships that relate genes
from two sets of coexpressed genes will describe the same



type of curve. In this way we can start the analyses from
the relationships between all the pairs of genes of the
microarray, but we construct the relationships between the
sets of coexpressed genes from the skeletons. Since each set
carries out a different cellular process, using our tool we can
study the relationships between these independent cellular
processes.

4. Conclusions

To respond to diverse and frequently changing conditions,
cells must precisely mediate the synthesis and function of
the proteins in the cell. This is controlled in part by the
overall genomic expression program that results from the
combined action of different regulatory factors, each of which
responds to specific extra- and intracellular signals. These
regulators govern the expression of sets of coexpressed genes
that perform the appropriate cell functions. The variations in
the expression of these coexpressed genes can be captured
by high-throughput technologies to obtain gene expression
arrays. In this way, the researcher is able to know which
processes are carried out in the conditions he/she wishes to
study, by knowing the different genes coexpressed in them.
But what if the researcher wishes to know more? What if
he/she wishes to know which relations have those different
processes between them? In the case of working with large
sample series, how do we know how these processes are
activating or deactivating and activating again among them?
If the researcher suspects that certain target genes can be a
therapeutic target, how can he/she know the effect of their
expression on the rest of the processes that this target gene
does not belong, since it expresses with a different set of
coexpressed genes? To know this could be implied from
discovering unknown side effects to finding new ways to
manipulate the expression of this gene.

In order to solve all these issues, we perform our high-
throughput analysis. We obtain the coexpressed genes and
the high-correlated nonlinear expression relationships and
from them we obtain cliques (complete graphs) between
coexpressed gene sets that maintain nonlinear expression
relationships between them. In these networks, all the
sets of coexpressed genes maintain a nonlinear expression
relationship with each and every one of the other sets of
coexpressed genes of the network. So, anytime, you know
how to move from one process to another, passing by any
other intermediate process. As a result, multiple networks are
provided by a dynamic system that allows detecting sets of
coexpressed genes related between them by complex activa-
tion dependences. The networks found will always depend
on the analysed microarray. Large enough sample series and
wide enough gene expression ranges facilitate the detection
of coexpressed genes as well as the detection of nonlinear
expression relationships between them. It is important to note
that to detect a nonlinear expression dependence between
two sets of coexpressed genes, this nonlinear expression
dependence must exist, even though it affects only two small
sets of coexpressed genes. In case these dependences exist,
the developed tools allow to obtain very relevant information
for the researcher since it makes possible to observe how
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the sets of coexpressed genes of his/her experiment interact
between all of them. We think this approach could be a useful
complement to other computational methods commonly
used to analyse gene expression data.

As we present in the introduction, the expression depen-
dences between sets of coexpressed genes, as well as between
the processes these sets of coexpressed genes carry out, would
never be linear. This is why new tools like the presented one
are necessary.
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