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ABSTRACT

Codon usage bias (CUB) refers to the phenomena that synonymous codons are used in different frequencies
in most genes and organisms. The general assumption is that codon biases reflect a balance between muta-
tional biases and natural selection. Today we understand that the codon content is related and can affect all
gene expression steps. Starting from the 1980s, codon-based indices have been used for answering differ-
ent questions in all biomedical fields, including systems biology, agriculture, medicine, and biotechnology.
In general, codon usage bias indices weigh each codon or a small set of codons to estimate the fitting of a
certain coding sequence to a certain phenomenon (e.g., bias in codons, adaptation to the tRNA pool, fre-
quencies of certain codons, transcription elongation speed, etc.) and are usually easy to implement.

Today there are dozens of such indices; thus, this paper aims to review and compare the different codon
usage bias indices, their applications, and advantages.

In addition, we perform analysis that demonstrates that most indices tend to correlate even though they
aim to capture different aspects. Due to the centrality of codon usage bias on different gene expression
steps, it is important to keep developing new indices that can capture additional aspects that are not mod-
eled with the current indices.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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S. Bahiri-Elitzur and T. Tuller
1. Introduction and motivation

Synonymous codons are codons that encode for the same amino
acid. Despite that, synonymous codons are generally used at differ-
ent frequencies. This phenomenon can be seen in most genes and
organisms, and it is called codon usage bias (CUB).

The composition of codons in the coding region can be affected
by mutations, selection [1], and genetic drift [2-4]. Specifically, the
selection can be related to frameshifting and various central intra-
cellular phenomena such as transcription, translation, mRNA sta-
bility, RNA and DNA methylation, co-translational folding,
splicing, transport, and more (see review in [5-7]). Thus, tech-
niques for analyzing codon distribution have been used in recent
years for many objectives, including studying the evolution of tran-
scripts [8,9], the biophysics of translation (i.e., the molecular mech-
anism of translation and its dynamics: e.g., ribosomal movement,
tRNA diffusion, etc.) and other gene expression steps [10]. Such
techniques also have been used in biotechnology [11], for investi-
gating phenotypic patterns from viruses to bacteria [12,13], and for
studying human diseases [14-17]. A CUB index is a term that
describes a measure with a numerical value that aims to have bio-
logical meaning (e.g., related to selection or gene expression
aspects), and it is based on the codon composition of a gene.

Since CUB can be affected and affect so many phenomena, as
mentioned previously, codons frequencies vary significantly
among different organisms, organelles, and viruses. We examined
codon frequencies in different organisms, organelles, and viruses
chosen uniformly from the tree of life and from different viral
groups (see Fig. 1).

Bacteria
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It is easy to see different codon distribution patterns in the
examined groups; this may be related both to changes in the muta-
tional bias and to the differences in the fitness effect of codons. The
high variation in bacteria, viruses, mitochondria, and eukaryotes is
related to the diverse genomes we analyzed, including bacteria
from different phyla, different types of viruses, and various eukary-
otes and mitochondria. Low variability can be seen in the chloro-
plasts genomes. The chloroplasts are more conserved relative to
other types of genomes that are presented since chloroplasts are
evolutionary closer; in addition, they have the same role and func-
tion (i.e., conducting photosynthesis), their genome is relatively
small, and it is known that the chloroplast genome has a highly
conservative nature and slow evolutionary rate [18].

CUB indices have many significant advantages:

First, the estimations of codon usage by different indices are
usually very easy and computationally efficient. Many indices are
based only on the analyzed organism’s genome (without the need
for performing additional experiments); thus, they can be imple-
mented on any organism with a sequenced genome (unicellular
and multicellular organisms [19,20]). Finally, as depicted in the fol-
lowing sub-sections, many times, these indices estimate aspects
that cannot be experimentally measured with any technique that
exists today.

Today there are dozens of different CUB indices. This review
aims to summarize the different types of indices that exist today,
explain their advantages, objectives, and compare them.

There are a few types of CUB indices which are discussed here
(see Fig. 2): this includes “simple” indices based only on the non-
uniform usage of synonymous codon, indices that try to capture
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Fig. 1. Codon usage of all 64 codons in the different analyzed organisms, organelles, and viruses. The codon usage was calculated using the ratio between the codon’s
appearances and the relevant synonymous codons’ total appearances. The color bar represents the frequency of each codon (more details in the case study section). As can be
seen, there are large differences in codon usage among the analyzed genomes. Equal frequencies can also be seen for codons that code for amino acids with one synonymous

codon.
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Fig. 2. Different types of CUB indices examined in the paper. A. Indices that are based on the non-uniform usage of synonymous codon. B. Indices based on codon frequency in a
reference set of genes. To deal with alternative splicing when using such indices, the longest isoform of the gene is usually considered. C. Indices that are based on the adaptation to the
tRNA levels, and their supply. D. Indices that consider complex patterns of codons that affect translation, transcription, and mRNA stability. E. Indices that are based on a direct

experimental procedure such as ribosome profiling.

biophysical aspects of gene expression such as tRNA adaptation,
indices that are based on experimental procedures, and even
indices that aim to capture patterns that are more complex than
a single codon distribution. The indices discussed in this paper
are important as they correlate and relate to how various gene
expression stages are encoded in the coding region. In addition,
they consider various factors in the cell that can influence tran-
scripts evolution (i.e., tRNA, highly expressed genes, and more).
Moreover, some of these indices enable exploring novel aspects
and regulatory signals encoded in the coding region that may be
longer than one codon.

There are review papers that aim to understand the CUB mech-
anism, affect, and causes [21-23]; However, there are not many
previous review papers regarding CUB indices. These earlier
reviews are helpful, but they summarize a limited number of
indices (usually 5-7) [24-26] without considering all possible or
at least indices from different types.

Our review briefly summarizes and discusses known and less
known CUB indices, aiming to provide a useful basic guideline
for researchers in the field. We specifically focused on different
approaches to measure CUB and discuss each approach’s advan-
tages and disadvantages.

2. Indices that are based on the non-uniform usage of
synonymous codon

This group of indices computes the deviation of codon usage
frequency from “uniform” distribution or expected “background”
distribution (see Fig. 2A). An increased CUB in a certain gene or

genomic region may suggest that it undergoes selection for various
features that affect its expression levels (including translation,
transcription, mRNA stability, co-translational protein folding,
and more). These indices are usually monotonic with the unifor-
mity level of the codon usage or codon frequency. The two
extremes are cases where 1) only one codon is used and 2) all
codons are used in the same frequency.

Different indices use various normalization for getting the exact
value: for example, relative synonymous codon usage (RSCU) [1]
compares the codon frequency to the one expected under uniform
distribution while considering both the different number of syn-
onymous codons for various amino acids and the differences in
amino acid frequency. The Effective number of codons (ENC) [27]
is computed similarly to the computation of effective population
size in population genetics, aiming to provide the extent of codon
preference in a gene while considering amino acid degeneracy
levels. In a basic manner, the ENC estimates the total number of
different codons used in a sequence. The Intrinsic codon bias index
(ICDI) [28] is inspired by both the RSCU and the ENC. It gives a
value between 0 (equal usage of all codons, i.e., no bias) and 1
(one codon per amino acid, i.e., extremely high bias) to each gene.
According to Arif Uddin [25], a value greater than 0.5 indicates high
bias, whereas a value lowers than 0.3 means little bias. Shields
et al. suggested an index which is based on the chi-squared (x?)
test, and it is called the ‘scaled’ ? [29]; the y? is defined as the
deviation from equal usage of a codon within the synonymous
group normalized by the total appearances of the codon (excluding
AA with one codon).

An additional index of deviation from a uniform distribution is
based on the Shannon entropy; the Synonymous codon usage order
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(SCUO) [30-32] is based on the normalized difference between the
maximum entropy and the observed entropy, that after some nor-
malizations yield a measure between 0 (maximum bias) to 1 (no
bias).

See more indices in Table 1.

These indices’ advantages include the fact that they are very
simple to implement and are based only on coding sequences. They
specifically do not require any prior knowledge of gene expression’
biophysics and molecular mechanisms and do not need any addi-
tional measurements.

Their disadvantages include the fact that they are not sensitive
to patterns different from a single codon distribution. They may
miss specific biophysical aspects of gene expression, such as the
contribution of different gene expression steps and factors to the
observed bias, and they are not condition-specific.

Therefore, it is useful to use this type of indices when only the
organism’s genome is available.

In this type of indices, the most used indices according to our
review based on the usage and number of citations, are ENC and
RSCU.

3. Indices based on codon frequency in a reference set of genes

The indices in this group are based on the comparison to codon
frequency in a reference set of genes (see Fig. 2B). The reference set
of genes can be, for example, highly expressed genes (and thus
assumed to undergo stronger selection to include more optimal
codons), ribosomal genes (also known to be highly expressed), or
genes that are expressed in a specific condition or tissue. In all of
these indices, coding sequences that include codons that are more
similar to the codons in the reference set will get a higher score.
The differences among the indices are related to the way that the
similarity score is computed.

For example, in the Codon adaptation index (CAI) [33], a weight
is calculated for each codon, based on its RSCU among synonymous
codons in the reference set (1/0 are the maximal/minimal weights
of a codon, respectively). These weights are then used to compute a
score for a coding region by using the geometric mean of the
codons weights composing the coding region. The Frequency of
optimal codons (FOP) [34,35] is a lower resolution version of the
CAI where the score of a gene is calculated by the ratio of the num-
ber of optimal codons (the most frequent synonymous codon) to
the total number of codons. The score range is between 1 (usage
of only the most frequent synonymous codons in the reference
set) and O (non-usage of the most frequent codons from the refer-
ence set). The Codon bias index (CBI) [36] measures the extent that
preferred codons are used in a gene. It is calculated similarly to FOP
but uses the expected usage as a scaling and normalization factor
such that the score is between 1 (all codons are preferred) and
—1 (non-codon is preferred) while the FOP is between 0 and 1.

The codon enrichment correlation (CEC) [37] measures the fit of
a specific ORF’s codon frequency in a reference set of ORFs using
the following steps. First, each codon’s frequency in the target
ORF is normalized by its expected distribution when assuming uni-
form frequency usage of synonymous codons. For the reference set
codons, each codon'’s frequency is the relative frequency in all ORFs
in the reference set. Next, the correlation between these two vec-
tors of normalized codon frequency is computed.

An additional index, called GCB [38], tries to deal with the need
of defining a reference set (usually of highly expressed genes as in
the case of CAI) via iteratively choosing genes with the highest
(temporary) GCB score as the reference set till convergence. Each
codon weight is defined as the ratio between the codon frequency
in the reference set and the codon’s mean frequency in the entire
genome. These weights are then used for computing a score for a
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coding region by using the geometric mean of the codons weights
composing the coding region. Based on this score, a new (tempo-
rary) reference set with the highest score is defined as an input
of the next iteration.

Tissue-Specific Codon and Codon-Pair Usage Tables (Tis-
sueCoCoPUTs) are comprehensive computational resources for
tissue-specific codon, codon-pair, and dinucleotide frequency
usage. The mentioned frequencies are calculated in the simplest
manner. For example, to calculate the frequency of a codon in a tis-
sue, the codon’s total appearances in the tissue transcripts are
divided by the total number of codons in the tissue transcripts.
When using this index, it is possible to determine translation
kinetics and efficiency across different tissues and predicting the
propensity of synonymous mutations to cause disease [39].

See more indices in Table 2.

This type of indices’ main advantages are that they are very
simple to compute (usually involves calculating the frequency of
a codon appearance in sets of genes and geometric mean). In many
cases, these indices can be based only on the organism’s genome
without additional knowledge or measurements. Also, the prior
knowledge that is needed is minimal (only a reference set).

The disadvantages include the fact that the indices are based on
simple patterns of single codons and cannot capture complex pat-
terns (e.g., based on more than single codons distribution) and can-
not estimate the direct effect of specific biophysical aspects (e.g.,
different gene expression steps). In addition, the reference set
needs to be chosen, and the results can vary when using different
reference sets.

Therefore, it is useful to use this type of indices when there is a
known reference set, and the organism genome is available.

In this type of indices, the most used indices according to our
review based on the usage and number of citations, are CAI and
FOP.

4. Indices based on the adaptation to tRNA levels and their
supply

tRNA molecules are major factors that are believed to affect
translation elongation at the genomic level. Thus, many indices
are based on the adaptation of codons to the cell’s tRNA levels
(see Fig. 2C). Previous studies have suggested that intracellular
tRNA levels correlate with codon usage and amino acid composi-
tion in many prokaryotic and eukaryotic species [22,40]. This cor-
relation optimizes the efficient use of resources in the cell.

While there are studies that suggest that in some organisms
(e.g., multicellular organisms), there is a low correlation between
CUB and tRNA levels [21], others have demonstrated that such a
correlation appears in most organisms, including multicellular
[22,40-42]. Nevertheless, as the indices described in this section
check how much the codons of a gene(s) fits the tRNA pool, they
can be implemented and yield biological conclusions on any gene
in any organism even if there is no strong global correlation
between CUB and tRNA levels in that organism. Beyond this rela-
tion between codon composition and translation speed lies a more
complex set of phenomena that link codon usage and tRNA abun-
dance to various aspects of translation regulation. Translation reg-
ulation is affected by tRNA modifications, codons order, codons
usage with rare cognate tRNAs, rRNA-mRNA interactions, wobble
interactions, mRNA folding, and more [40,43-48]. Moreover, previ-
ous results suggest that codon usage and tRNA abundance coevolve
[49]: changes in tRNA levels trigger changes in codon usage and
vice versa. Therefore we also report indices that generally aim to
capture in a simple manner the efficiency of translation elongation
based on tRNA-centric view. Among others, different indices in this
group consider the amount of each tRNA in the cell, the 'competi-
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Table 1
Codon bias Indices that are based on measures of the non-uniform usage of synonymous codon.

Index type: The non-uniform usage of synonymous codon

Index name

Specific characteristics

Uses

Values

Analyzed organism

Online
tool

Reference

ENC (effective number of
codons)

RSCU (relative synonymous
codon use)

CPB (codon preference bias)

The ‘scaled’ y [2]

P (codon preference)

RCBS (relative codon bias
strength)

ICDI (intrinsic codon
deviation index)

Dmean (mean dissimilarity-
based index)

Ew (weighted sum of
relative entropy)

SCUO (Synonymous codon
usage order)

DCBS (directional codon
bias score)

MILC (Measure independent

Similar to the computation of effective
population size in population genetic.
Considers amino acid degeneracy level and
calculates the total number of different
codons used in a sequence.

Based on the ratio between the observed
number of codons and the number of times
the codon would be observed if the
synonymous codon usage was completely
random.

Based on the multinomial and Poisson
distributions. It can be applied to a relatively
short piece of sequence. Not used often, the
method is quite theoretical.

Calculates the deviation from equal usage of a
codon within the synonymous group divided
by the total number of codons in the gene
using the chi-squared (?) test.

Measures the likelihood of a particular set of
codons to a predetermined preferred usage. P
is computed for all three reading frames.

Measures the difference of the observed
frequency of a codon from the expected
frequency under the hypothesis that the
frequency of codons is only affected by the
frequencies of single nucleotides.

Uses the RSCU and the degeneracy of amino
acid in the sequence. It gives equal weight to
all amino acids included.

Quantifies the level of diversity in
synonymous codon usage among all genes (or
a subset of genes) within a genome. The index
is based on the average Pearson correlation
between all pairs of genes normalized vectors
of codon frequencies.

Measures the degree of deviation away from
equal codon usage using a weighted relative
entropy of each amino acid. It is defined as the
sum of each amino acid’s relative entropy
weighted by its relative frequency in the
sequence.

Measures the deviation from uniform
distribution based on the Shannon entropy. It
uses the normalized difference between the
maximumentropy and the observed entropy.
A correction to the RCBS that considers over
and underrepresented codons.

Measures the different usage of codons based

Investigate codon usage patterns across genes
and in different organisms. ENC plots provide
a visual display of CUB variation for a set of
genes. It can easily be adapted to study genes
that do not use the 'universal’ genetic code.
Acts as a codon weight for many indices
requiring the codon count to be normalized
into codon frequency and to remove the
dependence on gene length. RSCU can be used
to find optimal codons and understand
evolutionary processes.

Scan DNA sequences and measure the
strength of codon preference. It can be used to
detect bona fide coding sequences.

Measures the bias in silent DNA divergence
codon usage.

It is useful for locating genes in sequenced
DNA, predicting the relative level of their
expression and for detecting DNA sequencing
errors resulting in the insertion or deletion of
bases within a coding sequence.

Predicting gene expression levels from RSCU.
Useful for comparing different sets of gene.

Estimate codon bias of genes from species in
which optimal codons are not known. It can
help predict gene functionality.

It is used to measure the diversity level of
codon usage among genes. This index can be
applied to other compositional features such
as amino acid usage and dinucleotide relative
abundance as a genomic signature. This index
can improve the understanding of
compositional diversity among genes.

Allows to avoid some amino acid usage biases
and to obtain quantitative information about
the degree of overall synonymous codon
usage bias of a gene.

This index compares the synonymous codon
usage across different organisms.

It can be used to predict gene expression
levels from Relative Codon Usage Bias. It is
useful for comparing different sets of gene.
It is used for the prediction of expression

Range: 20-61. A value of 20 indicates that
only one codon is used for each AA, while a
value of 61 is when all synonymous codons
are used with equal probability.

For average synonymous codon usage, the
RSCU is 1. For codon usage more infrequent
than the average codon usage, the RSCU is less
than one, and for more frequent usage than
the average for the amino acid, the RSCU is
greater than 1.

A higher value indicates more bias towards
optimal codons.

Ranges from 0 to 1. Higher value indicates a
stronger bias.

A higher value indicates a more frequent use
of preferred codons.

A value close to 0 indicates a lack of bias for
the codons.

Values between 0 (equal usage of all codons)
and 1 (one codon per amino acid)

Lower average correlation values, indicate low
diversity level in the use of codons.

Ranges from 0 (maximum bias) to 1 (no bias).

Ranges from 0 (maximum bias) to 1 (no bias).

A value close to 0 indicates a lack of bias for
the codons.

A higher value indicates stronger bias.

Human, Scerevisiae

E.coli

E.coli

D.melanogaster

E.coli, E.amylovora,
S.typhimurium and
S.cerevisiae

E.coli

S.cerevisiae

268 bacterial
genomes such as
B.subtilis

A.aeolicus, B.subtilis,
B.burgdorferi, E.coli,
H.influenzae,
H.pylori, M.
tuberculosis,
M.genitalium,
P.hori-koshii

E.coli

E.coli, S.cerevisiae

E. coli,, S.cerevisiae,

[731

(731

(751

[76]

(791

(31]

[27]

(1]

[74]

(29]

[77]

(78]

(28]

(80]

(81]

[30-32]

[41]

(82]
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Table 1 (continued)

Index type: The non-uniform usage of synonymous codon

Reference

Online

Analyzed organism

Values

Uses

7
=
=
=
x|
3

9|

k=

et

B.subtilis,

levels by taking the ratio of the MILC of a gene
to the MILC of a reference set of highly

expressed proteins.

on a log-likelihood ratio of the expected and

observed number of codons.

of length and

Synechocystis,
P.falciparum

Human

composition)

(83]

A higher value indicates a stronger bias.

Designed to account for background

Estimates that bias in codon usage using the

MCB (Maximum-likelihood

nucleotide composition and can also be

weight of each amino acid which is estimated
by the likelihood of occurrence of each amino

acid given its frequency and codon

degeneracy.

codon bias)

adapted to correct for di-nucleotide biases. It

can be used to estimate ancestral codon usage

bias and genetic population analysis.

(84]

Unicellular and
multicellular
genomes.

Ranges from 0 (no bias) to 1 (maximum bias)

It is useful for determining comparative

Based on the cosine distance metric between
the expected and the observed codon usage.

The authors suggest estimating the

CDC (Codon Deviation

magnitudes and patterns of CUB for genes or

Coefficient)

genomes with diverse sequence compositions.

significance of this index by using

bootstrapping.

(85]

R.norvegicus,

Positive MRI values indicate a response,

Measures the extent of codon bias

Based on the difference between the scaled
chi-square test and its corrected form.

MRI (Mutational Response

M.musculus, Human

whereas negative values for MRI imply a

attributable to mutational pressure.

Index)

codon usage contrary to directional mutation

pressure.
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tion’ of codons on tRNAs, the wobble/no-wobble interaction effi-
ciency of tRNAs and codons, and more.

For example, the tRNA adaptation index (tAl) [50] computes a
weight (between 0 and 1) for each codon based on the number
of tRNAs available in the cell that recognize the codon (more tRNAs
will result in a higher weight) and the efficiency of the interaction
between the different tRNAs and different codons (the efficiency of
interaction was calculated by maximizing the correlation between
mRNA levels and tAl values in S. cerevisiae). The score of a coding
region is the geometric mean of the weights of all its codons. The
species-specific tAl (stAl) [41] is based on the tAl. However, in this
case, the interaction efficiency between a tRNA and a codon is fit-
ted to each organism separately using optimization algorithms that
optimize the correlation between tAl and an CUB index.

Some indices consider not just the tRNA amount (supply) but
also the abundance of the relevant codons (demand). The normal-
ized translation efficiency (nTE) [51] is an index that considers
both the supply and the demand by dividing each codon weight
(based on the tAI after some normalizations) and the relative fre-
quency of the relevant codon in all mRNAs. Another example of
an index that measures the adaptation of codons to tRNA levels
is the P1 index [52]. The P1 index considers the effect of tRNA
availability and “tRNA competition” on elongation via estimating
the average number of tRNA-codon interactions necessary for cor-
rect recognition of a step in the elongation cycle. Since rare tRNAs
will approach the ribosomal A site with lower probability (as-
sumed to be related to their frequency), the expected time to rec-
ognize their corresponding codon is higher.

See more indices in Table 3.

The main advantages of this type of indices are that they are
computationally efficient and based on the biophysical aspects
(at least partially) of the translation process (considering factors
in the cell that can influence translation, such as tRNA levels).

Their disadvantages include the fact that they are not based
only on the genome but also require additional information such
as estimations of tRNA levels, codon-tRNA interactions efficiency,
and mRNA levels. They are also based on single codon resolution
and do not capture complex patterns and other gene expression
aspects except translation elongation. Since tRNA levels are often
not available, usually tRNA copy numbers are used as a proxy for
tRNA abundance in the cell [34,50,53-55]. This approximation is
problematic in more complex organisms that demonstrate tissue-
specific differences in the expression of tRNA genes [56]. In addi-
tion, organisms with larger genomes tend to have higher tRNA ge-
nes redundancy, which would decrease selection for specific
codons; this may affect our capability to successfully use such
indices for more complex organisms [50].

Therefore, it is useful to use this type of indices when additional
information related to tRNA levels is available and when the
study’s focus is the effect of tRNAs on elongation.

In this type of indices, the most used index according to our
review based on the usage and number of citations, is tAlL

5. Indices based on 'complex’ patterns of codon usage

In recent years, we have learned that sequences longer than one
codon in the coding region may include regulatory codes that are
related to various aspects of gene expression and intracellular pro-
cesses (and not only translation); thus, indices that can capture
such aspects, which can’t be computed solely based on single
codon distributions, are needed (see Fig. 2D). These indices capture
complex signals that are partially affected and affect codons. A
change in the codon composition can affect the such long patens
and these pattern induces a selection pressure on codon composi-
tion. We thus believe that the notion of codon-based index should
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Table 2

Codon bias indices based on codon frequency in a reference set of genes summary.

Index type: Codon frequency in a reference set of genes

Index name

Specific characteristics

Uses

Values

Analyzed organism

Online

tool

Reference

CAI (Codon adaptation
index)

FOP (Frequency of optimal
codons)

AFop (difference in
frequenciesof optimal
codons between
constrained and
nonconstrained codons)

CBI (Codon bias index)

B (Codon usage bias)

CEC (Codon-enrichment
correlation)

rCAI (relative codon
adaptation index)

GCB

ITE (index of translation
elongation)

Assess the relative merits of each codon. A
gene score is calculated from the frequency
of use of all codons in that gene based on a
reference set of genes. The index assesses
the extent to which selection has been
effective in molding the pattern of codon
usage.

The frequency of optimal codons of a gene is
the ratio of the number of optimal codons to
the total number of codons. The optimal
codons can be defined according to
nucleotide chemistry, codon usage bias, or
tRNA availability.

Measures the difference in frequencies of
optimal codons used in a gene at codons
related to AA that are evolutionary
conserved vs. codons related to AA that are
not evolutionary conserved. It is based on
the assumption that higher codon bias
exists in sites related to conserved AA.
Measures the usage of optimal codons using
the ratio between the number of optimal
codons in a gene and the total number of
codons in a gene. It uses the expected usage
as a scaling factor.

Based on the frequency weighted sum of
distances of the relative codon usage
frequencies between two sets of genes.

The linear correlation coefficient of the
codon enrichment between the ORF and a
reference set of genes. The enrichment of
each codon is defined as the ratio of its
frequency among the named ORFs by its
expected frequency in random sequences.
This index is similar to CAI, but defines each
codon weight by normalizing it with the
codon usage in the + 1 and + 2 reading
frames.

Defines iteratively the reference set for
weighting the codons frequency.

It is similar to CAI, but for each codon, a
weight is calculated based on its frequency
among NNR and NNY codons subfamilies in
the reference set. The reason for separating
synonymous codons into R- and Y-ending
codon subfamilies is that different tRNAs
typically translate them and they are
subjected to different mutation bias.

Predict protein expression levels.

Predict protein production levels and
shows the optimization level of
synonymous codon choice.

It is a useful index to test directly the
hypothesis of selection for
translational accuracy and selection for
the fidelity of protein synthesis.

Reflects the presence of components
with high CUB in a particular gene. It
can describe foreign gene expression in
a host.

It is used to infer the expression level
by comparing the fraction of the
distance of the query set with respect
to all genes over the distance to a
reference set, or a linear combination
of reference sets.

Together with expression data, CEC can
be used to identify spurious open
reading frames and can be used to
detect incorrectly assigned ORFs that
are not coding for a protein.

It is used to discriminate between
highly biased and unbiased genomic
regions. It can detect codon bias
patterns in overlapping genes and
capture local codon bias patterns.

It can be used to identify hypothetical
genes.

It can predict protein expression levels.

A higher score for genes that tend to
includes codons that are more frequent in
highly expressed genes (range from O to 1).

The FOP values range from 0 (optimal codon
never appear) to 1 (optimal codon always
appear).

A significant positive value indicates that
optimal codons use is higher at constrained
codons than at nonconstrained ones.

Values range between —1 and 1. A value of 1
means only preferred codons are used, zero
means random choice and less than zero

implies greater use of nonpreferred codons.

The possible values range from 0 to 2, rarely
exceeding 0.5. Higher value indicates codon
usage differences between the two sets of
genes.

If a sequence is not detected experimentally
and the CEC is lower than the cutoff value,
then the ORF is designated as spurious.

rCAI ranges from O to an upper limit, which
corresponds to an imaginary gene
consisting only the maximum-weighted
codons.

A higher GCB value is assigned to genes that
tend to include codons that are more
frequent in the reference set.

A higher score for genes that tend to
includes codons that are more frequent in
highly expressed genes (range from 0 to 1).

S.cerevisiae

S.cerevisiae, E.coli, C. species

C.elegans, Human

S.cerevisiae, M.tuberculosis

Human, E.coli

S.cerevisiae

E.coli, L.lactis, additional bacteria
[91]

S.cerevisiae, E.coli, additional
bacteria

Unicellular and multicellular
organisms

[73,86-
87

(731

(73]

(33]

[3435]

(88]

[36]

[89-90]

[37]

[92]

[38]

[93]
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Table 2 (continued)

Index type: Codon frequency in a reference set of genes

Reference

Online

Analyzed organism

Values

|

2

o
=
=
=
i
13}

=l

k=

=

[39]

Human [39]

It can be used for determining Higher values indicate a higher

Measures the observed/expected codon,

TissueCoCoPUT (Tissue

compatibility to a certain tissue.

translation kinetics and efficiency

across tissues.

codon pair, and dinucleotides frequency and
calculates the difference in different tissues.

specific Codon and
Codon-Pair Usage

Tables)
RCA (Relative codon

[94]

S.cerevisiae, C.elegans,

A higher score for genes that tend to include
codons that are more frequent in highly

expressed genes.

It can predict protein expression levels.

This index uses a given reference set to
compute observed and expected codon
frequency. It considers the underlying

D.melanogaster, E.coli

adaptation)

nucleotide distribution at the third position

in the codon.

[75]

[75]

A COUSIN score of 1 indicates that the CUB  E.coli, S.coelicolor, A.thaliana,

in the query is similar to the reference data
set; A COUSIN score of 0 indicates that the

CUB in the query is similar to the Null

It can be used to identify differential

heterogeneity between and within

genomic data sets.

This index compares the CUB of a query

COUSIN (Codon usage

S.cerevisiae, P. falciparum,

against those of a reference and normalizes
the output over a Null Hypothesis of

random codon usage.

similarity index)

G.gallus, Human, M.musculus

Hypothesis (i.e., equal usage of synonymous

codons).

[95,96]

A higher score for genes that tend to M.pulmonis, M.tuberculosis,

It can be used to predict gene

This index is based on the CAI, but the

SCCI (Self Consistent Codon

T.pallidum, H.pylori, P.aeruginosa,
B.burgdorferi, H.influenzae,

includes codons that are more frequent in
the reference set of genes (range from

0to1)

expression levels, to guide regulatory
circuit reconstruction, and to compare

species.

chosen reference set is the most biased set

of genes.

Index)

S.enterica, S.aureus, L.lactis,

B.subtilis, E.coli, S.cerevisiae,
C.elegans, D.melanogaster
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also include measures with higher statistics than only single
codons.

For example, under the assumption that evolution shapes cod-
ing sequences to improve gene expression regulation, if a gene
shares longer sequence blocks with the rest of the genome, it is
possibly more optimized and more highly expressed. The
ChimeraARS [57] index (average repetitive substring) is based on
the coding region’s tendency to include long substrings that appear
in other coding sequences and assume to be regulatory regions. If
the coding region has more such longer common substrings (which
are usually longer than three nucleotides, i.e., a codon) with other
coding sequences, the ChimeraARS score is higher. It is known that
some regulatory signals are expected to appear in specific regions
of the coding region (e.g., at the beginning or the end). The Chimer-
aUGEM [58] index aims at capturing this aspect by considering
both the size of the commonly detected substring and its location
within host genes. The input to these two indices can be based on
an alphabet of codons (and in this case, the substrings have lengths
in multiples of 3) or nucleotides (in this case, the lengths are not in
multiples of 3). We believe that alphabet of nucleotites is also rel-
evant since these patterns are partially encoded by codon usage.

Another example of an index that captures a signal longer than
a single codon is the effective number of codon-pairs (ENcp) [59]. It
is defined analogously to ENC, with an addition of a square root to
the equation and measures the bias of codon pairs distribution.
Additional codon pairs bias index is the codon pair score (CPS)
[60]. The CPS is defined as the observed ratio’s natural logarithm
over the expected number of occurrences of a particular codon pair
in all protein-coding sequences of a species. A negative CPS value
means that a specific codon pair is underrepresented, whereas a
positive CPS value indicates that a particular codon pair is overrep-
resented. Codon pairs that are equally under or overrepresented
have a CPS equidistant from 0. From the CPS, a gene score of codon
pair bias can be calculated by the average of the CPSs of all codon
pairs in the gene [61].

Another type of complex codon usage pattern is estimated by
the index 'synonymous codon usage bias maximum likelihood esti-
mation’ (SCUMBLE) [62]. This index aims to model various sources
of codon usage bias in a gene and it is based on a probabilistic
model inspired by statistical physics. The maximum likelihood
approach is used for estimating the model parameters. SCUMBLE
separates the codon usage variation into distinct sources of bias
and captures each gene’s average codon usage.

See more indices in Table 4.

The main advantages of this type of indices are that they can
capture complex patterns that are not represented only by single
codon distributions (such as codon pairs usage). Some of them
can also consider various aspects that are currently not well under-
stood (e.g., novel regulatory motifs and regulatory motifs related to
specific regions in coding sequences) related to all aspects of gene
expression. In addition, they usually do not require additional mea-
surements other than the genome of the analyzed organism.

Their disadvantages include the fact that they are more compli-
cated to compute than the previously mentioned indices and may
require the design of efficient algorithms and more running time.
In addition, some of the indices are based on or require additional
prior knowledge, such as knowledge about features that affect
codon bias, highly expressed genes, and more.

Therefore, it is useful to use this type of indices when there is a
need to study more complex patterns in the coding region that
may be related not only to translation elongation or to known
intracellular phenomena.

In this type of indices, the most used indices according to our
review based on the usage and number of citations, are Chimer-
aARS, ENcp.
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Table 3

Codon bias indices based on adaptation to the tRNA levels and their supply summary.

Index type: Adaptation to the tRNA levels and their supply

Index name

Specific characteristics

Uses

Values

Analyzed organism

Reference

tAI (tRNA adaptation index)

stAl (species-specific tRNA
adaptation index)

P1 index

P2 index

nTE (normalized
translational efficiency)

compAl (Competition
Adaptation Index)

TPI (tRNA-pairing index)

Computes a weight for each codon based on the tRNA copy
number and the properties of anticodon-codon interaction.

Species-specific tAl This index estimates the tAl codon - anti
codon interaction weights without the need for gene
expression measurements.

Measuresthe average number of tRNA-codon interactions
necessary for a correct recognition for a step for a correct
recognition for a stepin the elongation cycle. It is based on
protein synthesis dynamics.

This index is based on the fraction of pyrimidine-ending
codons that have intermediate strength.

This index considers both the supply and the demand of a
codon by computing for each codon a weight which is based
on the tAl and the relative frequency of the relevant codon in
all the mRNAs.

Based on the competition between cognate and near-cognate
tRNAs during translation. It is defined as the harmonic
average of the relative adaptiveness of the gene codons.

A Measure of synonymous codon ordering comparing of the
number of changes of tRNA in a coding sequence to the total
number of expected changes given a random distribution of
the existing codons.

It can be used to
measure translation
efficiency.

It can be used to
measure translation
efficiency .

It can measure the
influence of tRNA
availability on the gene
translation.

It can measure the bias
for anticodon-codon
interactions of
intermediary strength.
It can measure
translation efficiency.

It can provide
information about the
speed of protein
synthesis.

It can be used to
measure tRNA reusage
of a gene.

Higher values for genes that tend to
includes codons that are more adapted to
the tRNA pool (range from 0 to 1).

Higher values for genes that tend to
includes codons that are more adapted to
the tRNA pool (range from 0 to 1)

Lower values are related to genes that are
optimized for a small number of tRNA
discriminations and are often highly
expressed.

A high value for highly expressed genes and
low for lowly expressed genes.

Codons are considered optimal if the
relative availability of cognate tRNAs
exceeds their relative usage resulting in a
higher value.

Values between 0 and 1, where values close
to 0 indicate higher competition, and
therefore a low translation rate.

A value of 1 means a completely ordered
sequence of the codons by their decoding
tRNA. A value of —1 means a completely

unordered sequence.

H.pylori, S.cerevisiae, Human,
A.thaliana, M.musculus,
P.falciparum, N.crassa,
D.melanogaster, C.elegans
Unicellular and multicellular
organisms.

E.coli

E.coli

S.cerevisiae, C.glabrata,
D.hansenii, K.lactis, S.bayanus,
S.kluyveri, S.mikatae,
S,paradoxus, S.pombe,
Y.lipolytica

E.coli

S.cerevisiae

[97]

[50]

[41]

[52]

(52]

[51]

(98]

[99]
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Table 4
Codon bias indices based on complex patterns of codons summary.

Index type: Complex patterns of codon usage

Index name Specific characteristics Uses Values Analyzed organism Online  Reference

tool

ChimeraARS Based on the tendency of a coding region to It is used to predict gene expression and A higher score is related to higher E.coli [58 ] [57]

include long substrings that appear in other estimate the adaptability of an ORF to the  adaptivity of the gene to the host
coding sequences and assumed to be regulatory intracellular gene expression machinery of genome.
regions. a genome (host).
ChimeraUGEM Region and position specific ChimeraARS. It is used to predict gene expression and A higher score is related to higher E.coli [58 ] [58]
estimate the adaptability of an ORF to the  adaptivity of the gene to the host
intracellular gene expression machinery of genome.
a genome (host).

GC3 (GC content at the third Measures the GC content at the third position It can predict protein expression levels. Values range from 0 to 1, a higher value Celegans [73 ] [100]
position of synonymous  of synonymous codons. It tries to capture the correlates with highly expressed genes.
codons) fact that optimal codons in highly abundant

proteins tend to have pyrimidines at the third
position.

SCUMBLE (Synonymous The model parameters are estimated by the It can identify different sources of bias in A higher value for a source indicate a S.cerevisiae, 325 - [62]
codon usage bias maximum likelihood approach. This index various genomes and estimate the other stronger bias relates to it. prokaryotes genomes such
maximum-likelihood captures nonlinearities betweenexpression sources’ degree of contribution and their as B.subtilis and E.coli
estimation) levels and codon usage. effects on a gene..

SEMPPR (Stochastic Based on the stochastic evolutionary model, It can be used to predict protein production  Genes with low production rates will S.cerevisiae - [101]
evolutionary model of which assumes that selection to reduce the cost rate and expression levels. have a smaller difference in the energetic
protein production rate)  of nonsense errors drives the evolution of usage between the highest peak and

codon bias. This index generates a posterior lowest probability distribution valley
probability distribution for the protein than those with high production rates.
production rate of a given gene.

Codon volatility Measures the proportion of the point-mutation It can be used to estimate selective A gene that contains many residues M.tuberculosis, P.falciparum - [102]

neighbors of a codon that encodes different pressures. It can be used to scan an entire  under pressure for amino-acid
amino acids. It is based on the observation that genome to find genes that show replacements will exhibit on average
codons differ with respect to the likelihood that  significantly more, or less, pressure for elevated volatility.

a point mutation will cause a nonsynonymous amino-acid substitutions than the genome

mutation. as a whole.

ENcp (effective number of Measures codon pairs bias. It is defined Can be used to Investigate codon-pairs Ranges from 20 (very biased) to 61 (not 1,275,531 individual [39] [59]
codon-pairs) analogously to ENC. usage. biased at all). species

CPS (codon pair score) Measures codons pair bias. It is defined It can be used to determine the level of A positive and higher score indicates Human, S. barbatus, [103 ] [60-61]

analogously to RSCU. similarity in codon pair preferences preferred codon pair. M. musculus, G.g.domesticus,
between viruses and their host. D.rerio, A. aegypti,
A.gambiae,
C. quinquefasciatus,
Lscapularis and 159
different viruses
Frare (frequency of rare It is defined by calculating the frequency of It can be used to measure codon usage and A lower value of a gene indicates that E.coli - [104]

codons)

occurrence of all codon pairs in coding
sequences.

estimate the stability of exogenous genes.

that gene is an essential gene.
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6. Indices based on direct experimental measurements of
translation and transcription elongation

Most of the CUB indices are based only on the genome of the
analyzed organism. However, in many cases, the genome alone is
insufficient to understand the effect of codon bias on various gene
expression steps directly. In recent years, various novel experimen-
tal approaches for measuring aspects of gene expression (e.g., elon-
gation of ribosomes and RNAP (RNA polymerase) have been
developed (see Fig. 2E). One widely used experiment is the
ribosome-profiling protocol; it is based on the deep sequencing
of ribosomes protected mRNA fragments and enables genome-
wide investigation of translation at the resolution of single codons
[63] (Fig. 3A).

These types of experiments enable us to infer more direct codon
bias indices related to gene expression steps such as translation
elongation and transcription elongation in specific conditions.

For example, the mean typical decoding rate (MTDR) [64] is an
index that aims at inferring the typical decoding rates of codons
composing a certain coding region based on ribosome profiling
data [63]. The index assumes that the normalized read count distri-
bution of each codon is related to a sum of two random variables:
normal (related to the typical decoding rates; where the mean of
the distribution is the typical decoding rate of the codon) and
exponential distributions (which is related to traffic jams and
extreme biases in the experiment protocol). The parameters of
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these distributions are fitted to each codon separately based on
the maximum likelihood approach. The MTDR of a gene is defined
as the geometric mean of its codons’ typical decoding rates. Gardin
et al. [65] developed a similar index of codon decoding time called
'Ribosome Residence Time’ (RRT) based on a different statistical
approach (average of the relative frequency distributions). Another
study by Cohen et al. [66] used Native elongating transcript
sequencing (Net-seq data) [67] (a procedure for capturing nascent
RNA transcripts directly from live cells, Fig. 3B) to estimate the typ-
ical transcription elongation rate of the RNA polymerase related to
nucleotide 5-mers, which is then used for estimating the mean
transcription elongation rate of a transcript. The mean typical tran-
scription elongation rate (MTTR) is computed per gene based on
the geometric mean of the reciprocals of all its k-mer scores.

See more indices in Table 5.

The main advantages of this type of indices include the fact that
they are based on real experimental data and can directly estimate
various gene expression aspects. In addition, since gene expression
regulation is condition-specific, these indices are also condition-
specific.

The disadvantages include the fact that they are based on com-
plex experiments (and not on the genome alone as the indices
mentioned in previous sections) that are difficult to perform and
are not available for many organisms.

Therefore, it is useful to use this type of indices when the exper-
imental data is available and when there is an interest in studying

B.

M7G

Freeze, lyse

(] o,

)
..... ......... ....”..

1P
M7G
Sequencing primer
Library

5’ linker Insert 3’ linker

Reads

sequence profile

bases

Fig. 3. A. Ribosome profiling procedure. Translation of mRNAs by ribosomes is arrested, then exposed mRNA is digested. Protected mRNA footprints are then sequenced and
mapped to the genome, creating for each gene its read count profile. B. NET-seq procedure. A culture is flash frozen and cryogenically lysed. Nascent RNA is co-purified via
immunoprecipitation (IP) of the RNAPII elongation complex. Conversion of RNA into DNA results in a DNA library with the RNA as an insert between DNA sequencing linkers.
The sequencing primer is positioned such that the 3’ end of the insert is sequenced. m’G refers to the 7-methylguanosine cap structure at the 5’ end of nascent transcripts.
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Table 5

Computational and Structural Biotechnology Journal 19 (2021) 2646-2663

Codon bias indices based on direct experimental measurements of translation and transcription elongation summary.

Index type: Direct experimental measurements of translation and transcription elongation

Index name Specific characteristics Uses Values Analyzed Online  Reference
organism tool
MTDR (Mean typical Measures the codon decoding It can be used to predict translation A higher value indicates E.coli, s.cerevisiae, - [64]
decoding rate) time based on ribosome elongation efficiency and predict higher translation C.elegans,
profiling data. changes in translation elongation  efficiency. B.subtilis,
efficiency. M.musculus,
Human
RRT (Ribosome Measures the codon decoding It can be used to predict translation ~Ranges from 0 to 1. A S.cerevisiae - [65]
Residence Time) time based on ribosome elongation efficiency. higher value indicate a
profiling data. slower codon decoding
speed.
MTTR (mean typical This index estimates the It can be used to estimate the Higher values are related ~ S.cerevisiae -

transcription
elongation rate)

typical transcription
elongation of the RNA
polymerase using NET-seq
data.

average transcription elongation
rate of a specific gene.

to selective pressure for
higher elongation cycles
in genes.

high-resolution specific gene expression steps (e.g., transcription
elongation or translation elongation).

In this type of indices, the most used index according to our
review based on the usage and number of citations, is MTDR.

7. A comparison between various CUB indices

In this section, we compare some of the CUB indices mentioned
above over the genes of S.cerevisiae, E.coli, and Human, aiming at
providing some intuition regarding the correlation between the
indices and protein abundance (PA) [68].

As mentioned above, gene expression is affected by CUB and
also affects its evolution [5-7]. Therefore, we expect high correla-
tions between CUB indices and gene expression. There is a high
correlation between mRNA and PA (For example, in S.cerevisiae,
the Spearman correlation is 0.67 from our analysis). However, as
codon usage is related to transcription and translation, there is
usually a higher correlation between CUB indices and PA (vs. the
correlation between CUB indices and mRNA). Therefore, we chose
to examine the relation between CUB indices and PA.

S.cerevisiae, E.coli, and Human were the selected organisms since
they are highly studied models, and there is reliable PA data avail-
able for them. In addition, this set of organisms includes both bac-
teria and eukaryotes in addition to both unicellular and
multicellular organisms. For each type of indices mentioned above,
at least one representative index was chosen: ENC [27] (non-
uniform usage of synonymous codon [69]), Fop [70] (codon fre-
quency in a reference set of genes), CAI [33] (codon frequency in
a reference set of genes), CBI [36] (codon frequency in a reference
set of genes), CEC [37] (codon frequency in a reference set of
genes), tAl [50] (adaptation to tRNA levels and their supply [41]),
nTE [51] (adaptation to tRNA levels and their supply), ChimeraARS
[57] (complex patterns of codons), CPS [60,61] (complex patterns
of codons), MTDR [64] (experimental procedure). We chose indices
that are possible to compute (i.e., they are clear enough to imple-
ment by ourselves or their code is available), require known and
achievable data, and are computationally efficient.

We calculated the mentioned CUB indices and their Spearman
correlation with PA for all S.cerevisiae, E.coli, and Human genes
(for more details, see the case study section).

As shown in Fig. 4A, C, and E, all of the CUB indices and PA cor-
relations are significant and in the right/expected direction. From
our analysis, indices that consider more biophysical aspects of
translation (tRNA copy number, i.e., tAl), complex patterns (Chi-
meraARS), and uses experimental data (Ribosome profiling data,
i.e.,, MTDR) tend to have higher correlation with PA; however, there
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are outliers such as the nTE. Using a reference set (highly expressed
genes, according to PA) also improves the correlation with PA (CEC,
CAl, FOP). Previous researches had found similar correlations and
results [21,71,72]. It is important to mention that different indices
are based on measurements (mRNA levels, tRNA copy number, and
more). Therefore, these measurements and their quality can influ-
ence the index value and can by itself induce differences among
the computed indices even though the indices are from the same
type. Furthermore, for most of the analyzed indices, the correla-
tions obtained for the Human genome were relatively lower
(Fig. 4E). Possible explanations for these results include: 1) The fact
that the effective population size of humans is lower than in the
case of the unicellular organisms, and this results in lower evolu-
tionary pressure and less optimal codon usage. 2) In multi-
cellular organisms gene expression regulation is more complex
and encoded in complex patterns in the coding region longer than
single codes. Indeed, the ChimeraARS, which can capture longer
patterns, performed relatively well both in the case of unicellular
organisms and in the case of the human genome.

Afterward, we wanted to examine the relationship between the
indices themselves. Therefore, we calculated the Spearman corre-
lation between the different indices’ values for each gene
(Fig. 4B, 4D, and 4F). In Fig. 5, the lowest and highest correlating
indices can be seen for all analyzed organisms. When comparing
the correlation between different indices, we can see from our
analysis of a small number of indices that typically indices from
the same type correlate better in all analyzed organisms. Moreover,
most correlations are positive since the indices’ values are in the
same direction and trend for most genes. A negative correlation
can be seen between all indices and ENC. The negative correlation
results from the index’s calculation method; in all indices, a higher
value indicates higher bias or higher adaptation. In the ENC index,
a higher value indicates lower bias. Additional negative correla-
tions can result from the different aspects that the different indices
capture, for example, codon expected distribution, biophysical
aspect, and more. Interestingly, the indices’ pairs with the highest
correlation were identical in all the analyzed organisms (the
indices with the highest correlation are FOP and CBI). This may
suggest that similar correlations between pairs of indices also
appear in other organisms.

In Tables 1-5, a short summary of many indices from all men-
tioned types can be seen. The reference cited is the original paper
where possible. All of the indices can be used to investigate unicel-
lular and multicellular organisms. For each index, the organism
analyzed in the original paper is described, and the usage from
the paper is mentioned.
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Fig. 4. A. Different indices of CUB Spearman correlation with PA in S.cerevisiae. The indices are clustered according to types. ENC (effective number of codons), Fop (frequency
of optimal codons), CAI (codon adaptation index), CBI (codon bias index), CEC (Codon-enrichment correlation), tAl (tRNA adaptation index), nTE (normalized translational
efficiency), Chimera ARS, CPS (codon pair score), MTDR (mean typical decoding rate). All of the correlations between the CUB measure and PA are significant and in the
right/expected direction. B. Spearman correlation between the different CUB indices in S.cerevisiae. It can be seen that typically indices from the same type correlate better. C.
Different indices of CUB Spearman correlation with PA in E.coli. The indices are clustered according to types. ENC (effective number of codons), Fop (frequency of optimal
codons), CAI (codon adaptation index), CBI (codon bias index), tAl (tRNA adaptation index), nTE (normalized translational efficiency), Chimera ARS, CPS (codon pair score),
MTDR (mean typical decoding rate). All of the correlations between the CUB measure and PA are significant and in the right/expected direction. D. Spearman correlation
between the different CUB indices in E.coli. It can be seen that typically indices from the same type correlate better. E. Different indices of CUB Spearman correlation with PA
in Human. The indices are clustered according to types. ENC (effective number of codons), Fop (frequency of optimal codons), CAI (codon adaptation index), CBI (codon bias
index), tAl (tRNA adaptation index), nTE (normalized translational efficiency), Chimera ARS, CPS (codon pair score). All of the correlations between the CUB measure and PA
are significant and in the right/expected direction. F. Spearman correlation between the different CUB indices in Human. It can be seen that typically indices from the same

type correlate better.

8. Summary and discussion

We provide here a short review of CUB indices that exist today.
We specifically summarized the different indices, classified them
according to their type, and discussed their advantages and disad-
vantages. We hope that our review will help researchers in the
field to choose the CUB index that fits their goals best.

Our analysis demonstrates that codon usage varies significantly
among organism groups, organelles, and viruses; in addition, at
least some of the indices that were examined in our review tend
to correlate even though they aim at capturing different aspects.
One reason for this correlation is that highly expressed genes tend
to be under higher selection pressure. They tend to be more tightly
regulated, and they specifically tend to have a more efficient trans-
lation, which is captured by various types of indices. Therefore, we

believe that developing indices to quantify the extent of codon bias
can help understand different regulatory motifs and even predict
gene expression when experimental data is not available. Creating
additional indices that consider known and new aspects of gene
expression can improve the understanding of how evolution pro-
motes transcripts to be more optimal to various gene expression
processes in many organisms.

When using various indices, it is important to remember and
consider that they may include many biases. The nucleotide com-
position can influence CUB indices as a result of mutational biases
[27], the length of the gene (usually shorter genes tend to have
higher variation due to stochastic sampling effects), the degree of
codon degeneracy (affect indices that are based on reference sets),
biophysical properties of the protein [105], biases that are related
to the experimental data (i.e., biases in ribo-seq data [106,107]),
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Fig. 5. A. Dot plot of the lowest correlating indices FOP vs. CPS in S.cerevisiae. B. Dot plot of the highest correlating indices FOP vs. CBI in S.cerevisiae. C. Dot plot of the lowest
correlating indices MTDR vs. CPS in E.coli. D. Dot plot of the highest correlating indices FOP vs. CBI in E.coli. E. Dot plot of the lowest correlating indices nTE vs. CAl in Human. B.

Dot plot of the highest correlating indices FOP vs. CBI in Human.

Secondary structure of the gene [105], and more. For example,
indices that are based on the non-uniform usage of synonymous
codon are strongly influenced by the length of the coding sequence
(shorter genes tend to be related with higher bias), indices that are
based on experimental procedures are affected by biases in the
procedures themselves, and indices related to the adaptation to
the tRNA pool can be biased due to the inaccurate estimation of
tRNA levels which means that for different purposes, different
indices are more suitable. When choosing an index, it is useful to
understand the available data; for more known organisms, indices
that use additional information can be used or even indices based
on experimental data. For less known organisms, indices that are
based solely on the genome are preferred. Moreover, there is a
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need to understand which aspect of gene expression is important
to capture. For example, if translation elongation is studied, per-
haps indices based on tRNA adaptation are preferred. Additional
criteria are the level of technical expertise and computational
power; we reported here both simple indices that are easier to
implement and more challenging indices.

Note that as we show in our analysis and based on previous
studies, there is a high correlation between some indices. In
addition, many of them have been used successfully for many
different objectives (e.g., gene expression prediction, molecular
evolution modeling, biotechnology, biophysical modeling, etc.).
Thus, it is impossible to suggests for each such objective one cer-
tain index.
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Due to a large number of available indices, from our research,
we can deduce that indices with embedded code or software are
more likely to be used. Therefore, when creating new indices, cre-
ating a published tool can enhance the usage in the index. There
are available software or online tools for different indices
[31,75,79,97]. For example, the CBDB (codon bias database) [91]
was developed to provide a resource for researchers investigat-
ing codon bias in bacteria, facilitating comparisons between strains
and species. In this database, different indices of CUB can be seen
for different bacteria highly expressed genes. It is important to
mention that many papers that introduce new indices have avail-
able source code or a code package for download. Still, it limits
the index’s usage to researches that are more computational.

From our point of view, more work needs to be done in the
aspect of evaluating and compare different indices’ performance.
For example, this can be done by designing sets of sequences with
different levels of codon bias (based on a known statistical model)
and compare the predictions of the indices to the known ground
truth [108]. However, this is a non-trivial mission as the aim of
the indices reported in this review in many cases is not only to esti-
mate the non-uniform usage of codons. As mentioned, they are
used, among others, to predict various aspects of gene expression,
to capture specific patterns in the coding regions, and for various
additional objectives. Thus, developing a good framework for such
an evaluation is challenging and should consider all the different
CUB indices’ usages. As we suggest here, some of the indices corre-
late; thus, such a framework should first evaluate the level of cor-
relation of an index to the rest of the indices.

In summary, we believe that CUB indices’ main advantage is
their simplicity: they provide a single number for each coding
sequence. However, this is also one of their disadvantages as one
number usually cannot capture the entire relevant information
encoded in the coding sequence. It is important to understand
the analyzed organism and the reliable and available data to
choose the suitable index. Moreover, there is a need to further
develop indices that are, on the one hand, simple but on the other
hand can capture more information that is encoded in coding
sequences, such as the fact that codon usage is not constant along
the coding region.

9. Case study
9.1. Analyzed organisms

We analyzed 40 bacteria genome from the following phyla or
classes: Alphaproteobacteria, Betaproteobacteria, Cyanobacteria,
Deltaproteobacteria, Gammaproteobacteria, Gram-positive bacte-
ria, Purple bacteria, Spirochaetes bacteria. In addition, we analyzed
40 chloroplast genomes, 40 eukaryotes genomes, 40 viruses from
all types according to Baltimore classification genomes, and 40
mitochondria genomes. All genomes were downloaded from NCBI
(https://www.ncbi.nlm.nih.gov). The complete list can be seen in
Table S1.

9.2. Computational software

The computational analysis, including graphs creation, indices
calculation, and correlation calculation, was done in MATLAB.

9.3. Codon frequency analysis
We examined codon frequency in different organisms, orga-

nelles, and viruses (see Fig. 1). To calculate each codon frequency,
we used the following equation:

2660

Computational and Structural Biotechnology Journal 19 (2021) 2646-2663

number of times codon i apears

Codon i frequency = - - -
freq Y number of times the relevant amino acid apears

1
We calculated all 64 codons frequency for all chosen organisms.
9.4. A comparison between various CUB indices

We compare CUB indices over S.cerevisiae, E.coli and, Human
genes, aiming at providing some intuition regarding the correlation
between the indices and protein abundance (PA).

First, we downloaded and extracted S.cerevisiae, E.coli and,
Human genomes and PAs. To analyze Human PA, we averaged PA
levels from 11 different tissues (brain, colon, heart, kidney, liver,
lung, pancreas, plasma, saliva, skin, uterus).

Second, for each gene, we calculated the CUB index. Third, we
calculated the Spearman correlation between each gene value of
the chosen index and its protein abundance (Fig. 4A, 4C, and 4E).

The chosen indices:

We chose indices that are clear and easy enough to implement
by ourselves or that their code is available, require known and
achievable data, and are computationally efficient.

Type 1: Indices that are based on the non-uniform usage of syn-
onymous codon:

ENC - Let x; be the number of synonymous codons of each type
in the sequence

The number of times the AA appears in the sequence: n = Z?x,-
The frequency (/probability) of each codon is: p; = x;/n
Where:

P

The ENC for the group of AA with degeneracy d:

Fimg 3OF)

ieAy

(2)

3)

where A, is the number of AA with the same degeneracy d.
The ENC for the sequence (e.g., gene):

9 1 5 3
ENC=2+=+=+=+= (4)
» F3 Fy Fg

Type 2: Indices based on codon frequency in a reference set of
genes:
FOP - To calculate this index we used the equation:

#optimal codons in sequence

Fop = #total codons in sequence

()

Optimal codons were chosen to be the codons with maximum
occurrences for each amino acid in highly expressed genes (20%
of the genes with the highest PA).

CAI - For each codon, we calculated its weight in a reference set
(20% of the genes with the highest PA):
~ max(X)

(6)

wherex; it's the codon i frequency in the reference set and X is the
frequencies of all synonymous codons of the relevant amino acid.
In the next step, for each gene j we calculated the CAI value:

L

CAL; = exp (% > ln(w,)>
=1

where L is number of codons in gene j and W is the weight of codon 1.

CBI - To compute this index we used the following equation:

prr - Nrand
—_ 8
Nmt - Nrund ( )

(7)

CBl =


https://www.ncbi.nlm.nih.gov
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where, Npft is the total number of occurrences of preferred codons:
Npig =" ccc, Ne

prf
Cprf, is the subset of optimal codons from all codons C that are
included in the analysis.

Nrand is the expected number of the preferred codons if all syn-

if
onymous codons were used equally: Nygg = >, 4Na %

Na is the number of occurrences of amino acid a in the

sequence, 0,”7 is the number of instances of optimal codons for
amino acid a, and Ka is the codon redundancy.

Ntot is the total number of amino acids in the sequence.

Preferred codons were chosen to be the codons with maximum
occurrences for each amino acid in highly expressed genes (20% of
the genes with the highest PA).

CEC - This index was used only in the analysis of S.cerevisiae,
and the index values were taken from the original paper [37].

Type 3: Indices based on the adaptation to tRNA levels and their
supply:

tAl - for each codon, we calculated its weight using the follow-
ing equation:

Wi=3 . (1—s;)tGCN; 9)

Where s; is the affinity between codon i and anti-codon j, tGCN;
is the tRNA copy number of the tRNA with anti-codon j.
In the next step, for each gene, we calculated the tAI value:

L

tAl = exp % ; In(W)) (10)
where L is the number of codons in the gene and W, is the weight of
codon L

nTE - In the first step, we computed tAl weights for each codon
using equation (9).

In the second step, we computed the demand for each codon
using the following equation:

U,‘:Zn,‘g~mg
g

where n;; is the number of times codon i appears in gene g and
mgthe number of copies of gene g [47,109].
The nTE for codon i is:

o cTE;
B cU;

(11)

nTE;

(12)

where cTE; is the normalized tAl weight of codon i and cU; is the
normalized demand of codon i.

Before calculating the gene nTE, all nTE of the codons are
normalized.

The nTE of a gene is:

L
nTE = exp % > In(nTE)
=1

Type 4: Indices based on 'complex’ patterns of codon usage:

ChimeraARS - We defined highly expressed genes using 20% of
the genes with the highest PA as the reference genome. To calcu-
late this index, we used the ChimeraUGEM software [58].

CPS - To compute this index, first, each codon pair score is cal-
culated using the following equation:

F(AB) )

F(A)F(B
F((xi.rgy)) -F(XY)

where F(AB) is the frequency of codon pair AB, F(A) the frequency of

codon A, F(B) the frequency of codon B, F(XY) is the frequency of

amino acid pair XY, F(X) the frequency of amino acid X, F(Y) the fre-

quency of amino acid Y.

(14)

CPS; = lr1<
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The CPS score of a gene is:
CPS = AverageallofthegeneCPS;

Type 5: Indices based on direct experimental measurements of
translation and transcription elongation:

MTDR - To compute this index, we used the typical decoding
rate (TDR) of each codon from [110].

The MTDR of a gene is calculated using the following equation:

MTDR = exp (1 XL: ln(TDR,)) (16)
1=1
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