
Early Feasibility Assessment: A
Method for Accurately Predicting
Biotherapeutic Dosing to Inform Early
Drug Discovery Decisions
Diana H. Marcantonio†, Andrew Matteson†, Marc Presler†, John M. Burke, David R. Hagen,
Fei Hua and Joshua F. Apgar*

Applied BioMath, LLC, Concord, MA, United States

The application of model-informed drug discovery and development (MID3) approaches in
the early stages of drug discovery can help determine feasibility of drugging a target,
prioritize between targets, or define optimal drug properties for a target product profile
(TPP). However, applying MID3 in early discovery can be challenging due to the lack of
pharmacokinetic (PK) and pharmacodynamic (PD) data at this stage. Early Feasibility
Assessment (EFA) is the application of mechanistic PKPD models, built from first
principles, and parameterized by data that is readily available early in drug discovery to
make effective dose predictions. This manuscript demonstrates the ability of EFA to make
accurate predictions of clinical effective doses for nine approved biotherapeutics and
outlines the potential of extending this approach to novel therapeutics to impact early drug
discovery decisions.
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INTRODUCTION

Dosage is fundamental to the success or failure of therapeutic agents (Paracelsus, 1538). The
appropriate selection of dose is accordingly a critical component of decision making at all stages of
drug development. An earlier understanding of dose, and how drug and target properties influence
dose, can greatly improve the speed and quality of drug development. At later stages of development,
model-informed drug discovery and development (MID3) approaches have been increasingly used
to inform clinical trial dose selection with empirical and mechanistic-based models (Shen et al.,
2019). These have been encouraged by the FDA through programs such as the model-informed drug
development pilot program (U.S. Food and Drug Administration, 2021). Examples of clinical
application include minimum anticipated biological effect (MABEL) dose calculations for first-in-
human dose selection (Hu and Hansen 2013; Shen et al., 2019) and rational dose selection for pivotal
trials; models are also used to justify simplified dosing for patients and providers, and to extrapolate
to untested populations or dosing regimen to inform clinical decision making (Nayak et al., 2018).

Many decisions during discovery and early development can also be impacted by an
understanding of the likely clinical dose and the impact of drug properties on the dose. Here,
computational methods are essential because these decisions occur long before data from
translational or clinical studies are available. For example, if the anticipated clinical dose could
be determined to be infeasible to practically administer even assuming ideal drug properties, this
could be used as a no-go criteria at the start of a new program and save significant research and
development costs (Patel and Bueters 2020). Likewise, target prioritization, clinical candidate

Edited by:
Rui Li,

Pfizer, United States

Reviewed by:
Shibin Mathew,

Pfizer, United States
Jeffrey D. Kearns,

Novartis Institutes for BioMedical
Research, United States

Amy Meng,
Gilead, United States

*Correspondence:
Joshua F. Apgar

apgar@appliedbiomath.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 28 January 2022
Accepted: 16 May 2022
Published: 08 June 2022

Citation:
Marcantonio DH, Matteson A,

Presler M, Burke JM, Hagen DR, Hua F
and Apgar JF (2022) Early Feasibility

Assessment: A Method for Accurately
Predicting Biotherapeutic Dosing to

Inform Early Drug Discovery Decisions.
Front. Pharmacol. 13:864768.

doi: 10.3389/fphar.2022.864768

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8647681

ORIGINAL RESEARCH
published: 08 June 2022

doi: 10.3389/fphar.2022.864768

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.864768&domain=pdf&date_stamp=2022-06-08
https://www.frontiersin.org/articles/10.3389/fphar.2022.864768/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864768/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864768/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864768/full
http://creativecommons.org/licenses/by/4.0/
mailto:apgar@appliedbiomath.com
https://doi.org/10.3389/fphar.2022.864768
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.864768


selection, preclinical study design, prediction of the impact of
formulations or the route of administration can all be informed
by earlier understanding of the likely clinical dose (Hu and
Hansen 2013; Patel and Bueters 2020). Even in the absence of
drug-specific data, understanding the potential for target burden,
target turnover, or decoy receptors to impact dose could help
prioritize early experiments to fill key knowledge gaps (Hu and
Hansen 2013; Glassman and Balthasar 2019; Patel and Bueters
2020). Moreover, progressing efficiently through the new target
and lead generation (or biotherapeutics design) stages can impact
return on investment, in terms of potentially being first-in-class
or best-in-class (Shulze and Ringel 2013). Lalonde et al. (2007)
emphasized the importance of starting modeling before
compound selection to assist in these types of decisions and
continually updating models throughout the development
process to aid in decision making at each stage.

Despite the increasing use of such MID3 approaches in later
stage programs, the application of these approaches to early
stage drug discovery decisions has been more limited. In
general, the methods applied in later stage development rely
on pharmacokinetic (PK) data, pharmacodynamic (PD) data,
or both (PKPD data) that was collected from studies where the
drug candidate was administered. This data simply is not
available at the early stages of drug discovery. The challenge
has been how to develop these models in the absence of PKPD
data, relying on what has been previously described in
literature, and then validate the results (Hu and Hansen 2013).

The application of mechanistic PKPD models to describe
the pharmacology of antibody-based biotherapeutics is an
opportunity to overcome these challenges. Antibody-based
therapeutics often have predictable linear PK properties
(Deng et al., 2011; Dong et al., 2011; Betts et al., 2018), and
the impact of binding to soluble and membrane receptor
targets on the non-linear PK of antibodies has been well
described (Mager and Jusko 2001; Peletier and Gabrielsson
2012; Dua et al., 2015). Mechanistic models can utilize these
properties, biological data from the literature on the
biophysical properties of the target, and physiological
parameters such as compartment volumes, cell numbers,
receptor expression levels, and soluble protein
concentrations to describe the intended pharmacology of
biotherapeutics. Kapitanov et al. provides an example of
this application of mechanistic PKPD models, in a series of
case studies for antagonist mAbs. In this work, the authors use
typical PK and physiological parameters in a “site of action
model” to provide insight to guide early discovery decisions
(Kapitanov et al., 2021). A generalization of this framework,
that is validated with benchmark data, could enable the
expanded use of these approaches.

This manuscript presents Early Feasibility Assessment
(EFA) as a workflow for the application of mechanistic
PKPD models, without fitting to PK or PD data, to predict
effective dose for biotherapeutics. The process of model
selection, model parameterization, and criteria definition
for dose prediction are described through specific case
studies. EFA is used to predict the clinical efficacious doses
of nine approved biotherapeutics across a range of targets and

indications. These examples demonstrate the capabilities of
EFA to make relevant predictions and establish a workflow
that can be applied at an early stage, even before the
generation of candidate or tool molecules (Applied
BioMath 2021).

MATERIALS AND METHODS

Test Set of Drugs, Targets and Indication
A representative collection of 9 clinically approved
biotherapeutics were modeled in this analysis. Drug targets
include both soluble (TNFα, IL-23/IL-12, IL-23, BLyS, IgE)
and membrane (HER2, EGFR, c-Met) targets. These
biotherapeutics have been approved in a range of oncology
and immune and inflammation (I&I) indications. The
complete list of drugs, targets, and indications are provided
in Table 1.

Model Strategy
Three different mechanistic PKPD models were used for the
analyses in this manuscript. Full model descriptions are
included later in the manuscript. All models are in vivo
human models which describe drug administration, PK,
target binding, and target dynamics in one or more
compartments. The models were used to predict PK, target
engagement, and target inhibition at different doses. Target
engagement or inhibition criteria were used to define effective
dose. Models were chosen according to each biotherapeutic’s
pharmacology.

For soluble targets, a 1-compartment monospecific anti-
ligand model was chosen. Drug interactions with soluble
targets are confined to the vascular and interstitial fluid
spaces, and can be sufficiently described with a one-
compartment model. While one-compartment models do
not accurately describe the distribution phase of typical
mAb PK, the analysis focuses on inhibition at trough
concentrations, which can be captured by a one-
compartment model.

For membrane targets, a 2-compartment monospecific anti-
receptor model was chosen. Unlike soluble targets, membrane
targets are often preferentially expressed in the peripheral
tissues. Antibody distribution into peripheral tissues can

TABLE 1 | Biotherapeutics included in EFA analysis.

Drug Indicationa Target

Remicade (infliximab) RA TNFa
Humira (adalimumab) RA TNFa
Stelara (ustekinumab) Plaque psoriasis IL-23/IL-12
Skyrizi (risankizumab) Plaque psoriasis IL-23
Benlysta (belimumab) SLE BLyS (BAFF)
Xolair (omalizumab) Asthma IgE
Herceptin (trastuzumab) Breast Cancer HER2
Vectibix (panitumumab) Colon Cancer EGFR
Rybrevant (amivantamab) NSCLC (EGFR exon 2) EGFR/c-Met

aRA = rheumatoid arthritis, SLE = systemic lupus erythematosus.
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also be limited (Shah and Betts 2012). Physiologically-relevant
representation of drug distribution into the lumped peripheral
compartment, target expression in the peripheral
compartment, and drug interactions with target were
considered necessary to describe the drug pharmacology.
While not used here, for targets with high or low tissue
penetration, a three (or more) compartment model can be
used with tissue specific antibody biodistribution coefficient to
describe the transport (Shah and Betts 2013).

For the bispecific antibody case study, a 2-compartment
bispecific anti-receptor x anti-receptor model was chosen. A
2-compartment model was chosen for more accurate
representation of the membrane targets.

All models were parameterized using data obtained from
literature (i.e. there is no parameter fitting). The only
compound specific data was of the type typically available
in early discovery (e.g. affinity, valency, etc.). Typical values,
or expected ranges for these parameters can be used to apply
this analysis even earlier. Detailed methods for model
parameterization are described below. For each drug, a
criterion for defining effective dose (e.g. 90% sustained
target inhibition) was chosen. Models were then simulated
to determine the dose required to achieve the criterion. This
model predicted effective dose was compared to clinically
approved doses for each drug. For model validation, it was
assumed that dose predictions within 3-fold of the prescribed
efficacious dose of drugs was sufficient for early decision

making, especially for the prioritization of potential targets
and to inform lead identification and optimization criteria.

Model Structure
The 1-compartment monospecific anti-ligand model is a single-
compartment model describing drug administration, target-
binding, and elimination (Figure 1). Drug administration can
be described as an intravenous (IV) bolus, or subcutaneous (SC)
administration with a 1st order absorption rate. Target ligand and
its cognate receptor are synthesized in the compartment with a
0th order rate. Ligand binds reversibly to the receptor, specified
by a monovalent equilibrium dissociation constant (Kd). Drug
binds reversibly to the target ligand, specified by a separately
parameterized Kd, and blocks ligand-receptor interactions. All
species are eliminated through 1st order processes. This model is
run using the Monospecific Anti-Ligand model in Applied
BioMath Assess ™.

The 2-compartment monospecific anti-receptor model
consists of a central and peripheral compartment.
(Supplementary Figure S1) Drug is administered into the
central compartment as an IV bolus. Target membrane
receptor is synthesized through 0th order processes in both
central and peripheral compartments. A soluble form of the
receptor is generated through shedding from the membrane
receptor by a 1st order process. Drug can reversibly bind
either membrane or soluble forms of the receptor, specified by
a binding Kd. Bivalent binding of drug to membrane or soluble

FIGURE 1 |Model Diagram for the 1-compartment monospecific anti-ligand model. Diagram illustrates the species and reactions comprising the pharmacological
model describing the interaction between a monospecific anti-ligand antibody and its target. Model diagram was created with BioRender.com.
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forms of the receptor are modeled as independent binding
reactions with identical Kd values. All species are eliminated
with 1st order rates in both compartments. All binding
interactions occur in each compartment with identical Kd
values. All soluble species can transport between
compartments with 1st order rates. This model is run using
the Monospecific Anti-Receptor (4 compartment) model in
Applied BioMath Assess ™, with the tox and disease
compartments disabled.

The 2-compartment bispecific anti-receptor x anti-receptor
model consists of a central and peripheral compartment.
(Supplementary Figure S2) Model reactions are constructed
as in the monospecific anti-receptor model, except with 2
different target receptors. Free drug can bind with either
receptor, specified by independent binding Kd’s. Reversible
binding of a second receptor is described as an independent
binding process, parameterized by the same receptor-specific Kd.
This model is run using the Bispecific Anti-Receptor x Anti-
Receptor (4 compartment) model in Applied BioMath Assess ™,
with the tox and disease compartments disabled.

Model Parameterization
Drug-specific parameters, defined as elimination half-life, target
binding Kd, valency, and molecular weight, were identified from
reported values. Target binding affinities were identified from
in vitro measurements in biochemical or cell-based assays. Half-
life was identified from reported PK data.

Target specific parameters, defined as target concentration and
target turnover rate were calculated from literature
measurements. Soluble target concentrations were
parameterized by plasma measurements in indication-specific
patients. Soluble target half-life may be measured from
pharmacokinetic measurements of exogenously administered
target. Membrane target concentrations were calculated using
“bottom-up” methods. Target expression was calculated as the
sum of the number of cells for each cell type expressing the target
x % of each cell type expressing the target x receptors per cell.
Target expression was divided by the interstitial volume of each
relevant compartment to determine target concentrations.
Examples of data supporting inputs include, but are not
limited to, immunohistochemical staining of target across
tissues, quantitative or semi-quantitative flow cytometry,
Scatchard analysis of ligand binding sites, functional data on
target activation or knock-down, RNA expression data.
Membrane target turnover rates were identified from in vitro
cell line measurements when available. When data is not
available, assumptions based on other proteins of the same
family, similar structure, molecular weight, or function were used.

Model Assumptions
For all models, compartments are assumed to be well-mixed.
Non-specific elimination of the drug occurs in all compartments
with equal 1st order rate constant. For the anti-ligand model,
drug: target-ligand complex is assumed to eliminate at the same
rate as the free drug. Ligand:receptor complex is assumed to
eliminate at the same rate as free receptor. For the anti-receptor
models, internalization and elimination of the membrane

receptors are considered a single process. Drug:membrane
receptor complexes eliminate at the same rate as free
receptors. Drug:soluble-receptor complexes eliminate at the
same rate as free drug. For multi-compartment models, all
soluble species transport bi-directionally between
compartments. Drug:soluble-receptor complexes are assumed
to transport with the same rate constant as free drug. All
multivalent binding interactions are assumed to be identical
and independent.

Model Software
All simulations were performed using Applied BioMath Assess™
version 2021.12.1 (https://www.appliedbiomath.com/assess).
Run files in json format, Model files, and Assess Model
Reports are included in Supplementary Material.

RESULTS

To assess the ability of the EFA methodology to accurately
translate mechanistic parameters into likely clinical doses, we
performed a set of simulation studies for nine approved
biotherapeutics. Because these drugs have been approved there
is data on the molecular properties (e.g. affinity Kd and half-life)
as well as the approved clinical dose. Obviously this data is not
typically available for an early stage program. Where EFA is used
in practice these parameters would be set to a typical value for the
modality, or scanned over a typical range to find the critical value
where the pharmacology requirements are satisfied. However,
here we are looking at the ability of the model to accurately
translate the mechanistic parameters to predict a likely clinical
dose. To assess this, we are looking at the degree of agreement (or
disagreement) of the effective dose predicted by EFA compared to
the approved clinical dose.

Case Study 1: Effective Dose Prediction for
Adalimumab and Infliximab, Two Different
Anti-TNFα Drugs
In case study 1, EFA was used to predict the effective dose of
two well-studied anti-TNFα agents: adalimumab and
infliximab for the treatment of rheumatoid arthritis (RA).
Despite the shared target and indication, the two drugs
have different binding and PK properties, and have
different approved dose and regimen. The approved clinical
dose for adalimumab in RA is 40 mg every other week
administered through SC injection, although some patients
not receiving methotrexate benefit from 40 mg every week.
(Adalimumab, 2021) For RA patients treated with infliximab,
the clinically approved dose begins at 3 mg/kg IV at 0, 2 and
6 weeks followed by a maintenance dose administered once
every 8 weeks. There is a potential benefit of increasing dose to
10 mg/kg IV once a month. (Infliximab, 2013) For this
analysis, model predictions are compared to the
maintenance dose of infliximab. To predict these doses
from first principles, drug-specific and target-specific
parameters were defined for input into the model (Table 2).
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A 1-compartment monospecific anti-ligand model was chosen
(Figure 1), focusing on the interaction of the soluble TNFα
with drug within the vascular and interstitial fluid.

Target-specific parameters for TNFα included in the model
include the representative TNFα concentration in plasma of RA
patients (Tekeuchi et al., 2011), as well as its half-life as evaluated
from PK studies of recombinant TNFα (Moritz et al., 1989).
Membrane TNFR1 expression levels, its turnover half-life
(Higuchi 1994) and the affinity of the TNFα:TNFR complex
(Grell et al., 1998) were also included in the model. The TNFR1
expression level was calculated from the bottom-up approach
described in the methods. (See Supplementary Material for
detailed calculations.) TNFR1 is broadly expressed in all
human tissues (Holbrook et al., 2019), so TNFR1 expressing

cells were calculated assuming a high percentage of nucleated
cells in the human body express the receptor (Sender et al., 2016).
Absolute expression levels (receptors/cell) were determined from
Scatchard analysis of TNFα binding sites (Imamura et al., 1987;
Michishita et al., 1990).

Drug specific parameters included valency, target-binding
affinity, and the drug half-life. The effective valency of
adalimumab and infliximab was considered 1, based on
observation of 1:1, 2:2 and 3:3 complexes of the bivalent
antibodies to the TNFα homotrimer (Tran et al., 2017; Lim
et al., 2018). The affinity of each drug to TNFα was taken
from Kinexa measurements, with a Kd of 8.6 pM for
adalimumab and 4.2 p.m. for infliximab (Kaymakcalan et al.,
2009). Drug PK parameters (half-life of linear elimination) were

TABLE 2 | Adalimumab and infliximab (TNFα) model parameters.

Parameter Value Unit Reference

Drug Valency 1 - Lim et al., 2018; Tran et al., 2017
Adalimumab Dosing Interval 2 weeks Adalimumab, 2021
Infliximab Dosing Interval 8 weeks Infliximab, 2013
Adalimumab Half-Life 20 days Adalimumab, 2021; Weisman et al., 2003; Ternant et al., 2015
Infliximab Half-Life 14 days Hemperly and Niels Vande, 2018
Adalimumab Molecular Weight 148,000 Daltons Adalimumab, 2021
Infliximab Molecular Weight 149,100 Daltons Infliximab, 2013
Adalimumab KD 8.6 pM Kaymakcalan et al., 2009
Infliximab KD 4.2 pM Kaymakcalan et al., 2009
TNF Concentration 5.73e-5 nM Takeuchi et al., 2011
TNF Half-Life 30 min Moritz et al., 1989
TNF:TNFR KD 19 pM Grell et al., 1998
TNFR Concentration 0.23 nM Bottom up calculation
TNFR receptor half-life 9 hr Higuchi 1994
Volume 5 L Typical volume of distribution for mAb
Body weight 70 kg Typical body weight for man

FIGURE 2 | Simulations predicting dose to achieve 90% inhibition of TNF:TNFR complex for adalimumab and infliximab. Inhibition is defined as reduction from the
pretreatment target ligand:receptor binding at the steady state trough. Inset table shows the model-predicted dose based on inhibition vs. clinically approved dose for
each drug. For infliximab, the milligram dosage assumes a 70 kg patient.
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20 days for adalimumab (Weisman et al., 2003; Ternant et al.,
2015) and 14 days for infliximab (Hemperly and Niels Vande,
2018). The absorption half-life for SC administration of
adalimumab was assumed to be 2.5 days based on typical
values for antibodies (Kagan, 2014).

Inhibition of pretreatment target ligand:receptor binding of
>90% was selected as the target inhibition criteria for effective
dose prediction in case study 1, where the complex of TNFα and
TNFR is held at 90% lower than the pre-treatment levels for the
entirety of the dosing interval, after 7 successive doses.
Simulations were performed to assess the dose that achieves
the target criteria. The model predicted that inhibition of pre-
treatment TNFα:TNFR binding by adalimumab reaches 90%
inhibition at 39.4 mg Q2W for a nominal patient at steady
state (Figure 2). This corresponds closely to the clinically
approved initial dosage of 40 mg every other week, and the
estimated bioavailable dose of 25.6 mg based on 64%
bioavailability. (Adalimumab, 2021) Likewise, infliximab
reaches 90% inhibition at 6.3 mg/kg Q8W in the model
(Figure 2), which also corresponds closely to the clinically
approved dosage of 3 mg/kg to start, with a ramp up to
10 mg/kg if needed. The relationship between dose and trough
target inhibition can also be observed in Figure 2. The model
predicts ~2-fold lower dose would be required to sustain 85%
inhibition, while ~2-fold higher dose would be required to sustain
95% inhibition.

Interestingly, these model predicted effective doses are
significantly higher than the dose that might be predicted from a
more straightforward exposure vs. potency comparison. At 39.4 mg,
the trough concentration of adalimumab is predicted to be 93.0 nM
which is over 10,000 times the Kd (8.6 pM). The model provides an
explanation for this shift—when the drug binds to TNFα there is an
increase of total TNFα levels from baseline. This has been shown to
occur due to half-life extension effects where the short-lived soluble
targets form longer-lived complexes with the administered
antibodies (Finkelman et al., 1993; Charles et al., 1999; Berkhout
et al., 2019). As a result a higher trough concentration thanmight be
expected is required to achieve the desired inhibition level. This type
of interaction between binding and total target levels demonstrated
the advantage of applying a mechanistic PKPD model for dose
predictions.

Sensitivity of Effective Dose Predictions for
Adalimumab and Infliximab
To assess the sensitivity of model-predicted effective dose on
the input parameters, a one-at-a-time parameter scan was
performed. The model was simulated with each parameter
individually varied 3-fold up and down, while all other
parameters were held constant at their nominal value. The
parameters were ranked based on the fold-difference between
the maximum and minimum dose predicted to achieve 90%
inhibition. Parameters that resulted in a greater than 3-fold
range of predicted effective dose were further examined.

For both infliximab and adalimumab, target binding affinity
(Kd), ligand half-life, drug molecular weight, and compartment
volume were identified as sensitive parameters. (Supplementary

Tables S1, S2) When varied over an order of magnitude, the
resulting effective dose prediction ranged by greater than 3-fold.
Drug molecular weight has a direct effect on molar drug
concentrations, but is well-defined for antibody-based
biotherapeutics. Systemic compartment volume is defined as
the volume of distribution of the drug and has a direct effect
on drug concentrations. For monoclonal antibodies, the volume
of distribution is relatively well-defined (Pearson et al., 1995;
Ovacik and Lin 2018). Target binding affinity was identified as an
important drug-specific parameter. For both infliximab and
adalimumab, binding Kd to TNFα was well-described in the
literature and an unlikely source of uncertainty. Drug half-life was
only identified as a sensitive parameter for infliximab. This is
because infliximab is dosed less frequently (Q8W) than
adalimumab (Q2W). This result highlights how the dosing
regimen can affect drug parameter sensitivities.

The ligand half-life was the only sensitive target-specific
parameter, while ligand concentration was not identified as
sensitive. The model provides an explanation for this, as the
ligand half-life will impact the degree of ligand accumulation over
baseline due to half-life extension effects of drug binding. The
fold-increase in ligand levels, rather than absolute baseline
concentration, has a larger impact on predicted effective dose.
For TNFα, the ligand half-life was identified from PK studies of
recombinant TNFα. In the absence of such information, the
model analysis suggests that measurements of ligand half-life
may be a greater priority during drug development.

Case Study 2: Effective Dose Prediction for
Amivantamab, an Anti-EGFR, Anti-c-Met
Bispecific Antibody
In this case example, analysis was extended to a bispecific
antibody (BsAb), amivantamab, which is approved for the
treatment of patients with non-small cell lung cancer
(NSCLC) with EGFR exon 20 insertion mutations. The
approved clinical dose for patients under 80 kg body
weight is 1050 mg administered weekly for the first 4
weeks, and every 2 weeks thereafter. (Rybrevant, 2021)
Amivantamab targets epidermal growth factor receptor
(EGFR) and hepatocyte growth factor receptor (c-Met)
(Haura et al., 2019). A 2-compartment bispecific anti-
receptor x anti-receptor model was chosen for this analysis.

Target-specific parameters included in the model were
membrane receptor expression levels in the central and
peripheral compartments, and membrane receptor turnover
half-life. In addition, soluble c-Met is known to be elevated in
patient plasma (Gao et al., 2016), so soluble receptor
concentration and turnover were also included in the
model. EGFR and c-Met expression levels were calculated
from the bottom-up approach described in the methods.
(See Supplementary Material for detailed calculations.)
Briefly, EGFR expression on monocytes, macrophages, skin
keratinocytes, tumor cells, and in various epithelial tissues
were identified from functional and IHC staining data (Real
et al., 1986; Yano et al., 2003; Chen et al., 2016). Absolute
expression levels ranged from 50,000 to >400,000 receptors per
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cell based on reported values from quantitative flow cytometry
assays (Sandoval et al., 2012; Jarantow et al., 2015).
Assumptions based on relative expression from semi-
quantitative flow cytometry and IHC staining data were
used to fill in any data gaps. c-Met expressing tissues and
absolutely expression levels were similarly identified (Di Renzo
et al., 1991; Bozkaya et al., 2012; Ma et al., 2008; Molnarfi et al.,
2012; Panke et al., 2013; Jarantow et al., 2015; Kim et al., 2019).
EGFR and c-Met receptor turnover half-lives were
parameterized from in vitro cell line assays (Li et al., 2008;
Sigismund et al., 2008; DaSilva et al., 2020). Target-specific
parameters are listed in Table 3.

PK data from panitumumab, an anti-EGFR monoclonal
antibody (mAb), and emibetuzumab (also known as
LY2875358), an anti-c-Met mAb, were used to benchmark
the target expression estimates since they both exhibit non-
linear PK due to target mediated drug disposition (TMDD).
For membrane targets such as EGFR and c-Met, the target
mediated clearance can impact drug exposure, which then
impacts target engagement (Stein and Peletier, 2018). A 2-
compartment monospecific anti-receptor model was used to
simulate pharmacokinetics (PK) and target engagement (TE)

for each of the mAbs using their respective target parameters.
Drug-specific parameters are listed in Table 4. Panitumumab
target binding affinity (Kd = 0.05 nM) and drug half-life (half-
life of linear elimination = 16 days) were taken from literature
(Yang et al., 2001; Ma et al., 2009). Simulated PK agreed well
with clinical PK measurements. Linear clearance was
predicted at doses above 2.5 mg/kg for panitumumab.
(Figure 3A). Model simulations of 6 mg/kg Q2W IV
panitumumab (Figure 3B) projected peak and trough
concentrations of 185 μg/ml and 54 μg/ml, respectively,
after 3 doses, while reported values are 213 ± 59 and 39 ±
14 μg/ml (Ma et al., 2009). Since near complete inhibition of
EGFR has been shown necessary to induce cell cycle arrest or
cell death (Park and Lemmon 2012), a target engagement
criteria of >98% in the peripheral compartment was chosen to
predict effective dose. The dose projected to achieve >98%
sustained target engagement for panitumumab was 162 mg
Q2W, which is within 3-fold of the approved dose of 6 mg/kg
every 14 days (i.e. 420 mg assuming 70 kg man).
Emibetuzumab target affinity (Kd = 0.1 nM) and linear PK
parameters (half-life of linear elimination = 16 days) were
taken from literature (Liu et al., 2014; Rosen et al., 2017).

TABLE 3 | EGFR and c-met target parameters.

Parameter Value Unit Reference

EGFR expression central 4.57E-02 nmoles Bottom up calculation
EGFR expression peripheral 1.47E+01 nmoles Bottom up calculation
EGFR receptor half-life 5 hours Sigismund et al., 2008
Met expression central 3.20E-02 nmoles Bottom up calculation
Met expression peripheral 5.86E+00 nmoles Bottom up calculation
Met receptor half-life 4 hours Li et al., 2008; Da Silva et al., 2020
soluble Met concentration 5.9 nM Rosen et al., 2017; Gao et al., 2016
soluble Met half-life 48 hours Estimate based on protein molecular weight; Li et al., 2017
Central compartment volume 3 L Plasma volume; Shah and Betts, 2012
Peripheral Compartment volume 13 L Interstitial volume of peripheral tissues; Shah and Betts, 2012
Body weight 70 kg Typical body weight for man

TABLE 4 | Drug specific model parameters for panitumumab, emibetuzumab, amivantamab.

Parameter Value Unit Reference

Panitumumab Valency 2 - Yang et al., 2001; Ma et al., 2009
Panitumumab Dosing Interval 2 weeks Ma et al., 2009
Panitumumab Half-Life 16 days Yang et al., 2001; Ma et al., 2009
Panitumumab KD for EGFR 0.05 nM Yang et al., 2001; Ma et al., 2009
Emibetuzumab Valency - 2 Liu et al., 2014; Rosen et al., 2017
Emibetuzumab Dosing
Interval

2 weeks Rosen et al. (2017)

Emibetuzumab Half-Life 16 days Liu et al., 2014; Rosen et al., 2017
Emibetuzumab KD for c-Met 0.1 nM Liu et al., 2014; Rosen et al., 2017
Amivantamab Valency - 1 Jarantow et al., 2015
Amivantamab Dosing Interval 2 weeks Rybrevant, 2021
Amivantamab Half-Life 11 days Rybrevant, 2021
Amivantamab KD for EGFR 1.4 nM Jarantow et al. (2015)
Amivantamab KD for c-Met 0.04 nM Jarantow et al. (2015)
Drug Molecular Weight 150,000 Daltons Assumed typical mAb MW for all drugs
Pdist12 0.19 - Partition coefficient between central and peripheral compartments assumed typical (Betts et al., 2018)
Tdist12 35 hours Half-life of intercompartmental clearance between central and peripheral compartments assumed typical (Betts et al.,

2018)
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Model simulations of emibetuzumab predicted linear
clearance at 700 mg and above, consistent with clinical
measurements. (Figure 3C) (Rosen et al., 2017). Model
also predicted >98% target engagement at doses 105 mg
Q2W and higher, consistent with pharmacodynamic
measurements demonstrating saturation of the increase of
soluble c-Met at the 210 mg Q2W dose level (Rosen et al.,
2017).

Next, dosing of amivantamab was simulated using the
benchmarked target parameters. JNJ-61186372 binding to
EGFR has a Kd ~1.4 nM; binding to c-Met has a Kd
~0.04 nM (Jarantow et al., 2015). The half-life of
amivantamab was reported to be approximately 11 days
(Rybrevant, 2021) Once again, a target engagement of
>98% for both targets was set as criteria for the effective
dose. The model predicted 326 mg Q1W or 740 mg Q2W is

required to achieve sustained target engagement >98% for
both targets (Figure 4). This dose prediction, generated with
minimal data, is consistent with the 1050 mg Q2W dosing
after the initial 4 weeks.

Case Study 3: Application of EFA to Predict
Effective Dose of 6 Additional
Biotherapeutic Drugs
The methodology described in case studies 1-2 was extended to
predict effective dose of 6 additional biotherapeutic drugs
targeting a range of soluble or membrane-bound targets.
Simulations were run using the drug-specific and target-
parameters for a total of 9 biotherapeutics. Targets include
TNFα, IL-23/IL-2, BLyS (BAFF), IgE for soluble targets and
HER2, EGFR, and EGFR/c-Met for membrane-bound targets.

FIGURE 3 |Model simulations of panitumumb and emibetuzumab pharmacokinetics (PK). (A) single-dose PK for panitumumab from 0.75–9 mg/kg simulated out
to 14 days, (B)multi-dose PK for 6 mg/kg Q2W panitumumab simulated out to 64 days, (C) single-dose PK for emibetuzumab for 20–2000 mg doses simulated out to
14 days.
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Drug-specific and target-specific parameters were obtained
from the literature as described in Methods and are listed
in Supplementary Tables S3–S7. Approved doses and
regimens for the respective indications in RA, plaque
psoriasis, systemic lupus erythematosus (SLE), asthma,
breast cancer, colon cancer, and non-small cell lung cancer
(NSCLC) were collated for comparison to model predictions
(Table 5).

Across the panel of drugs, the model-informed effective doses
based either on 90% inhibition (soluble targets) or 98% target
engagement (membrane targets) criteria were largely within 3-
fold of the clinically approved doses (Figure 5; Table 5), for the
diverse soluble targets (e.g., cytokines, IgE) as well as surface
receptors (e.g., HER2). There appears to be a trend towards
systematic overprediction of the doses for soluble targets and
underprediction of the doses for membrane targets (Figure 5).

Overall, the analysis serves as a proof-of-principle that EFA
with mechanistic PKPD modeling approaches can predict the
effective doses with sufficient accuracy to inform drug design
decisions and evaluation of the feasibility of drug targets and
disease areas before PK and PD data are available for the drug.

DISCUSSION

At early stages of drug discovery and development, PKPD data
required to inform clinical dosing is not yet available. To generate
such data may involve the development of reagents, tool
molecules, and assays, which is both costly and time
consuming. Once that data is collected, it may suggest a
different lead optimization strategy than was originally
planned which can cause further delays. In this manuscript,
Early Feasibility Assessment (EFA) is demonstrated, based
upon integrating data that is available at an early stage,
including in-house in vitro experiments and literature, into a

FIGURE 4 | Model predicted trough target engagement for
amivantamab dosed Q1W (A) or Q2W (B). 98% target engagement for EGFR
was achieved at 326 mg Q1W or 740 mg Q2W. 98% target engagement for
c-Met was achieved first at 120 mg Q1W and 306 mg Q2W.

TABLE 5 | Effective dose predictions for a panel of biotherapeutics.

Drug
Model predicted dose Clinically approved dose

Model in Applied BioMath Assess ™ ID90/TE98 (mg)a Dose (mg) Schedulea

Remicade (infliximab) Monospecific anti-ligand 441 210 8 weeks IV
Humira (adalimumab) Monospecific anti-ligand 39.4 40 2 weeks SC
Stelara (ustekinumab) Monospecific anti-ligand 22.4 45 12 weeks SC
Skyrizi (risankizumab) Monospecific anti-ligand 273 150 12 weeks SC

37.1 150 4 weeks SC
Benlysta (belimumab) Monospecific anti-ligand 252 200 1 week SC

1700 700 4 weeks IV
Xolair (omalizumab) Monospecific anti-ligand 330 225 2 weeks SC
Herceptin (trastuzumab) Monospecific anti-receptor (4 compartment) 79.0 140 1 week IV
Vectibix (panitumumab) Monospecific anti-receptor (4 compartment) 162 420 2 weeks IV
Rybrevant (amivantamab) Bispecific anti-receptor x anti-receptor (4 compartment) 740 1050 2 weeks IV

aID90 = dose to achieve 90% inhibition, TE98 = dose to achieve 98% target engagement, SC = subcutaneous administration, IV = intravenous administration.
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mechanistic PKPD model of target binding to predict PK
(including TMDD), target engagement, and effective dose.
EFA centers on defining a notion of “dose feasibility,” that a
drug may be administered with a reasonable dosing regimen and
conceivably achieve a therapeutic impact. Note that feasibility is
distinct from efficacy which requires both a significant
pharmacological impact and a meaningful biological
response to the impact. However, there is still utility in
using feasibility as a decision making criteria, to ensure that
molecules are developed with the best chance to test the
therapeutic hypothesis, and resources are not spent
developing molecules unlikely to modulate the target to a
sufficient degree to be drug candidates.

Two detailed case study examples, extended to a total of 9
biotherapeutics, were presented, demonstrating the ability of EFA
to make clinically relevant predictions of effective dose. The
predicted effective doses in this work were generally within
~3-fold of the clinically-approved dose. Factors not considered
in these models, such as tolerability, can impact the final clinical
dose; however, generating dose estimates within 3-fold during the
early stages of a program can be useful for various decisions early
in drug discovery, including target prioritization, optimal drug
properties for a target product profile (TPP), prioritization of
different drug concepts. Using validated mechanistic PKPD
models parameterized from literature and in vitro
measurements, questions about target druggability, ease of

engineering a lead molecule with required drug properties,
feasibility of novel drug concepts can be answered.

In all of the cases presented, the models were parameterized by
data that should be available to an early program. It is significant that
target-specific parameters can be identified from the “bottom-up”
calculations leveraging literature data; however, there is uncertainty
and biological variability in these values that should be considered.
When extending this approach to novel targets, this uncertainty is
higher. A sensitivity analysis by examining the impact of dose
predictions over a range of target parameters can determine if
they are important to the conclusions and help prioritize
potential experiments that will minimize risk during drug
development. For infliximab and adalimumab, a parameter scan
identified TNFα half-life as a sensitive parameter that can impact the
model-predicted effective dose, while varying TNFα concentration,
TNF Receptor concentration, and TNF Receptor half-life had
minimal impact. For a novel program, this result would suggest
that measurement of TNFα half-life should be prioritized for
accurate dose predictions during later stages of drug development.

When using EFA for early stage programs, drug-specific
parameters (such as affinity and half-life) may be theoretical
targets as part of a TPP. While drug-specific PK parameters were
in this analysis, mAbs generally display similar linear
pharmacokinetics, which enables predictions to be made using
assumed standard values, or derived from measurements made in
preclinical model species (Deng et al., 2011; Dong et al., 2011; Betts

FIGURE 5 | Panel of model-predicted vs. clinically approved dose. Drugs with soluble targets are displayed as green circles and are evaluated based on ID90
(i.e., inhibition of baseline ligand:receptor complex). Drugs with membrane-bound targets are displayed in purple squares and are evaluated by TE98 (i.e., percent of
target bound by drug). Dotted lines define the region where model-predicted effective doses fall within 3-fold of the clinically-approved doses.
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et al., 2018). This approach is not limited to mAbs, but can be
extended to other biotherapeutics with well-described PK and
binding behavior. As demonstrated by the infliximab and
adalimumab parameter scans, the sensitivity of effective dose
predictions to drug design parameters can depend on the desired
dosing interval. For a novel therapeutic, a sensitivity analysis on how
much drug properties impact dose predictions can inform ease of the
development and potential need for additional drug optimization
through affinity maturation or half-life extension, for example.

Finally, there can be uncertainty in defining the criterion for
efficacy, which is based on an understanding of the intended
mechanism of action for each of these biotherapeutics. In the
analyses presented here, the dose predicted to sustain >90% target
inhibition was comparable to the clinically approved doses for all the
biotherapeutics against soluble targets. For the membrane receptor
targets discussed, sustained, near complete, target engagement is
hypothesized to be necessary for therapeutic efficacy, and a
criterion of >98% target engagement was used. When applying
EFA to novel targets and drug concepts, an understanding of the
intended mechanism of action is necessary, and an exploration of the
impact of different metrics of efficacy may be warranted.

When performing EFA, model selection must be carefully
considered. In each of the case studies presented in this
manuscript, the selected models were built on first-principles that
captured the key pharmacological mechanisms for each of the drugs.
Drugs binding to a soluble target vs. a membrane receptor target
require different models which are associated with different
assumptions. For drugs targeting soluble factors, the binding and
elimination of drug-bound target is an important factor to consider
mechanistically. For drugs targeting membrane receptors, the
elimination of drugs through target binding was captured
mechanistically. For more complex biotherapeutic modalities
where models of similar scale that capture the pharmacology
exist, it would be reasonable to apply this type of analysis. For
example, a model of T-cell engagers that describes crosslinking of
target receptor and CD3 receptors on T-cells as a model endpoint is
available in Applied BioMath Assess ™, and similar models have
been reported in literature (Chen et al., 2021). This analysis could
potentially be extended to questions of therapeutic index by
comparing model endpoints in disease and toxicity
compartments, for example. Striking a pragmatic balance between
mechanistic detail and the cost or complexity of parameterizing a
model is a defining feature of EFA.

The focus of this manuscript is on antibody therapeutics (mAbs,
BsAbs) where typical PK properties such as half-life and
biodistribution, and pharmacology parameters such as binding
affinity are well known. mAbs are a large and growing category
of new drugs approved each year—as of December 2019, there were
79 therapeutic mAbs approved, with 18 approved between 2018 and
2019 (Lu et al., 2020). In 2021, the 100th antibody was approved
(Mullard 2021). There is the potential to expand thismethodology to
other pharmacologies (e.g. ADCs, LNPs, peptides, oncolytic viruses,
etc.) if reasonable ranges for these parameters can be determined a
priori, or in combination with methods that allow the prediction of
PK properties such as in vitro in vivo correlation (IVIC).

Overall, the application of EFA at the early stages of a program,
before the major clinical costs are incurred, has great potential to

realize efficiencies and reduce attrition in drug development. By
excluding targets that don’t have a chance of “druggability” early,
resources can be prioritized for those programs that may be more
likely to succeed. By identifying parameters that strongly impact an
eventual clinical dose, programs can also identify knowledge gaps
that, once filled, could reduce program risk. As prioritized programs
progress, preclinical data on the drug candidate(s) binding
mechanisms and pharmacokinetics should be incorporated into
these models. Additional complexity in terms of biological
mechanisms, downstream pharmacology can also be
incorporated. These updated models can then enable decisions at
later stages of drug development, such as lead selection, first-in-
human dose selection, and recommended phase 2 dosing.
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