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Transcriptomic profile of tobacco in 
response to Alternaria longipes and 
Alternaria alternata infections
Shengchang Duan1,*, Xiao Ma2,*, Wei Chen2,3, Wenting Wan1, Yuqi He4, Xiaoqin Ma1, 
Yujin Ma1, Ni Long1, Yuntao Tan1, Yangzi Wang1, Yujie Hou1 & Yang Dong1

Tobacco brown spot caused by Alternaria fungal species is one of the most damaging diseases, and 
results in significant yield losses. However, little is known about the systematic response of tobacco 
to this fungal infection. To fill this knowledge gap, de novo assemblies of tobacco leaf transcriptomes 
were obtained in cultivars V2 and NC89 after the inoculation of either Alternaria longipes (AL) or 
Alternaria alternata (AA) at three different time points. We studied the gene expression profile of 
each cultivar-pathogen combination, and identified eight differentially expressed genes shared 
among all combinations. Gene ontology enrichment analysis of the differentially expressed genes 
revealed key components during the fungal infection, which included regulation of gene expression 
(GO:0010468), regulation of RNA metabolic process (GO:0051252), tetrapyrrole binding (GO:0046906), 
and external encapsulating structure (GO:0030312). Further analyses of the continuously upregulated/
downregulated genes and the resistance genes demonstrated that the gene expression profile upon 
fungal infection was contingent on the specific cultivar and pathogen. In conclusion, this study provides 
a solid foundation for the investigation of plant-pathogen interaction, and is of great importance for 
disease prevention and molecular breeding.

The model organism and widely cultivated non-food crop Nicotiana tabacum (common tobacco) is suscepti-
ble to numerous viral and fungal infections. These pathogens can cause destructive symptoms on the tobacco 
leaf, root and stem, i.e. anthracnose, black root rot, frogeye leaf spot, verticillium wilt and brown spot. Among 
these diseases, brown spot in particular incurs significant losses in many tobacco-planting areas in China every 
year1,2. Even though wide applications of fungicides and biological antagonists are major control measurements 
of brown spot in agriculture, they have provoked public concerns about health and environmental safety issues of 
the chemicals. In comparison, genetic manipulation is considered as one of the eco-friendly control methods to 
contain brown spot in the tobacco-planting areas3.

Two different species of the genus Alternaria, A. longipes (AL) and A. alternata (AA), are the major cause of 
brown spot in tobacco1,2,4–7. They produce a variety of toxic secondary metabolites that damage plant tissues and 
result in necrotic lesions. For instance, A. longipes has been reported to produce host-specific toxins to tobacco 
(AT-toxin), which play a role in pathogen invasion of the plant tissue. The infection of host plant primarily occurs 
in spring in warm weather, when the fungal spores germinate and directly penetrate into the lower leaves of 
tobacco. This results in the appearance of circular spots (0.635–3.175 cm in diameter) on the leaves4. As the plant 
continues to grow, fungal toxins not only causes infected leaves to age prematurely, but also causes bright yellow 
halo to appear around leaf spots. At the end of the tobacco harvesting, enormous amount of fungal spores were 
released into the air for the next cycle of infection. Additionally, the fungi can persist as mycelium in dead leaf 
tissue for several months.

The first line of defense against pathogenic microorganisms in plant is the recognition of pathogen-associated 
molecular patterns (i.e. bacterial flagellin, lipopolysaccharides) by plant transmembrane receptors that activates 
basal defense8. More importantly, plants also rely on the effector-triggered immunity to fight against pathogens 
that try to evade the first fine of defense8. The specificity determinants of effector-triggered immunity are encoded 
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by resistance (R) genes8,9. The majority of R genes belong to the nucleotide-binding site leucine-rich repeat 
(NB-LRR) family, which encodes proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) 
domains. The NBS domain primarily promotes the exchange of ADP for ATP and activates downstream sign-
aling8. The LRR motifs appear to provide a versatile structural framework for the formation of protein-protein 
interactions9. These large, abundant R gene proteins are involved in the detection of diverse pathogens, including 
bacteria, viruses, fungi, nematodes, insects and oomycetes10. In addition, other functional tobacco genes have 
been implicated in the resistance to pathogens. For example, overexpression of GbERF2 transcription factor in 
tobacco can enhances resistance to brown spot11. Furthermore, many pathogenesis-related (PR) proteins have 
been reported to play important roles in the protection against fungal pathogens. These include plant chitinases, 
thaumatin-like proteins, ß-1,3-glucanase and the vast majority of wine proteins12,13.

As complicated as the mechanisms of disease resistance in plants can be, researchers believed that a global 
investigation of gene expression files during disease infections will help identify key components of resistance 
pathways14. So far, there has not been any report on the transcriptome of tobacco in response to Alternaria species 
infection. Two tobacco cultivars: N. tabacum L. cv. V2 (hereinafter referred as V2) and N. tabacum L. cv. NC89 
(hereinafter referred as NC89), show different resistant to brown spot. Here, we performed RNA sequencing 
analysis of the gene expression profiles in both V2 and NC89 tobacco leaves, which were infected with either A. 
longipes or A. alternata at three time points: 6 h, 24 h and 72 h post inoculation. By comparing the gene expression 
patterns between V2 and NC89, we found some plant defense and disease resistance genes were differentially 
expressed between the two cultivars. The acquired transcriptome data provide an invaluable resource for under-
standing the response/resistance to Alternaria infection in tobacco.

Results
Early symptoms of brown spot on tobacco leaves.  The early noticeable symptom appeared as a grey-
ish spot of 0.3~0.4cm in diameter on the V2 and NC89 leaves about 72 h after inoculation with either AL or AA 
(Fig. 1). By direct observation, the AA-induced spots on the NC89 leaf were bigger than those on the V2 leaf. In 
comparison, the AL-induced spots were of similar size on the leaves of both cultivars. The symptoms were not 
apparent at 6 h and 24 h after inoculation.

Sequencing and assembly of the tobacco leaf transcriptome.  N. tabacum is an allotetraploid 
(2n =  48) plant. It is believed to have arisen from the hybridization of maternal donor N. sylvestris (2n =  24) and 

Figure 1.  Symptoms of the brown spot. The characteristic necrosis symptom was visible on the infected 
tobacco leaves.
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paternal donor N. tomentosiformis (2n =  24)15. Here, we de novo assembled a high quality tobacco transcriptome 
for further studies.

For cultivars V2 and NC89, seven sequencing libraries were generated for each from the total RNA of (1) 
healthy leave tissues, (2) infected leave tissues by AA for 6, 24 and 72 h, and (3) infected leave tissues by AL for 6, 
24 and 72 h (Table 1). Illumina high-throughput second generation sequencing produced about 332.2 million raw 
reads for V2, and about 625.7 million for NC89. After the removal of adapter-containing reads, poly-N-containing 
reads and low quality reads from the raw data, about 276.5 million clean reads were obtained for V2, and about 
531.4 million for NC89. All 807.9 million clean reads from V2 and NC89 were used for the transcriptome assem-
bly. Initial assembly using Trinity16 yielded 391,676 contigs with a N50 value of 993 bp. Further prediction of open 
reading frames using TransDecoder obtained 31,572 unigenes, contained 64,184 transcripts, with a N50 value of 
2,053 bp and GC content of 40.65% (Table 2).

To evaluate the reliability of the assembly, we mapped the clean reads from the initial V2 and NC89 libraries 
back to the Trinity assembled transcriptome. In the end, 74.9% left reads and 74.1% right reads could be map 
back to the assembled transcriptome, respectively. The concordant pair alignment rate was 66.4% (Table 3). These 
results demonstrated the high quality of the transcriptome assembly.

We performed gene function annotation analysis of the 31,572 unigenes. Using Blastp with a cutoff E-value of 
10−5, we annotated 27,318 unigenes against the NR database, 20,559 unigenes against Swiss-Prot database, and 
16,370 against KEGG database. In total, 27,348 unigenes had at least one homologous counterpart from these 
databases (Supplementary Table 1). The annotation against NR database was preferentially used in subsequent 
data analysis.

Differentially expressed genes for each cultivar-pathogen combination at three time points 
after infection.  The FPKM value for each unigene in all 14 libraries was computed and shown in 
Supplementary Table 2.The gene expression profiles in healthy V2 and NC89 leaves were used as baselines, 
respectively. If the gene expression in infected leaves recorded a 2-fold (or more) difference relative to baseline 
(p-value <  0.05), this gene was regarded as the differentially expressed gene (DEG).

Sample
Raw read 

length (bp)
Raw read 
numbers

Raw data 
bases (Gb)

Clean read 
numbers

Clean data 
bases (Gb)

V2 100 51,627,124 5.163 41,800,428 4.180

V2_AL_06 100 45,431,094 4.543 41,802,402 4.180

V2_AL _24 100 47,412,962 4.741 37,235,258 3.724

V2_AL _72 100 36,315,648 3.632 33,489,918 3.349

V2_AA _06 100 16,681,012 1.668 11,887,184 1.189

V2_AA _24 100 63,463,382 6.346 50,457,162 5.046

V2_AA _72 100 71,339,808 7.134 59,922,442 5.992

NC89 100 32,050,662 3.205 29,124,816 2.912

NC89_AL_06 100 46,344,166 4.634 43,033,824 4.303

NC89_AL _24 100 14,971,724 1.497 12,220,324 1.222

NC89_AL _72 100 81,726,554 8.173 71,262,904 7.126

NC89_AA _06 100 125,912,182 12.591 113,830,604 11.383

NC89_AA _24 100 102,220,638 10.222 81,754,766 8.175

NC89_AA _72 100 222,544,794 22.254 180,174,190 18.017

Total 958,041,750 95.803 807,996,222 80.798

Table 1.   Statistics of Illumina sequencing data.

Trinity contig 
numbers

Trinity assembled 
bases (bp)

Trinity contig 
N50 (bp)

Final transcript 
numbers

Final 
percent GC

Final transcript 
N50 (bp)

Final assembled 
bases (bp)

Final unigene 
numbers

391,676 237,828,789 993 64,184 40.65% 2,053 103,504,886 31,572

Table 2.   Summary of the assembly results.

Input Mapped
Multiple 

alignments
Mapped rate 

of input

Left reads 403,998,111 302,758,273 113,584,692 74.9%

Right reads 403,998,111 299,531,909 112,379,840 74.1%

Aligned pairs 403,998,111 268,929,138 103,395,229 66.4%

Table 3.   Summary for clean reads mapping to Trinity assembled transcriptome.
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For NC89 inoculated with AL, there were 849 DEGs at 6 h, and just 145 DEGs at 24 h after inoculation. The 
number of DEGs at 72 h after inoculation rose to 576 due to a marked increase of upregulated DEGs (Fig. 2A, 
first panel). In comparison, AA-infected NC89 leaves recorded 664, 578 and 1,328 DEGs at those three different 
time points, respectively. In particular, the number of upregulated DEGs at 72 h after inoculation was 1,015, much 
larger than the numbers of DEGs in other groups (Fig. 2A, second panel). For V2 inoculated with AL, the number 
of DEGs decreased from 1,941 at 6 h after inoculation, to 570 at 24 h after inoculation, and finally to 212 at 72 h 
after inoculation. The number of upregulated DEGs was larger than that of downregulated DEGs at 6 h (1,292 vs. 
649 genes) and 72 (135 vs. 77 genes) after inoculation (Fig. 2A, third panel). For V2 inoculated with AA, there 
were 721, 365 and 866 DEGs at 6 h, 24 h and 72 h after inoculation, respectively. The number of downregulated 
genes was slightly bigger than the number of upregulated genes at 6 h and 24 h after inoculation, but much smaller 
than the number of upregulated genes at 72 h after inoculation (Fig. 2A, fourth panel).

Corresponding to each above mentioned cultivar-pathogen combination, a Venn diagram was generated 
from the DEG lists at 6 h, 24 h and 72 h after inoculation to identify shared members. As shown in Fig. 2B, there 
were 53 genes that were differentially expressed at all three time points in AL-infected NC89, and 186 genes in 
AA-infected NC89. For AL-infected V2, there were 117 DEGs that could be identified at all three time points. 
And for AA-infected V2, 94 genes were common DEGs at all three time points.

Shared differentially expressed genes during Alternaria infection.  The above mentioned four 
lists of shared DEGs were further analyzed to find commonalities and differences. As shown in the Venn dia-
gram of Fig. 3, there were eight common DEGs in all four lists of DEGs (Supplementary Table 3). Two genes, 
c1013452_g1 and c1021713_g1, were predicted to encode putative peroxidases. Plant peroxidases are known to 
participate in defense against arthropods and pathogens17. In line with this, both genes were significantly upreg-
ulated in NC89 and V2 after the inoculation of either AA or AL. The gene c1032484_g1, which encodes a glucan 
endo-1,3-beta-glucosidase, was significantly downregulated in NC89 and V2 after the inoculation of either AA 
or AL. Tobacco basic beta-l,3-glucanase was a major soluble protein component of the cultured tobacco cells, and 
it was implicated in the defense response of plants against potential pathogens18. The branched-chain amino acid 
aminotransferase gene (c1034473_g6) was also significantly downregulated in NC89 and V2 after the inoculation 
of either AA or AL. Amino acid aminotransferase helps catabolize branched-chain amino acids, aromatic amino 
acids and aspartic acid19. It is possible that inhibition of branched-chain amino acid catabolism is important for 
the response to Alternaria infection. The expression of malate synthase gene (c1112440_g1) was significantly 
downregulated in NC89 and V2 after the inoculation of either AA or AL. Malate synthase, which helps synthesize 
malate from glyoxylate and acetyl-CoA, was shown to play important roles in plant pathogenesis20. The functions 
of three other DEGs were not clear.

Additionally, different numbers of unique DEGs were found for each cultivar-pathogen combination: 13 
unique DEGs in NC89-AL, 115 unique DEGs in NC89-AA, 52 unique DEGs in V2-AL, and 34 unique DEGs in 
V2-AL.

Figure 2.  Summary for the differentially expressed genes. (A) Statistics of the number of differentially 
expressed genes in four cultivar-pathogen combinations. (B) Venn diagram showing the number of specific and 
common differentially expressed genes in four cultivar-pathogen combinations.
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Gene ontology (GO) enrichment analysis of differentially expressed genes.  Within 31,572 identi-
fied unigenes, the protein products of 11,730 unigenes were annotated with at least one GO term (Supplementary 
Table 4). Using these 11,730 unigenes as references, 609 out of 1,263 DEGs in NC89-AL, and 930 out of 2,422 
DEGs in V2-AL, were both enriched in 25 GO terms. Similarly, 871 of 1,821 DEGs in NC89-AA and 725 out of 
1,501 DEGs in V2-AA, were enriched in 20 and 21 GO terms, respectively (Supplementary Table 5).

There were four enriched GO terms in NC89-AL that could also be found in V2-AL. These terms included 
regulation of gene expression (GO:0010468), regulation of RNA metabolic process (GO:0051252), tetrapyrrole 
binding (GO:0046906), and external encapsulating structure (GO:0030312). The majority of the NC89-AL and 
V2-AL specific biological processes GO terms were mainly related to the metabolic and biosynthetic processes. 
The GO term photosystem (GO:0009521) was only enriched in V2-AL with 13 associated genes. Further exam-
ination of the transcriptome data showed that 11 of these 13 genes had lower expression levels at the three time 
points after inoculation relative to controls.

In the case of AA infection, the majority of enriched GO terms in NC89-AA could also be found in V2-AA. 
These terms included 11 GO terms in the biological processes category, one GO term in the molecular function 
category, and two GO terms in the cellular component category. Correspondingly, only six and seven GO terms 
were specifically enriched in NC89-AA and V2-AA, respectively.

It is worth noting that three GO terms, regulation of gene expression (GO:0010468), regulation of RNA 
metabolic process (GO:0051252), and external encapsulating structure (GO:0030312), were found in all four 
cultivar-pathogen combinations.

Continuously upregulated and downregulated genes during Alternaria infection.  Continuously 
upregulated genes during the course of Alternaria infection were screened out if the FPKM value of a gene at any 
time point was at least 1.5-fold of the FPKM value at the previous time point. This screening criterion resulted 
in 47 continuously upregulated genes in NC89-AL and V2-AL, respectively (Supplementary Table 6). Among 
these genes, c1134946_g1 was identified in both NC89-AL and V2-AL. The gene c1134946_g1 encodes a putative 
wound-responsive protein that is rich in lysine (K), glutamic acid (E) and aspartic acid (D)21. Its expression at 
72 h in NC89-AL and V2-AL were almost 35-fold and 54-fold of the expressions at 0 h, respectively. The screening 
criterion also identified 427 continuously upregulated genes in NC89-AA, and 30 continuously upregulated genes 
in V2-AA (Supplementary Table 6). These two pathogen-cultivar combinations shared four continuously upregu-
lated genes: the serine/threonine-protein kinase gene (c1042136_g2), allene oxide synthase gene (c1026266_g2), 
two-component response regulator ARR9-like gene (c1029343_g3) and probable iron/ascorbate oxidoreductase 
gene (c1027160_g2).

Continuously downregulated genes during the course of Alternaria infection were screened out if the FPKM 
value of a gene at any time point was at least 1.5-fold of the FPKM value at the next time point. This screening 
criterion resulted in 6, 17, 46, and 13 continuously downregulated genes in NC89-AL, V2-AL, NC89-AA and 
V2-AA, respectively (Supplementary Table 6). No shared genes were found between NC89-AL and V2-AL, or 
between NC89-AA and V2-AA.

Analysis of the NBS gene families during Alternaria infection.  We identified 144 candidate NBS 
genes from the transcriptome (Supplementary Table 7). These candidate genes included 13 TOLL/interleukin-1 
receptor (TIR) type NBS genes, and 131 non-TIR type NBS genes. Within TIR type NBS genes, the protein prod-
ucts of six genes do not have LRR domains. Within the non-TIR type NBS genes, there were 30 genes whose pro-
tein products have a coiled-coil (CC) N-terminal domain, six genes whose protein products include the DUF3542 
N-terminal domain, two genes whose protein products include the RPW8 N-terminal domain.

Figure 3.  Venn diagram showing the commonalities and differences in four lists of shared differentially 
expressed genes. 
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The majority of NBS genes were significantly upregulated in NC89-AL, NC89-AA and V2-AA at 72 h (Fig. 4). 
In comparison, the majority of NBS genes were significantly upregulated in V2-AL at 6 h (Fig. 4), displaying a dis-
tinct expression pattern. For example, the expression levels of c1042342_g1 (disease resistance protein RPS2) and 
c1041513_g1 (disease resistance RPP13-like protein) were high at 72 h in NC89-AL, NC89-AA, and V2-AA, but 
not so distinct in V2-AL at the same time point. Additionally, some NBS genes (i.e. c1135034_g1, c1043786_g1) 
were significantly upregulated in V2-AL and V2-AA during the course of the infection. But in NC89-AL and 
NC89-AA, the expression of these genes was downregulated at 6 h before subsequent upregulation at 24 h and/
or 72 h.

Quantitative RT-PCR (qRT-PCR) validation of differentially expressed genes.  A subset of seven 
genes, which responded to Alternaria infection, was selected for quantitative real-time PCR (qRT-PCR) analyses 
(Supplementary Figure 1). The qRT-PCR analyses showed the trends of expression were consistent with those 
found by RNA-Seq.

Discussion
We assembled and analyzed the leaf transcriptomes of two tobacco cultivars NC89 and V2 after the inoculation of 
Alternaria pathogens. To our knowledge, this study is the first large-scale investigation of gene expression patterns 
with regard to tobacco-Alternaria interaction. The results will assist in the discovery and annotation of important 
genes in plant defense response, physiology and metabolism.

In the event of pathogen invasion, the biological process to reinforce cell wall is usually rapidly activated, 
leading to increased disease resistance in plants22. Indeed in the current study, the GO term external encapsulat-
ing structure (GO:0030312) was enriched for the DEGs of all four cultivar-pathogen combinations. This result 
suggests that active reorganization/modification of cell walls may be a common mechanism for the tobacco plants 
to fight against Alternaria infection. Despite this commonality, the expressions of some cell wall modification 
genes (i.e. expansin-like B1-like gene) were differently regulated in each cultivar-pathogen combination. Further 
investigation of these genes will provide valuable molecular information on the host susceptibility to different 
Alternaria strains.

It is worth mentioning that various numbers of unique GO terms were enriched in each cultivar-pathogen 
combination. For example, the cellular component GO terms thylakoid (GO:0009579) and thylakoid part 
(GO:0044436) were only enriched in V2-AL. Close examination of these GO enrichment may provide molecu-
lar insight into the phenotypic variations of response to pathogens in different cultivars. In tobacco, cucumber 
mosaic virus R46C mutants can repress the expression of photosynthesis-related genes, and cause chloroplast 
abnormalities with fewer thylakoid membranes23. Given those unique GO terms, it is therefore very likely that 
V2-AL could be linked to chloroplast abnormalities, and the corresponding DEGs may be good research candi-
dates for such phenotypes.

The differential regulation of gene expression was also apparent between cultivars. Take HARPIN-INDUCED 
1 (HIN1) for example, the expression of HIN1 was strongly upregulated during leaf- and flower-senescence after 
TMV infection in tobacco24. Similar upregulation of the gene (c1033713_g2) was identified in NC89-AL, but 
not so distinct in V2-AL. Additionally, POLYPHENOL OXIDASE (PPO) is proposed to be involved in plant 
defense against pathogens25. The expression level of PPO transcript (c1039691_g9) was high in V2-AL, but not in 

Figure 4.  Heat-map depicting the changes of NBS genes expression in cultivar-pathogen combinations. 
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NC89-AL. Further investigation of these differentially regulated genes will as well provide insight into the differ-
ent pathogen responses in different tobacco cultivars.

The transcriptome data obtained in this study is also a great resource for cross-checking genes that were 
previously identified in the plant-pathogen interaction process. For instance, rapid accumulation followed by 
a rapid decrease of KED gene transcripts was shown within 1 h after wound initiation in tobacco21. KED activa-
tion, signaled by cytosolic acidification, was reported to induce the expression of defense genes21. In this study, 
the expression of a KED gene (c1134946_g1) was continuously upregulated for 72 h after AL infection, showing 
its unique role during fungal infection. In addition, the expressions of two GLUTATHIONE S-TRANSFERASES 
were significantly increased in Nicotiana benthamiana following the infection by Colletotrichum destructivum 
and C. orbiculare26. However, this study showed that the expressions of a GLUTATHIONE S-TRANSFERASE gene 
(c1157960_g1) in both cultivars were significantly reduced after AL infection. This discrepancy suggests that cer-
tain genes may play different roles during the plant-pathogen interaction in different plant species.

In conclusion, the leaf gene expression patterns of NC89 and V2 after Alternaria infection provide a solid 
foundation for future studies of the molecular mechanisms underlying tobacco brown spot response.

Materials and Methods
Plant material and RNA isolation.  The N. tabacum L. cv. NC89 is sensitive to the brown spot, and the N. 
tabacum L. cv. V2 was obtained the resistance to brown spot disease by inducing from NC89 with the hypoviru-
lent viruses CMV-SV5227. Tobacco seeds (V2 and NC89) were sterilized using chlorine gas and grown axenically 
on MS medium28 for 2 months under a controlled16h-light/8h-dark cycle. After 15 days of growth on the potato 
dextrose agar media, the conidia of A. longipes (AL) and A. alternata (AA) were harvested to prepare suspen-
sions with a concentration of 1 ×  106 conidia/ml. 5 μ l conidial suspension was used to inoculate the leaf from the 
aseptic seedlings of V2 and NC89. Two cultivars and two Alternaria strains yield four cultivar-pathogen combi-
nations: V2_AL, V2_AA, NC89_AL and NC89_AA. Every combination was harvested at three time points, that 
is, 6, 24, and 72 hours post inoculation, respectively. For the 6 and 24 time points, inoculated plants were kept for 
72 hours after harvest to monitor the success of the inoculations. Leaf tissues from healthy aseptic tobacco seed-
ling were the controls for the experiment.

Total RNA was isolated with TRIzol (Invitrogen) from each sample according to the manufacturer’s instruc-
tions. It was treated with RNase-free DNase I (Invitrogen) for 30 min at 37 °C to remove residual DNA. The RNA 
quantity and quality were determined using Agilent Technologies 2100 Bioanalyzer (Agilent).

cDNA library preparation and sequencing.  3 μ g of total RNA per sample was used as input material 
for the RNA sample preparation. Beads with oligo (dT) were used to isolate poly(A) mRNA from total RNA. 
RNA sequencing libraries were constructed from these mRNA using the TruSeq RNA Sample Preparation Kit 
(Illumina, San Diego, USA). Briefly, the Elution 2-Frag-Prime (94 °C for 8 minutes, 4 °C hold) was used to elute, 
fragment and prime the mRNA with Elute, Prime, Fragment Mix (Illumina). First strand cDNA synthesis was 
performed with First Strand Master Mix and SuperScript II mix (ratio: 1ul SuperScript II/7ul First Strand Master 
Mix) (Invitrogen). The second strand was synthesized with Second Strand Master Mix (Illumina) and Ampure 
XP beads (Illumina) were used to separate the double-stranded (ds) cDNA from the 2nd strand reaction mix. 
After end repair and the addition of a 3′ -dA overhang, the cDNA was ligated to Illumina PE adapter oligo mix 
(Illumina), and size-selected for 350 ±  20 bp fragments by gel purification. After 15 cycles of PCR amplification, 
the 350 bp paired-end libraries were sequenced using the paired-end sequencing module (100 bp at each end) of 
the Illumina HiSeq 2000 platform.

De novo transcriptome assembly.  Raw image data were transformed by base calling into sequence data. 
These raw reads were stored in fastq format, and processed through Trimmomatic (Version 0.32)29. This step 
removed reads containing adapter, reads containing poly-N and low quality reads from the raw data and yielded 
clean data for downstream analyses. De novo assembly of transcriptome was carried out with a short reads assem-
bling program, Trinity (Version: trinityrnaseq_r20140717)30. This resulted in a set of sequences, which could 
not be extended on either end. The candidates which have most probable longest-ORF were generated from the 
Trinity assembly result using TransDecoder (https://transdecoder.github.io/) and manual review. A set of thus 
candidates (“mRNA” sequences) was used for reference transcriptome. If multiple transcripts belong to a unigene, 
the coding sequences of a transcript was extracted and used for functional annotations of the unigene.

Gene annotation.  Protein sequences corresponding to the coding sequences of unigenes were obtained, and 
then searched against NCBI non-redundant (nr) database, Swiss-Prot and KEGG databases using Blastp with a 
cut-off E-value of 10−5.

Quantification of gene expression level.  RSEM31 was used for transcript abundance estimation and 
expression value computation. To estimate transcript abundance, the original reads were aligned to the transcrip-
tome using bowtie232. Then, RSEM was executed to estimate expression values based on the resulting alignments. 
Simultaneously, the fragments per kilobase of exon per million fragments mapped (FPKM) value of each unigene 
was calculated based on the length of the gene and mapped reads count.

Differential expression analysis.  The detection of differentially expressed genes was performed using 
edgeR program package33 with the rigorous algorithm method. The threshold of p-value in multiple test and anal-
ysis was determined by false discovery rate (FDR). The differentially expressed genes were deemed significant by 
the following criteria: FDR <  0.05 and the absolute value of Log2 (Ratio) ≥ 1.

Especially, continuously upregulated genes during the course of Alternaria infection were screened out if the 
FPKM value of a gene at any time point was at least 1.5-fold of the FPKM value at the previous time point.

https://transdecoder.github.io/
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GO enrichment analysis.  GO annotation of predicted protein sequences were acquired using InterProScan- 
5.8–49.034. The GO enrichment was done with Ontologizer 2.035 by using one-sided Fisher’s exact test, the 
Parent-Child-Union method, and the multiple-testing correction method was set to “Westfall and Young 
single-step”, with a p-value cut-off of 0.001 (adjusted p-value using multiple-testing correction method (p.ad-
justed)). All genes with GO annotation were used as reference, and all DEGs with GO annotated of each 
cultivar-pathogen combination were used as study set, respectively.

Identification of the NBS gene family.  Predicted protein sequences from the unigenes were scanned 
by HMMER (Version 3.0)36 with the Hidden Markov Model (HMM) against the Pfam37 NBS (NB-ARC) fam-
ily (PF00931). A possible tobacco protein set (E-value <  10) was aligned against Pfam database to verify the 
HMMER result. The sequences that had no NBS domains were discarded. The NBS domain and other domains 
were synthesized in these proteins with E-value <  10−5. Because coiled-coil domains could not be identified 
through the Pfam method, we used COILS software (Version 2.2)38 to predict the coiled-coil domains with a P 
score cut-off of 0.05.

Quantitative RT-PCR.  In order to validate the RNA-Seq results, qRT-PCR analysis was performed 
using 12 RNA samples (Supplementary Figure 1), which were used in the sequencing libraries preparation. 
Reverse-transcription was performed using total RNAs (1 μ g) with PrimeScriptTM RT reagent Kit (TaKaRa) 
according to the manufacturer’s protocol. The primer sets were designed using Oligo 6.44 software within the 
CDS region of nucleotide sequences (Supplementary Table 8), and the parallel reactions using the actin (NCBI 
Accession number: JQ256516) primers were performed to normalize the amount of template cDNA added to 
each reaction. The gene specific primers were diluted to a final concentration of 10 μ M. For each sample 30 ng of 
cDNAs were used as template in 20 μ l PCR reactions containing 10 μ l SYBR Premix Ex Taq II (Tli RNaseH Plus) 
(2x) (TaKaRa) and 0.8 μ l forward and 0.8 μ l reverse primers. PCR reactions were performed on a QuantStudio 
12K Flex real-time PCR system (Life Technologies) as follows: denaturation at 95 °C for 3 min, followed by 40 
cycles at 95 °C for 20 s, 60 °C for 20 s, and 72 °C for 30 s. Fluorescent intensity data were acquired during the 72 °C 
extension step. At the end of the amplification cycles, a melting curve step was performed to check for specificity 
of the amplified product, which were run at 95 °C for 15 s and 60 °C for 1 min followed by an increase in temper-
ature from 60 to 95 °C (0.05 °C/s) with continuous fluorescence recording. All experiments were used in quadru-
plicate for each sample and relative gene expression levels were calculated using the 2−ΔΔCT method39.
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