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Abstract: Seed aging during storage is irreversible, and a rapid, accurate detection method for
seed vigor detection during seed aging is of great importance for seed companies and farmers.
In this study, an artificial accelerated aging treatment was used to simulate the maize kernel
aging process, and hyperspectral imaging at the spectral range of 874–1734 nm was applied as
a rapid and accurate technique to identify seed vigor under different accelerated aging time regimes.
Hyperspectral images of two varieties of maize processed with eight different aging duration times
(0, 12, 24, 36, 48, 72, 96 and 120 h) were acquired. Principal component analysis (PCA) was used to
conduct a qualitative analysis on maize kernels under different accelerated aging time conditions.
Second-order derivatization was applied to select characteristic wavelengths. Classification models
(support vector machine−SVM) based on full spectra and optimal wavelengths were built. The results
showed that misclassification in unprocessed maize kernels was rare, while some misclassification
occurred in maize kernels after the short aging times of 12 and 24 h. On the whole, classification
accuracies of maize kernels after relatively short aging times (0, 12 and 24 h) were higher, ranging
from 61% to 100%. Maize kernels with longer aging time (36, 48, 72, 96, 120 h) had lower classification
accuracies. According to the results of confusion matrixes of SVM models, the eight categories of
each maize variety could be divided into three groups: Group 1 (0 h), Group 2 (12 and 24 h) and
Group 3 (36, 48, 72, 96, 120 h). Maize kernels from different categories within one group were more
likely to be misclassified with each other, and maize kernels within different groups had fewer
misclassified samples. Germination test was conducted to verify the classification models, the results
showed that the significant differences of maize kernel vigor revealed by standard germination tests
generally matched with the classification accuracies of the SVM models. Hyperspectral imaging
analysis for two varieties of maize kernels showed similar results, indicating the possibility of using
hyperspectral imaging technique combined with chemometric methods to evaluate seed vigor and
seed aging degree.

Keywords: maize kernel; hyperspectral imaging technology; accelerated aging; principal component
analysis; support vector machine model; standard germination tests

1. Introduction

Seeds enter an aging process after natural maturity. During this process, the vitality of the seed
gradually decreases, which is a common phenomenon during the seed storage period. Seed vigor is
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an important indicator synthesizing seed germination, seedling rate, seedling growth potential, plant
stress resistance and production potential [1,2]. For farmers, seeds with low viability will have low
germination rates, which will increase their costs. Compared with seeds with low viability, seeds
with high vigor which can save time, labor and material resources have obvious advantages [3].
Thus, an appropriate seed vigor detection method can help farmers engage in agricultural production
activities in a better way. For seed companies, the seeds should be dried, processed and stored after
harvest. If certain conditions are not suitable for seeds during these processes, it is possible to cause
damage to the seeds, therefore, a rapid, non-destructive and high-accuracy method for seed vigor
detection is of great help to them too.

The aging process of maize kernels can be influenced by maize varieties and environment factors
such as temperature and humidity [4]. Generally, the natural aging of seeds is a long-duration
procedure, which increases the cost of sampling for research purposes. In order to facilitate the
research process, artificial accelerated aging tests are applied as a common method to simulate the
seed aging procedure in a short time compared with natural aging. Studies have shown that artificial
aging tests are an effective method to study seed vigor instead of natural aging. Han et al. identified
quantitative trait loci (QTLs) for four maize seed vigor-related traits under artificial aging treatment [5].
Gelmond et al. applied accelerated aging to obtain six different levels of vigor of sorghum seeds
from an identical lot [6]. Souza et al. also adopted an accelerated aging test during their study of the
physiological quality of quinoa seeds under different storage conditions [7].

Most of the current research methods for seed aging determination are traditional physical and
chemical detection methods. Mcdonough et al. studied the effects of accelerated aging on the vigor
of maize, sorghum and sorghum powder. They detected both physical and chemical attributes that
reveal the vitality of seeds. The density of maize and sorghum physical attribute was tested using
a gas comparison pycnometer and tangential abrasive huller. The chemical attribute content of soluble
protein in aged maize and sorghum was detected by gel chromatography with reagents [8]. Among
all the seed vigor test methods, the standard germination test is the most widely used method for
seed vigor detection, but it needs a complete sprouting procedure with the manual measurement
of shoot length, root length and germination, which will take a long time. The disadvantages of
traditional physical and chemical methods lies in that they are destructive, inefficient, time-consuming
and usually involve complex operating procedures, thus a rapid, non-destructive method is needed
for seed vigor detection.

Hyperspectral imaging technology is a new non-destructive test method which combines
imaging information and spectral information [9–13]. Hyperspectral imaging can obtain the chemical
information of heterogeneous samples and the spatial distribution of chemical components [14–20].
The hyperspectral imaging can be used to study the quality of seeds. Wei et al. used a visible/
near-infrared hyperspectral imaging technique to detect the spatial distribution of aflatoxin B1 in
kernels [21]. Wang et al. used hyperspectral imaging to predict the texture of maize seeds after different
storage periods. The established quadrature signal correction-continuous new algorithm-piece partial
least squares regression model (OSC-SPA-PLSR) had good prediction results of corn hardness and
elasticity [22]. Williams et al. used near infrared (NIR) hyperspectral imaging to distinguish hard,
intermediate and soft maize kernels from inbred lines. They used a Spectral Dimensions MatrixNIR
camera and a short wave infrared (SWIR) hyperspectral imaging system to acquire the images of whole
maize kernels. The authors used principal component analysis (PCA) to remove background, bad
pixels, shading and found histological classes including glassy (hard) and floury (soft) endosperm on
the cleaned images. They used PCA to discriminate endosperm from different kinds of maize kernels.
Then PLS-DA was applied in classifying two kinds of maize. The result verified the effectiveness of the
proposed method [10].

Hyperspectral imaging technology can also be used to detect the changes in seeds which
underwent artificial accelerated aging test. Mcgoverin et al. investigated the viability of barley,
wheat and sorghum grains using NIR hyperspectral imaging [11]. Nansen et al. adopted hyperspectral



Molecules 2018, 23, 3078 3 of 15

imaging to detect the germination rate of two native Australian tree species. During the process,
hyperspectral images were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30 and 50 days of standard
accelerated aging, and they found the loss of germination was associated with a significant change in
seed coat spectral reflectance profiles [12]. Kandpal et al. predicted the viability of muskmelon seeds
using NIR hyperspectral imaging system. After image collection, all seeds underwent a germination
test to confirm their viability and vigor. The muskmelon seeds used in the study were vacuum-packed
in plastic bags and stored in 45 ◦C hot water to age for 2, 4 and 6 days, while another set of seeds did
not undergo artificial aging and were kept as the control (0 h). They found the spectral reflectance
intensity decreases when there was an increment of seed viability, and this could reveal the changes in
the chemical components in the seed as the artificial aging time increasing [13].

The main objective of this study was to explore the feasibility of using hyperspectral imaging
to identify maize kernels vigor undergoing different accelerated aging time. The specific objectives
were to: (1) conduct qualitative analysis of differences among maize kernels under different aging
time by PCA; (2) build classification models and select optimal wavelengths to identify maize kernels
undergoing different accelerated aging time; and (3) validate the results of hyperspectral imaging by
standard germination tests.

2. Results and Discussion

2.1. Spectral Profile

The average spectral reflectance curves of maize kernels of two varieties at eight different aging
times are shown in Figure 1. Similarity was observed in the change trends of the spectral reflectance
curves of maize kernels which belonged to same variety but underwent different aging processes.
The change trends of the reflectance curves of two varieties of maize showed clear similarities.
Reflectance curves of maize kernels had differences in the reflectance of broad wavebands, so it
was difficult to identify optimal wavelengths to discriminate maize kernels processed for different
aging times.
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Figure 1. Average spectra of unprocessed spectra: (a) Maize 1; (b) Maize 2. Average spectra of maize
kernels under different aging duration time differs in reflectance value.

The average spectra of two varieties of maize preprocessed by the second-order derivative
with three smoothing points are shown in Figure 2. The second-order derivative spectra in
Figure 2 show the main changes in the spectral reflectance among maize kernels for eight aging
durations. The wavelengths with obvious difference in reflectance data were manually selected
as the optimal wavelengths by comparing maize kernels exposed to the eight different aging
treatments. The wavelengths showing obvious differences could be easily identified in Figure 2,
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and the interferences of unimportant wavelengths were greatly suppressed. The second-order
derivative spectra showed more obvious differences of maize kernels among different aging time than
unpreprocessed spectra. Moreover, it could be found in Figure 2 that the second-order derivative
spectra of maize kernels under different aging time between two varieties of maize showed similar
trends in their spectral curves.
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Spectral differences of maize kernels under different aging duration time at certain wavelengths
could be observed.

2.2. PCA Analysis

2.2.1. Pixel-Wise PCA Scores Visualization

One hyperspectral image under each aging time of each variety was randomly selected to conduct
PCA analysis. The PCA score images of PC1, PC2 and PC3 of Maize 1 and Maize 2 were shown in
Figures S1 and S2 of the Supplementary Materials, respectively. Using the original images as references,
it can be seen in Figures S1 and S2 that warm colours (yellow-red) were related to soft endosperm,
while cold colours (green-blue) were associated with hard endosperm. The compositional structure of
unprocessed maize kernels was shown more clearly in score images, while the structure outline inside
maize kernels after accelerated aging treatment were fuzzier. That might be because the accelerated
aging treatment altered the physical and chemical attributes of material inside the seeds, causing the
hardness to change to varying degrees in different parts of maize kernels.

2.2.2. Object-Wise PCA Scores Scatter Plots Analysis

PCA analysis was conducted on average spectra of maize kernels to explore the scores scatter
of different PCs. The first three PCs for each kind of maize were used to conduct qualitative analysis
because the first three PCs contained the most of information of maize kernel, with 99.98% explained
variance for Maize 1 (93.75% for PC1, 6.04% for PC2 and 0.14% for PC3) and 99.84% for Maize 2 (94.98%
for PC1, 4.67% for PC2 and 0.14% for PC3). According to Figure 3, maize kernels after different aging
processing treatments were grouped together depending on different features of their own spectral
characteristics though there were some overlapping among the eight clusters. Maize kernels without
aging processing were partly separated on Figure 3b–e, which revealed that the differences among
maize kernels without aging treatment and maize kernels under seven different aging treatments had
more differences in hyperspectral imaging. In order to obtain satisfactory classification results, further
processing should be conducted.
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2.3. Classification Models Based on Full Spectra

PCA analysis indicated that differences existed among maize kernels after different aging times.
SVM models were built to evaluate the differences among maize kernels exposed to different aging
times. To build SVM models, the maize kernels of each category were randomly split into a calibration
set and a prediction set at the ratio of 2:1 (400 maize kernels in the calibration set and 200 maize kernels
in the prediction set).

The overall classification results of Maize 1 and Maize 2 are shown in Table 1. A SVM model using
the spectra of the combination of Maize 1 and Maize 2 was also built, and the overall classification
results also presented in Table 1. As shown in Table 1, the overall classification accuracy of the
calibration sets for Maize 1 and Maize 2 was approximately 80%, but the prediction accuracy of Maize
1 was a little higher than that of Maize 2, with Maize 1 reaching 70% and Maize 2 only 60%. The SVM
model using the combined dataset showed close classification results to the SVM models using Maize
1 and Maize 2.

Table 1. The classification accuracy of SVM models using full spectra.

Sample Variety C 1 G 2 Cal. 3 (%) Pre. 4 (%) Cv. 5

Maize 1 256.00 1.74 81.53 68.15 58.13
Maize 2 256.00 3.03 78.47 60.16 63.84

Maize Mixed 256.00 5.28 73.43 59.90 57.23
1 The regularization parameter of SVM; 2 The kernel function parameter of SVM; 3 Calibration set; 4 Prediction set;
5 Five-fold cross-validation.

To explore the details of the classification results of maize kernels under different aging times,
Table 2 shows the confusion matrix of maize kernels of each category obtained according to the results
of the SVM models using the full spectra. From Table 2, it could be seen that for Maize 1, Maize 2 and
the combination of Maize 1 and Maize 2, maize kernels could be divided into three groups. The first
group (Group 1) contained the maize kernels aged for 0 h, with nearly no misclassification with other
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categories. Because maize kernels aged for 12 and 24 h were more likely to be misclassified with
each other, these two categories were sorted as Group 2, but the categories from Group 2, still had
a high classification accuracy in both the calibration set and prediction set. The third group (Group 3)
contained the maize kernels aged for 36, 48, 72, 96, 120 h. The maize kernels aged for each duration
time in Group 3 gave lower classification accuracies, and they were grouped together because they
were misclassified with each other more often.

Table 2. Confusion matrix of SVM models using full spectra.

Sample Variety Sample Number
Pre.

Accuracy (%)
1 1 2 3 4 5 6 7 8

Maize 1

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 384 16 0 0 0 0 0 96.00
3 (400) 0 14 356 26 3 0 1 0 89.00
4 (400) 0 3 34 306 40 11 5 1 76.50
5 (400) 0 0 16 74 228 68 2 12 57.00
6 (400) 0 0 4 25 76 261 8 26 65.30
7 (400) 0 0 0 1 5 18 327 49 81.80
8 (400) 0 0 0 5 9 20 19 347 86.80

Pre.

1 (200) 199 1 0 0 0 0 0 0 99.50
2 (200) 1 150 47 0 0 2 0 0 75.00
3 (200) 0 19 158 17 6 0 0 0 79.00
4 (200) 0 4 26 114 39 16 0 1 57.00
5 (200) 0 0 2 11 92 87 0 8 46.00
6 (199) 0 1 2 22 66 100 3 5 50.30
7 (200) 0 0 0 1 10 12 117 60 58.50
8 (199) 0 0 0 1 6 17 16 159 79.90

Maize 2

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 374 24 0 0 0 2 0 93.50
3 (400) 0 16 384 0 0 0 0 0 96.00
4 (400) 0 0 0 279 37 27 10 47 69.80
5 (400) 0 0 0 38 322 6 0 34 80.50
6 (400) 0 1 0 30 2 256 95 16 64.00
7 (400) 0 1 0 17 1 105 259 17 64.80
8 (400) 0 1 0 79 53 22 8 237 59.30

Pre.

1 (200) 196 0 3 0 0 0 0 1 98.00
2 (200) 1 156 36 0 0 1 6 0 78.00
3 (199) 1 21 177 0 0 0 0 0 88.90
4 (200) 0 2 0 90 36 23 10 39 45.00
5 (200) 1 0 0 47 109 4 2 37 54.50
6 (200) 0 3 0 12 3 80 92 10 40.00
7 (200) 0 6 1 19 0 71 93 10 46.50
8 (200) 0 1 0 71 41 16 10 61 30.50

Maize mixed

Cal.

1 (800) 800 0 0 0 0 0 0 0 100.00
2 (800) 0 654 134 0 0 8 0 4 81.80
3 (800) 0 123 657 17 1 2 0 0 82.10
4 (800) 0 5 30 499 126 35 40 65 62.40
5 (800) 0 4 19 156 422 129 22 48 52.80
6 (800) 0 7 4 52 70 480 110 77 60.00
7 (800) 0 0 0 57 51 125 409 158 51.00
8 (800) 0 2 1 40 64 75 87 531 66.40

Pre.

1 (400) 394 2 3 0 0 1 0 0 98.50
2 (400) 4 246 130 0 2 11 3 4 61.50
3 (399) 2 94 287 9 1 4 0 2 72.20
4 (400) 0 9 16 205 90 26 25 29 51.30
5 (400) 0 3 3 55 136 130 20 53 34.00
6 (399) 0 3 5 36 64 187 74 30 46.90
7 (400) 0 3 4 36 59 167 77 54 19.30
8 (399) 0 3 0 40 59 51 58 188 47.10

1 1, 2, 3, 4, 5, 6, 7 and 8 are assigned respectively as the category value of the maize kernels processed under different
aging duration (12, 24, 36, 48, 72, 96 and 120 h).
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From Table 2, although maize kernels within one group would be misclassified with each other,
maize kernels were not easily misclassified with categories from the other groups. Table 3 showed
the classification accuracy of SVM models of three groups (Group 1 (0 h), Group 2 (12 and 24 h) and
Group 3 (36, 48, 72, 96, 120 h)) using full spectra. All accuracies were above 90%.

Table 3. The classification accuracy of SVM models of three groups using full spectra.

Sample Variety Sample Number
Pre.

Accuracy (%)
Group 1 Group 2 Group 3

Maize 1

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 770 30 96.25

Group 3 (2000) 0 57 1943 97.15

Pre.
Group 1 (200) 199 1 0 99.50
Group 2 (400) 1 374 25 93.50
Group 3 (998) 0 35 963 96.49

Maize 2

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 798 2 99.75

Group 3 (2000) 0 3 1997 99.85

Pre.
Group 1 (200) 196 3 1 98.00
Group 2 (399) 2 390 7 97.74

Group 3 (1000) 1 13 986 98.60

Maize mixed

Cal.
Group 1 (800) 800 0 0 100.00

Group 2 (1600) 0 1568 32 98.00
Group 3 (4000) 0 72 3928 98.20

Pre.
Group 1 (400) 394 5 1 98.50
Group 2 (799) 6 757 36 94.74

Group 3 (1998) 0 49 1949 97.55

As shown in Tables 1 and 2 the SVM model using the combined dataset showed close classification
results to the SVM models using Maize 1 and Maize 2, and the general trend of classification accuracy
of each aging duration time of the combined dataset was similar to Maize 1 and Maize 2. The results
indicated that it would be possible to build a non-variety specific classification model for maize kernel
vigor detection.

2.4. Optimal Wavelengths Selection

In this study, the second-order derivative was adopted to select the optimal wavelengths.
As shown in Figure 2, the wavelengths with larger differences among maize kernels aged for different
duration were highlighted in the spectra. The peaks and valleys with larger differences were selected
as the optimal wavelengths to identify maize kernels at different aging times. The selected optimal
wavelengths for Maize 1 and Maize 2 are shown in Table 4, and 19 and 18 optimal wavelengths were
obtained finally to reduce the data volume. The optimal wavelengths near 995 nm were related to
the second vibration of N–H bonds in proteins or amino acids [23]. The attributes of the secondary
stretching vibration of C–H bonds in starch, proteins or lipids were revealed at optimal wavelengths
near 1200 nm [24]. The spectral bands near 1463 nm were concerned with the absorption region of
water [25]. From Table 4, the differences of the optimal wavelengths selected for Maize1 and Maize2
might be related to the genotypic differences for two varieties of maize.

Table 4. Corresponding optimal wavelengths selected by second-order derivative spectra.

Sample Variety No. Optimal Wavelengths (nm)

Maize 1 19 995, 1005, 1035, 1076, 1130, 1156, 1167, 1207, 1241, 1264,
1321, 1375, 1399, 1426, 1463, 1480, 1504, 1585, 1615

Maize 2 18 1005, 1072, 1130, 1156, 1160, 1167, 1197, 1241, 1264,
1318, 1345, 1372, 1396, 1426, 1453, 1463, 1480, 1612
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2.5. Classification Models on the Optimal Wavelengths

The overall results of SVM models of Maize 1 and Maize 2 using the optimal wavelengths selected
by second-order derivative spectra are shown in Table 5. For Maize 1, the classification accuracy
of the calibration set was over 70%, and the classification accuracy of the prediction set was about
60%. For Maize 2, the classification accuracy of the calibration set reached 71%, and the classification
accuracy of the prediction set was 62%. A slight decrease could be found between the overall results
of the calibration set of SVM models using full spectra and optimal wavelengths, and the results of
the prediction set were quite close to each other. The number of wavelengths reduced to 18 and 19
by optimal wavelengths selection, resulting in reduction of spectral data volume to 91% and 90.5%.
During this process, some useful information was lost, leading to the accuracy reduction in SVM
models based on optimal wavelengths. In the case of small difference between the classification results
based on full spectra and optimal wavelengths, it was still meaningful to adopt the classification model
based on optimal wavelengths.

To explore the classification results of maize kernels at different aging time using optimal
wavelengths, the confusion matrix of maize kernels of each category obtained by SVM models using
optimal wavelengths of Maize 1 and Maize 2 were shown in Table 6. Classification results of Maize
1 and Maize 2 using optimal wavelengths could also be divided into the three same groups as the
SVM models using full spectra. Group 1 contained maize kernels under aging time of 0 h, Group
2 contained maize kernels under aging time of 12 and 24 h, and Group 3 contained maize kernels
under the aging time of 36, 48, 72, 96 and 120 h. Maize kernels aged for different duration time within
one group were more likely to be misclassified with each other. And maize kernels within different
groups had fewer misclassified samples. Table 7 showed the classification accuracy of SVM models of
three groups (Group 1 (0 h), Group 2 (12 and 24 h) and Group 3 (36, 48, 72, 96, 120 h)) using optimal
wavelengths selected by second-order derivative spectra. Although the accuracies were slightly lower
than models based on full spectra, the accuracies were still above 90%.

Table 5. The classification accuracy of SVM models using the optimal wavelengths selected by
second-order derivative spectra.

Sample Variety c g Cal. (%) Pre. (%) Cv.

Maize 1 256.00 27.86 70.47 57.45 71.31
Maize 2 256.00 16.00 71.66 62.48 63.81

Table 6. Confusion matrix of SVM models using optimal wavelengths selected by second-order
derivative spectra.

Sample
Variety

Sample
Number

Prediction Value Accuracy
(%)1 2 3 4 5 6 7 8

Maize 1

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 372 27 1 0 0 0 0 93.00
3 (400) 0 33 314 14 23 12 1 3 78.50
4 (400) 0 5 27 190 57 68 11 42 47.50
5 (400) 0 3 43 54 196 66 3 35 49.00
6 (400) 0 0 17 92 82 170 3 36 42.50
7 (400) 0 0 0 19 7 13 319 42 79.80
8 (400) 0 1 5 31 29 26 14 294 73.50

Pre.

1 (200) 199 1 0 0 0 0 0 0 99.50
2 (200) 2 161 36 0 0 1 0 0 80.50
3 (200) 0 36 131 6 14 6 0 7 65.50
4 (200) 0 4 31 66 41 47 1 10 33.00
5 (200) 0 2 25 37 77 37 2 20 38.50
6 (199) 0 2 13 62 53 43 4 22 21.60
7 (200) 0 0 0 11 10 10 121 48 60.50
8 (199) 0 0 0 21 22 16 20 120 60.30
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Table 6. Cont.

Sample
Variety

Sample
Number

Prediction Value Accuracy
(%)1 2 3 4 5 6 7 8

Maize 2

Cal.

1 (400) 400 0 0 0 0 0 0 0 100.00
2 (400) 0 365 33 0 0 2 0 0 91.30
3 (400) 0 25 375 0 0 0 0 0 93.80
4 (400) 0 0 0 246 54 29 10 61 61.50
5 (400) 0 0 0 57 295 6 0 42 73.80
6 (400) 0 5 0 38 1 230 113 13 57.50
7 (400) 0 2 0 21 1 165 196 15 49.00
8 (400) 0 0 0 117 63 27 7 186 46.50

Pre.

1 (200) 196 0 3 0 0 0 0 1 98.00
2 (200) 1 164 30 0 0 2 3 0 82.00
3 (199) 2 15 182 0 0 0 0 0 91.50
4 (200) 0 0 0 86 35 11 11 57 43.00
5 (200) 1 0 0 36 126 3 2 32 63.00
6 (200) 0 2 0 16 2 93 84 3 46.50
7 (200) 0 2 0 20 0 75 94 9 47.00
8 (200) 0 0 0 78 46 12 6 58 29.00

Table 7. The classification accuracy of SVM models of three groups using optimal wavelengths selected
by second-order derivative spectra.

Sample
Variety Sample Number

Pre. Accuracy
(%)Group 1 Group 2 Group 3

Maize 1

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 746 54 93.25

Group 3 (2000) 0 101 1899 94.95

Pre.
Group 1 (200) 199 1 0 99.50
Group 2 (400) 2 364 34 91.00
Group 3 (998) 0 77 921 92.28

Maize 2

Cal.
Group 1 (400) 400 0 0 100.00
Group 2 (800) 0 798 2 99.75

Group 3 (2000) 0 7 1993 99.65

Pre.
Group 1 (200) 196 3 1 98.00
Group 2 (399) 3 391 5 97.99

Group 3 (1000) 1 4 995 99.50

2.6. Germination Tests Analysis

A germination test was carried out to validate the accuracy of hyperspectral imaging in this
study. Table 8 showed the germination rate, shoot length and root length of Maize 1 and Maize 2 at
different aging duration. It could be seen that Maize 1 and Maize 2 at aging duration time from 0 to
24 h had significant differences in shoot length and root length, but there were no significant difference
in germination rate among these three categories. Because the germination rate was calculated by
seeds with at least 1 cm germ after 10 days, accelerated aging treatment for a short time (12 h and
24 h) may not affect the germination ability for maize kernels obviously, but the significant differences
of root length and shoot length could reveal the vigor differences of maize kernels from these three
categories, which consisted with the high classification accuracies of SVM models of Group 1 (0 h) and
Group 2 (12 and 24 h). It also could be found in Table 8 that there were small significant differences
among maize kernels under aging duration of 36, 48, 72, 96 and 120 h, which consisted with the low
accuracies of SVM models of Group 3. The overall results indicated that hyperspectral imaging could
be used to detect seed vigor under different aging duration time.
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Table 8. Germination rate, shoot and root length of Maize 1 and Maize 2 under different accelerated
aging time.

Sample Variety Accelerating Aging
Time (hrs)

Germination Rate
(%)

Shoot Length
(cm/seedling)

Root Length
(cm/seedling)

Maize 1

0 92.00a 11.30a 23.15a
12 90.67a 12.26b 21.42b
24 86.00a 9.77c 17.31cd
36 75.33b 6.35d 18.20c
48 73.67b 8.95c 16.68d
72 76.33b 6.17d 13.76e
96 59.00c 5.60d 12.80e
120 57.00c 5.99d 12.69e

Maize 2

0 96.33a 13.06a 24.68a
12 97.67a 10.64b 24.11a
24 93.00a 10.09bc 19.25b
36 82.67b 8.78cd 17.08c
48 79.00bc 6.98e 18.46b
72 75.33c 7.27de 12.80d
96 62.00d 5.93e 14.63e
120 63.67d 6.73e 12.13e

The letters (a, b, c, d, e) in each column indicate the significance of difference among maize kernel processed by
different duration of aging time at the confidence level of 5% (Duncan’s). Within a column, data followed by
different letters are significantly different.

3. Materials and Methods

3.1. Sample Preparation

Two varieties of maize kernels cultivated by a commercial seed company (Jiudingjiusheng Seed
Industrial Co., Ltd., Beijing, China) with breed numbers of 106101 and 7879 (in this work the names
Maize 1 and Maize 2 were used to refer to maize varieties 106101 and 7879, respectively) instead of
their original chemical names, complying with the company rules. The two varieties of maize were
sown and harvested in the same experimental field simultaneously in 2016. For each variety, 4800
maize kernels were prepared for artificial accelerated aging. Before accelerating aging treatment, maize
kernels were disinfected with 1% hypochlorous acid (HClO) solution for 20 min and then the maize
kernels were naturally dried after being rinsed with distilled water. The 4800 maize kernels of each
variety were randomly divided into eight categories (600 kernels in each category). One category
was selected as control group (0 h) placed at room temperature (20 ◦C, 60% relative humidity) and
the other 7 categorizes were used to conduct aging process under different aging time (12, 24, 36,
48, 72, 96 and 120 h). Then the maize kernels were aged in LH-150S artificial aging box (Ansheng
Instrument Ltd., Zhengzhou, Henan, China) with temperature of 45 ◦C and relative humidity of
99%. After accelerated aging treatment, maize kernels were disinfected, rinsed with distilled water,
naturally air-dried, and stored in Kraft paper bags. After the acquisition of hyperspectral images,
maize kernels of each category were divided into 30 samples (20 kernels in each sample) for standard
germination analysis.

3.2. Hyperspectral Imaging System

The experiment was carried out using a hyperspectral imaging system with the spectral range of
874–1734 nm, the spectral resolution of 5 nm and the spatial resolution of 320 × 256 pixels. The system
consisted of an ImSpector N17E imaging spectrograph (Spectral Imaging Ltd., Oulu, Finland), a Xeva
992 camera (Xenics Infrared Solutions, Leuven, Belgium) equipped with an OLES22 lens (Spectral
Imaging Ltd., Oulu, Finland), two 150 W tungsten halogen lamps (2900 Lightsource, Illumination
Technologies Inc., Elbridge, NY, USA) that were symmetrically placed and served as the light source
and a conveyer belt (Isuzu Optics Corp., Taiwan, China). The imaging system was controlled by the
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software (Xenics N17E, Isuzu Optics Corp.), which can be used to calibrated and analyze the images
as well.

3.3. Hyperspectral Image Acquisition and Calibration

The maize kernels were placed on a black plate with a very low reflectivity, so it is easy to isolate
maize kernels from the background. During the experiment, the exposure time of the camera was
3500 µs. The distance between the lens and the plate was adjusted to 17.9 cm, and the moving speed of
the conveyer belt was set to 13.8 mm/s. The above adjustments were aimed at obtaining a clear image
without distortion.

Two reference standards were used to calibrate the raw images (Iraw). The dark reference image
(Idark) was acquired by covering the lens with lens cap whose reflectivity is about 0%. The white
reference image (Iwhite) was collected from a piece of pure white Teflon board whose reflectivity is
about 100%. The calibrated image (Ic) could be calculated as Equation (1):

Ic =
Iraw − Idark

Iwhite − Idark
(1)

3.4. Spectral Reflectance Extraction and Preprocessing

After image calibration, the spectral reflectance of each maize kernel was extracted from the
hyperspectral images. Hyperspectral imaging provides spectral reflectance data and grayscale images
at each wavelength. Prior to image processing, the maize kernels were separated from the background
by using a mask 14, 26, 27. In this study, the mask was built by conducting image binaryzation on
the gray-scale image at 1116 nm to set maize kernel area as 1 and the background as 0. The maize
kernels were then isolated from background by applying the mask to the gray-scale images at each
wavelength. Then, calibrated hyperspectral images were pre-processed to minimize noise 11, 28, 29.
The original pixel-wise spectra were denoised by the wavelet transformation with decomposition level
3 using Daubechies 8 (db8) as the wavelet basis function. Then, the pixel-wise spectra of all pixels
within a maize kernel were averaged as one spectrum.

3.5. Standard Germination Tests

Standard germination tests for Maize 1 and Maize 2 were conducted on ten kernels of each sample
after acquiring hyperspectral images. For each sample, 10 maize kernels were picked randomly for
germination tests. To obtain the vigor of maize kernels, the standard germination tests were performed
according to the guidelines of the International Seed Testing Association (ISTA)30. Maize kernels were
placed in round holes of sponges, and sponges were placed in seedling basins with enough water.
Then all the seedling basins were stored in germination cabinet at 25 ◦C with 99% relative humidity
for 10 days. According to ISTA standards, seeds with 1 cm germ after germination were considered to
be seeds with viability. After germination, the germination percentage, shoot length and root length
were calculated and measured manually.

3.6. Data analysis Methods

3.6.1. Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that studies the correlation
between multiple variables. It examines how a few principal components can be used to reveal the
internal relationship between multiple variables. PCA derives principal components from the original
variables, and the first few principal components (PCs) contained most of the useful information.
The PCs are linear combinations of original variables, and they are orthotropic and irrelevant to each
other. The scores of the first few PCs can be used to explore the differences between samples [24–26].
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For hyperspectral images, there are two approaches to conduct PCA analysis, pixel-wise analysis
and objective-wise analysis [15]. Pixel-wise analysis is to form PCA scores visualization image. For
this method, PCA is calculated on individual pixels of the images. Scores of each pixel within the
hyperspectral image of each PC can be obtained to form a scores visualization image. The differences
between samples can be visually observed and explored in colormaps for each PC.

Object-wise analysis is to form PCA scores scatter plots. For this method, average spectra of
the depicted objects are used instead of individual pixels. The scores of different PCs of samples are
scattered in a two-dimensional space or a three-dimensional space. The differences among samples
can be explored more clearly in these spaces [15,27].

3.6.2. Optimal Wavelength Selection

The spectral data obtained by hyperspectral images usually have a large data volume and
contain a lot of useless information like redundant and collinear information. The existence of useless
information will increase the data processing burden, which is likely to casue instability of the model
and thus result in a poor performance. Meanwhile, processing of a large amount of data places a high
burden on computer hardware and increases the calculation time. Thus, it is necessary to select optimal
wavelengths to reduce the inputs, which can simplify the model and improve the model performance.
The second derivative is an efficient preprocessing method in spectral data analysis. It can eliminate
the interference of other backgrounds, improve the spectral resolution and highlight useful information
in the spectra. Differences in peaks and valleys of spectra preprocessed by second-order derivative
indicate the physical and chemical changes of the samples, which has been used as an efficient method
to identify optimal wavelengths [28,29]. Peaks and valleys with large differences in second-order
derivative spectra can be selected as the optimal wavelengths.

3.6.3. Discriminant Model

Support vector machine (SVM) is a supervised machine learning model used for classification
and regression. The main idea of SVM is to create a hyperplane as a decision surface, which maximizes
the margins of isolation between different samples. SVM could deal with both linear and nonlinear
data efficiently with its good generalization ability. Kernel function is important for conducting SVM,
and radial basis function (RBF) is a widely used kernel function. The parameters for SVM models
should be determined, including the regularization parameter c and kernel function parameter g.
The former determines the tradeoff between minimizing the training error and minimizing model
complexity, and the latter defines the non-linear mapping from input space to some high dimensional
feature space. The search range for c and g ranged from 2−8 to 28 in this study. The optimal combination
of c and g was determined by the SVM model with the highest classification accuracy. Grid-search was
applied to optimize the two parameters for SVM in this study [30–32].

3.6.4. Significance Test

Duncan’s multiple range tests were applied to calculate for comparison of maize vitality index
(germination, shoot and root length) at different accelerated aging duration time at a significance level
of 0.05 [33].

4. Conclusions

Hyperspectral imaging technology combined with SVM models was used to identify the vigor of
maize kernels after different aging times. The results of SVM models based on optimal wavelengths
were about 10% lower than that of models based on full spectra. However, it was meaningful to
conduct optimal wavelengths selection because of the obvious improvement in modeling speed.
Confusion matrixes for maize kernels of each category were built for both SVM models using full
spectra and optimal wavelengths to reveal the detail of classification results of maize kernels processed
under different aging duration. From the results of confusion matrixes, 8 categories of maize kernels
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could be divided into three groups. Group 1 contained unprocessed maize kernels, Group 2 contained
maize kernels aged for 12 and 24 h and Group 3 contained maize kernels with longer aging times (36,
48, 72, 96, 120 h). Maize kernels aged for different durations within one group were more likely to be
misclassified with each other. Maize kernels within different groups had fewer misclassified samples.
To verify the results of SVM models, traditional seed vigor testing method, standard germination test
was conducted. The results of standard germination tests were generally consistent with those of
SVM models. Maize kernels belonging to Group 1 (0 h) and Group 2 (12 h and 24 h) had significant
differences for root length and shoot length. Maize kernels belonging to Group 3 (36 h, 48 h, 72 h, 96 h
and 120 h) had no significant differences with each other comprehensively considering germination
rate, root length and shoot length.

The results of this research demonstrate that it is feasible to detect maize kernel vigor with
a hyperspectral imaging system combined with SVM models and the second-order derivative spectra
could be used to select optimal wavelengths which do great help in shortening modeling time. Thus,
as a rapid, non-destructive method, hyperspectral imaging system has great potential for application
in seed vigor detection. To improve model performances, different varieties of maize kernels from
different crop years, growth locations and storage conditions will be take into consideration to extend
the database in the future researches. Variety specific models and non-variety specific models will also
be explored for real-world application.

Supplementary Materials: The following are available online, Figure S1: Score images for the first three principal
components of Maize 1: (a) Score image for PC1. (b) Score image for PC2. (c) Score image for PC3. The color bar
indicates the score value of each pixel, differences of maize kernels under different accelerating aging duration time
could be seen according to the score images. Warm color (positive score values) were related to soft endosperm,
while cold color (negative score values) were associated with hard endosperm; Figure S2: Score images for the
first three principal components of Maize 2: (a) Score image for PC1. (b) Score image for PC2. (c) Score image for
PC3. The color bar indicates the score value of each pixel, differences of maize kernels under different accelerating
aging duration time could be seen according to the score images. Warm color (positive score values) were related
to soft endosperm, while cold color (negative score values) were associated with hard endosperm.

Author Contributions: Conceptualization, L.F.; Data curation, C.Z.; Formal analysis, S.Z.; Funding acquisition,
L.F., Y.B. and Y.H.; Investigation, Y.B. and Y.H.; Methodology, L.F. and S.Z.; Project administration, L.F. and Y.H.;
Resources, C.Z. and X.F.; Software, C.Z. and X.F.; Supervision, Y.H.; Visualization, Y.B.; Writing—original draft,
L.F. and S.Z.; Writing—review & editing, S.Z. and Y.H.

Funding: This research was funded by National key R & D program of China, grant number 2016YFD0300606;
Zhejiang Province Public Technology Research Program, grant number 2015C02008; National Natural
Science Foundation of China, grant number 31471417 and China Postdoctoral Science Foundation, grant
number 2017M610370.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xin, X.; Lin, X.H.; Zhou, Y.C.; Chen, X.L.; Liu, X.; Lu, X.X. Proteome analysis of maize seeds: The effect of
artificial ageing. Physiol. Plant. 2011, 143, 126–138. [CrossRef] [PubMed]

2. Woltz, J.M.; Tekrony, D.M. Accelerated aging test for corn seed. Seed Technol. 2001, 23, 21–34.
3. Williams, P.; Manley, M.; Fox, G.; Geladi, P. Indirect detection of Fusarium verticillioides in maize (Zea maize L.)

kernels by NIR hyperspectral imaging. J. Near Infrared Spectrosc. 2010, 18, 49–58. [CrossRef]
4. Bittencourt, S.R.M.D.; Grzybowski, C.R.D.S.; Panobianco, M.; Vieira, R.D. Alternative methodology for the

accelerated aging test for corn seeds. Ciênc. Rural 2012, 42, 1360–1365. [CrossRef]
5. Han, Z.; Ku, L.; Zhang, Z.; Zhang, J.; Guo, S.; Liu, H.; Zhao, R.; Ren, Z.; Zhang, L.; Su, H. QTLs for seed

vigor-related traits identified in maize seeds germinated under artificial aging conditions. PLoS ONE 2014, 9,
92535. [CrossRef] [PubMed]

6. Gelmond, H.; Luria, I.; Woodstock, L.W.; Perl, M. The effect of accelerated aging of sorghum seeds on
seedling vigour. J. Exp. Bot. 1978, 29, 489–495. [CrossRef]

7. De Jesus Souza, F.I.F.; Devilla, I.A.; de Souza, R.T.G.; Teixeira, I.R.; Spehar, C.R. Physiological quality of
quinoa seeds submitted to different storage conditions. Afr. J. Agric. Res. 2016, 11, 1299–1308. [CrossRef]

http://dx.doi.org/10.1111/j.1399-3054.2011.01497.x
http://www.ncbi.nlm.nih.gov/pubmed/21707636
http://dx.doi.org/10.1255/jnirs.858
http://dx.doi.org/10.1590/S0103-84782012000800005
http://dx.doi.org/10.1371/journal.pone.0092535
http://www.ncbi.nlm.nih.gov/pubmed/24651614
http://dx.doi.org/10.1093/jxb/29.2.489
http://dx.doi.org/10.5897/AJAR2016-10870


Molecules 2018, 23, 3078 14 of 15

8. Mcdonough, C.M.; Floyd, C.D.; Waniska, R.D.; Rooney, L.W. Effect of accelerated aging on maize, sorghum,
and sorghum meal. J. Cereal Sci. 2004, 39, 351–361. [CrossRef]

9. Ambrose, A.; Kandpal, L.M.; Kim, M.S.; Lee, W.H.; Cho, B.K. High speed measurement of corn seed viability
using hyperspectral imaging. Infrared Phys. Technol. 2016, 75, 173–179. [CrossRef]

10. Williams, P.; Geladi, P.; Fox, G.; Manley, M. Maize kernel hardness classification by near infrared (NIR)
hyperspectral imaging and multivariate data analysis. Anal. Chim. Acta 2009, 653, 121–130. [CrossRef]
[PubMed]

11. Mcgoverin, C.M.; Engelbrecht, P.; Geladi, P.; Manley, M. Characterisation of non-viable whole barley, wheat
and sorghum grains using near-infrared hyperspectral data and chemometrics. Anal. Bioanalyt. Chem. 2011,
401, 2283–2289. [CrossRef] [PubMed]

12. Nansen, C.; Zhao, G.; Dakin, N.; Zhao, C.; Turner, S.R. Using hyperspectral imaging to determine germination
of native Australian plant seeds. J. Photochem. Photobiol. B 2015, 145, 19–24. [CrossRef] [PubMed]

13. Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.S.; Cho, B.K. Near-infrared hyperspectral imaging system
coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sens. Actuators
B Chem. 2016, 229, 534–544. [CrossRef]

14. Liu, C.; Wei, L.; Lu, X.; Wei, C.; Yang, J.; Lei, Z. Nondestructive determination of transgenic
Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.
Food Chem. 2014, 153, 87–93. [CrossRef] [PubMed]

15. Williams, P.J.; Kucheryavskiy, S. Classification of maize kernels using NIR hyperspectral imaging. Food Chem.
2016, 209, 131–138. [CrossRef] [PubMed]

16. Fiore, A.D.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.A.; Bonifazi, G.; Fanelli, C. Early
detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int. J. Food Microbiol. 2010, 144,
64–71. [CrossRef] [PubMed]

17. Ravikanth, L.; Singh, C.B.; Jayas, D.S.; White, N.D.G. Classification of contaminants from wheat using
near-infrared hyperspectral imaging. Biosyst. Eng. 2015, 135, 73–86. [CrossRef]

18. Weinstock, B.A.; Janni, J.; Hagen, L.; Wright, S. Prediction of oil and oleic acid concentrations in individual
corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis.
Appl. Spectrosc. 2006, 60, 9. [CrossRef] [PubMed]

19. Lin, L.H.; Lu, F.M.; Chang, Y.C. Development of a near-infrared imaging system for determination of rice
moisture. Cereal Chem. 2006, 83, 498–504. [CrossRef]

20. Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Protein content prediction in single wheat kernels using
hyperspectral imaging. Food Chem. 2017, 240, 32–42. [CrossRef] [PubMed]

21. Wei, W.; Heitschmidt, G.W.; Windham, W.R.; Peggy, F.; Xinzhi, N.; Xuan, C. Feasibility of detecting aflatoxin
B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging. J. Food Sci. 2014, 80. [CrossRef]

22. Wang, L.; Pu, H.; Sun, D.W.; Liu, D.; Wang, Q.; Xiong, Z. Application of hyperspectral imaging for prediction
of textural properties of maize seeds with different storage periods. Food Anal. Methods 2015, 8, 1535–1545.
[CrossRef]

23. Kafle, G.K.; Khot, L.R.; Jarolmasjed, S.; Si, Y.; Lewis, K. Robustness of near infrared spectroscopy based
spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biol. Technol. 2016,
120, 188–192. [CrossRef]

24. Kamruzzaman, M.; Elmasry, G.; Sun, D.W.; Allen, P. Application of NIR hyperspectral imaging for
discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [CrossRef]

25. Qin, J.; Burks, T.F.; Kim, M.S.; Chao, K.; Ritenour, M.A. Detecting citrus canker by hyperspectral reflectance
imaging and PCA-based image classification method. In Proceedings of the SPIE—The International Society
for Optical Engineering, Orlando, FL, USA, 15 April 2008.

26. Liu, D.; Ma, J.; Sun, D.-W.; Pu, H.; Gao, W.; Qu, J.; Zeng, X.-A. Prediction of color and pH of salted porcine
meats using visible and near-infrared hyperspectral imaging. Food Bioprocess Technol. 2014, 7, 3100–3108.
[CrossRef]

27. Jiang, H.; Chen, Q. Development of electronic nose and near infrared spectroscopy analysis techniques to
monitor the critical time in SSF process of feed protein. Sensors 2014, 14, 19441–19456. [CrossRef] [PubMed]

28. Kamruzzaman, M.; Barbin, D.; Elmasry, G.; Sun, D.W.; Allen, P. Potential of hyperspectral imaging and
pattern recognition for categorization and authentication of red meat. Innov. Food Sci. Emerg. Technol. 2012,
16, 316–325. [CrossRef]

http://dx.doi.org/10.1016/j.jcs.2004.01.001
http://dx.doi.org/10.1016/j.infrared.2015.12.008
http://dx.doi.org/10.1016/j.aca.2009.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19808104
http://dx.doi.org/10.1007/s00216-011-5291-x
http://www.ncbi.nlm.nih.gov/pubmed/21842198
http://dx.doi.org/10.1016/j.jphotobiol.2015.02.015
http://www.ncbi.nlm.nih.gov/pubmed/25752861
http://dx.doi.org/10.1016/j.snb.2016.02.015
http://dx.doi.org/10.1016/j.foodchem.2013.11.166
http://www.ncbi.nlm.nih.gov/pubmed/24491704
http://dx.doi.org/10.1016/j.foodchem.2016.04.044
http://www.ncbi.nlm.nih.gov/pubmed/27173544
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.08.001
http://www.ncbi.nlm.nih.gov/pubmed/20869132
http://dx.doi.org/10.1016/j.biosystemseng.2015.04.007
http://dx.doi.org/10.1366/000370206775382631
http://www.ncbi.nlm.nih.gov/pubmed/16454902
http://dx.doi.org/10.1094/CC-83-0498
http://dx.doi.org/10.1016/j.foodchem.2017.07.048
http://www.ncbi.nlm.nih.gov/pubmed/28946278
http://dx.doi.org/10.1111/1750-3841.12728
http://dx.doi.org/10.1007/s12161-014-0029-y
http://dx.doi.org/10.1016/j.postharvbio.2016.06.013
http://dx.doi.org/10.1016/j.jfoodeng.2010.12.024
http://dx.doi.org/10.1007/s11947-014-1327-5
http://dx.doi.org/10.3390/s141019441
http://www.ncbi.nlm.nih.gov/pubmed/25330048
http://dx.doi.org/10.1016/j.ifset.2012.07.007


Molecules 2018, 23, 3078 15 of 15

29. Zhang, C.; Feng, X.; Wang, J.; Liu, F.; He, Y.; Zhou, W. Mid-infrared spectroscopy combined with
chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves. Plant Methods 2017,
13, 39. [CrossRef] [PubMed]

30. Devos, O.; Ruckebusch, C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support vector machines (SVM) in near
infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemom. Intell.
Lab. Syst. 2009, 96, 27–33. [CrossRef]

31. Zhang, L.D.; Su, S.G.; Wang, L.S.; Li, J.H.; Yang, L.M. Study on application of fourier transformation
near-infrared spectroscopy analysis with support vector machine (SVM). Spectrosc. Spect. Anal. 2005, 25,
33–35. [CrossRef]

32. Campsvalls, G.; Gómezchova, L.; Calpemaravilla, J.; Soriaolivas, E.; Martínguerrero, J.D.; Moreno, J.
Support vector machines for crop classification using hyperspectral data. Lecture Notes Comput. Sci. 2003,
2652, 134–141.

33. Dai, Q.; Cheng, J.H.; Sun, D.W.; Pu, H.; Zeng, X.A.; Xiong, Z. Potential of visible/near-infrared hyperspectral
imaging for rapid detection of freshness in unfrozen and frozen prawns. J. Food Eng. 2015, 149, 97–104.
[CrossRef]

Sample Availability: Not available.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13007-017-0190-6
http://www.ncbi.nlm.nih.gov/pubmed/28529536
http://dx.doi.org/10.1016/j.chemolab.2008.11.005
http://dx.doi.org/10.3321/j.issn:1000-0593.2005.01.012
http://dx.doi.org/10.1016/j.jfoodeng.2014.10.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Spectral Profile 
	PCA Analysis 
	Pixel-Wise PCA Scores Visualization 
	Object-Wise PCA Scores Scatter Plots Analysis 

	Classification Models Based on Full Spectra 
	Optimal Wavelengths Selection 
	Classification Models on the Optimal Wavelengths 
	Germination Tests Analysis 

	Materials and Methods 
	Sample Preparation 
	Hyperspectral Imaging System 
	Hyperspectral Image Acquisition and Calibration 
	Spectral Reflectance Extraction and Preprocessing 
	Standard Germination Tests 
	Data analysis Methods 
	Principal Component Analysis 
	Optimal Wavelength Selection 
	Discriminant Model 
	Significance Test 


	Conclusions 
	References

