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Purpose of Review: The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 
2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of 
processes to refine the use of FMT in the treatment of T2DM.
Recent Findings: T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce 
a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an 
important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic 
diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the 
treatment of T2DM, and the process of FMT is not standardized.
Summary: Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients 
to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for 
T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further 
studied.
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Introduction
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia, which progressively 
involves systemic micro- and macro-vasculature, leading to disease of the aorta, retina, kidneys and peripheral nerves and 
an increased risk of cardiovascular and cerebrovascular complications.1 According to IDF Diabetes Atlas, 537 million 
adults are living with diabetes worldwide, and this number is predicted to rise to 643 million by 2030 and 783 million by 
2045. In addition, 541 million adults have Impaired Glucose Tolerance (IGT), which places them at high risk of type 2 
diabetes.2 The pathogenesis of T2DM is based on insulin resistance and defective insulin secretion. Studies have shown 
that adipose tissue dysfunction, chronic inflammation of the intestinal tract, abnormal mitochondrial function and 
dysregulation of the hypothalamic-pituitary-adrenal axis are directly or indirectly involved in these processes.1,3 In 
recent years, a new direction of research has been observed: gastrointestinal microbiome (GM).4 GM is one of the 
important regulators of energy metabolism and substrate metabolism in the human body.5–7 Disturbances in GM may 
lead to metabolic imbalances in the body, which can lead to a variety of metabolic disorders such as chronic inflamma-
tion, insulin resistance, and obesity.8–10 GM is similarly regulated by signaling molecules from the body, which can 
contribute to the development of T2DM.11,12 Thus, disturbances in GM have been recognized as a potential contributor to 
the increased prevalence of diabetes.13

According to some studies, GM can participate in the control of bile acid (BA) metabolism, and its metabolites such 
as short chain fatty acids (SCFAs), lipopolysaccharides (LPS) and trimethylamine oxide (TMAO) also play a significant 
function in human metabolism, which can be a new target for the treatment of T2DM.14–17 Therefore, regulating the 
composition of the GM in patients with T2DM may suggest a new therapeutic idea.18 The use of a variety of prebiotic 
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and probiotic strains in patients with T2DM appears to reverse ecological dysregulation and restore the functional 
integrity of the gut.19 In other words, it is important to maintain bacterial diversity and abundance, rather than stimulating 
only one bacterial genus.20

Fecal microbiota transplantation (FMT) has been used in the treatment of colitis due to recurrent Clostridium Difficile 
Infection (rCDI) initially. It processes feces from healthy donors and transports them to the recipient via endoscopy, enemas 
and capsules, relying on the transplanted GM to compete with Clostridium difficile for the dominant strain, changing the 
abundance of the GM composition and thus restoring the diversity of the GM.21 Studies in people with metabolic syndrome 
have found that transplantation of feces from donors leads to a closer composition of GM in the recipient to the donor and 
an improvement in insulin resistance.22–24 An FMT test was performed on a T2DM mouse model, and the results showed 
that the feces of mice after FMT showed an increase in Bifidobacterium, and Prevotella, with a significant decrease in 
Sulfate-reducing bacteria (SRB), Bilophila, and Desulfovibrio after treatment.25 Wang et al26 found that T2DM mice treated 
with FMT had a decrease in HbA1c levels with time, a decrease in IL-6 and TNF-α inflammatory factors, and a significant 
increase in the number and size of islets, as well as an increase in insulin sensitivity.

Recently, several studies started to observe the effects of FMT in patients with T2DM. Ng et al27 found that FMT in 
obese patients with T2DM acquired ≥20% of lean-associated microbiota at week 24. Another prospective study also 
showed that GM in T2DM patients is reorganized by FMT and there is a significant decrease in glucose, glycosylated 
hemoglobin, uric acid and an increase in postprandial C-peptide.28 However, in this case, they also found that donors 
with higher levels of the family Rikenellaceae and the genus Anaerotruncus (family Ruminococcaceae) were beneficial in 
improving the success of FMT.28 Therefore, increasing beneficial strains of bacteria through FMT and changing the 
composition of GM in T2DM patients may regulate metabolism.29 In order to better understand the fundamentals of the 
therapy, we herein review the role of GM on the pathogenesis of T2DM and the feasibility of FMT in T2DM. Moreover, 
we discuss the relevant problems in the application of FMT.

Dysbiosis of Gastrointestinal Microbiome is an Important Part of T2DM 
Pathogenesis
GM is a hot research spot in recent years. Animal experiments and clinical studies have shown that the GM plays a vital 
function in the pathogenesis of T2DM, which is mainly involved in regulating the metabolic process of the body 
indirectly or directly through the production of various metabolites.30,31 In particular, SCFAs, LPS, and TMAO play 
a key role in the pathogenesis of T2DM, as shown in Figure 1.32

SCFAs are the products of dietary fiber fermented by GM, mainly including acetate, propionate and butyrate. Recent 
studies have found that SCFAs are involved in maintaining the integrity of the intestinal barrier and can prevent the 
inflammation in the intestine effectively.33 Meanwhile, SCFAs also have a regulatory differentiation effect on immune cells 
such as macrophages, perhaps by influencing the secretion of some cytokines such as interleukin-12(IL-12), IL-6, CO.34 In 
terms of energy metabolism, both propionate and butyrate can increase intestinal glucose production.35 Propionate mainly 
affects glucose and lipogenesis in liver indirectly, while butyrate can directly upregulate intestinal glucogenesis genes.36 In 
addition, SCFAs also participate in the gut-brain axis to affect the production of hormones to regulate metabolic activity.37 

In particular, they induce the secretion of hormones such as glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) by 
interacting with G protein-coupled receptors (GPCRs) on colonic cells, and subsequently send indirect signals to the brain 
to influence the appetite of the body.38,39 SCFAs are also involved in the regulation of insulin and ghrelin.40,41 Acetate 
produced by the GM can activate the parasympathetic nervous system to promote the secretion of glucose-stimulated 
insulin and ghrelin, which leads to obesity, hyperphagia, and insulin resistance.42 Besides, a significant decrease of butyric 
acid producing bacteria can be observed in the T2DM patients.43 Currently, it has been shown in mice that oral 
supplementation with butyrate prevents the development of insulin resistance and obesity, and an increase in adaptive 
thermogenesis and fatty acid oxidation.44

Metabolic endotoxemia and other chronic low-grade inflammation are also an important part of the pathology of 
T2DM, and several studies suggest that the release of LPS and some inflammatory cytokines are strongly associated with 
GM.45 LPS is a major component of the cytoderm of Gram-negative bacteria and is a common endotoxin in the intestine. 
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When the intestinal barrier is disrupted, LPS can enter the blood circulation through the intestinal epithelium leading to 
the development of metabolic endotoxemia and subsequently cause the development of obesity, insulin resistance and 
T2DM.8,46 Gomes et al47 showed that the concentrations of LPS and lipopolysaccharide-binding protein(LBP) were 
significantly higher in T2DM patients than in healthy ones after systematic evaluation, and affected glucose metabolism. 
Amyot et al48 demonstrated that LPS inhibit beta-cell gene expression in a Toll-Like Receptor4(TLR4)-dependent 
manner and via nuclear factor kappa-B (NF-κB) signaling in pancreatic islets. Tian et al49 identified a positive correlation 
between LPS and the levels of cytokines IL-1β and IL-8. IL-1β is involved in the immune response and β-cell injury in 
islets, while IL-8 recruits neutrophils, macrophages and lymphocytes to the inflammatory sites.50,51 Both of them involve 
in the development of metabolic endotoxins and T2DM. The anti-inflammatory cytokine IL-22 plays an important role in 
stimulating immunity and maintaining the integrity of the intestinal mucosal barrier.52 It can be increased by GM and has 
demonstrated that lacking IL-22 receptors has a higher risk of metabolic disorders in a high-fat diet, and giving 
exogenous IL-22 can reverse the condition of hyperglycemia and insulin resistance in mice.4,53 In a mouse model, it 
is possible to decrease some inflammatory factors such as tumor necrosis factor-α (TNF-α) and IL-6 by supplementing 
with some beneficial intestinal strains such as L. paracasei, Lactobacillus casei CCFM419, and A. muciniphila.54–56

GM also affects the body’s glucose metabolism by participating in bile acid metabolism.57 BA is mainly produced by 
cholesterol metabolism in the liver and then excreted by the gallbladder into the intestine and participate in the 
enterohepatic cycle, while GM can modify bile acids after they enter the intestine, such as deconjugation, dehydrogena-
tion, dehydroxylation, and epimerization.58 It has been suggested that the GM not only regulates secondary bile acid 
metabolism, but also restrains the inhibition of Farnesoid X receptor(FXR) in the ileum to reduce bile acid synthesis in 
the liver.59,60 We know that the ileal FXR induces the expression of fibroblast growth factor19(FGF19), which combines 
with FGF receptor 4 (FGFR4) in the liver to inhibit the expression of cholesterol 7α-hydroxylase (CYP7A1), ultimately 
playing a negative feedback regulatory role on bile acids.61 However, when ileal FXR is inhibited, GLP-1 gene 
expression and secretion can be increased to lower body glucose.62 Takeda G protein-coupled receptor 5(TGR5), 
a GPCRs, is another bile acid receptor that can increase energy expenditure in brown adipose tissue and muscle and 

Figure 1 How gastrointestinal microbiome regulates the human’s metabolism (Created by Figdraw).
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promote GLP-1 release from intestinal L cells to control glucose homeostasis.63 Pathak et al64 found that when intestinal 
FXR was activated, Acetatifactor and Bacteroides increased in the intestine, which led to the induction of TGR5 to 
stimulate GLP-1 secretion and improve hepatic glucose and insulin sensitivity. Bacteroides acidifaciens has been shown 
to regulate glucose metabolism, lipid metabolism and energy homeostasis through signaling factors such as FXR and 
TGR5.65,66

TMAO is one of GM products as well. It is produced from foods rich in phosphatidylcholine and L-carnitine by the 
effect of intestinal microbial enzymes to produce trimethylamine (TMA), which is subsequently oxidized in the liver by 
flavin monooxygenase (FMO).67 Currently, studies have shown that TMAO promotes atherosclerosis and there is 
a positive dose-dependent association between circulating TMAO levels and increased risk of diabetes.68,69 TMAO 
can also promote the release of pro-inflammatory factors such as IL-6 and TNF-α in vivo by activating NF-κB, increasing 
the possibility of vascular r-associated inflammation.70 A study conducted in patients with T2DM and Chronic Kidney 
Disease(CKD) found that TMAO levels in serum were significantly increased and that TMAO-producing bacteria such as 
Clostridium, Escherichia, Enterobacter, Acinetobacter, Proteus were significantly increased in proportion, while the LPS 
and Zonulin protein associated with intestinal permeability were also positively correlated with TMAO levels.15 

A Mendelian randomization by Jia et al71 showed that both T2DM and kidney disease increased TMAO levels 
in vivo. A case-control study by Shan et al72 found that higher plasma TMAO was associated with increased odds of 
T2DM in a linear dose-response fashion and was not modified by FMO polymorphism. However, the exact association 
between TMAO and T2DM is not defined yet and needs to be further investigated.

Fecal Microbiota Transplantation May Be Used in Treatment for T2DM
FMT is a method of transporting healthy donor fecal microbiota to the patient via nasogastric tube, colonoscope, enema, 
capsule, or a combination of these to restore a normal GM.21 FMT was first reported in 1958 and is now widely used in 
the treatment of recurrent Clostridium difficile infections.73–75 As FMT can significantly change the composition of GM 
in diseased patients in a short period of time and bring it closer to that of healthy donors, it can be extended to the 
treatment of metabolic diseases associated with changes in GM.76

Several studies have shown significant differences in the composition of the GM in T2DM patients. Chen77 found that 
there are large numbers of Bacteriodetes and Escherichia coli and low numbers of Clostridum and Roseburia and 
Fecalibacteria in gut dysbiosis in T2DM patients. Another study found a reduced bacterial diversity in mesenteric adipose 
tissue (MAT) of patients with T2DM, and a more pronounced deposition of Escherichia–Shigella and Serratia as well as 
a higher presence of Neisseriaceae than people without diabetes.78 Sedighi et al79 found a significantly higher level of 
Lactobacillus and a significantly lower level of Bifidobacterium in patients with T2DM. Prevotella and Fusobacterium 
groups also showed insignificantly higher levels in diabetic patients.79 Gurung et al4 concluded that the genera of 
Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2DM, 
while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2DM. In conclusion, 
there is a need to reshape the gut microbiota in T2DM therapy.

Currently, the number of animal and clinical experimental researches on FMT in metabolic diseases is gradually 
increasing. Ridaura et al80 found that co-housing mice carrying obese microbiota with mice carrying lean microbiota 
prevented weight gain and the development of obesity-associated metabolic phenotypes in the obese group of mice, which 
implied that diet-microbe interactions could be propagated across individuals. In addition, some evidence suggested that 
infusion of lean donor gastrointestinal microbiota into patients with metabolic syndrome could improve insulin sensitivity, 
and pre-treatment fecal microbiota characterization might predict treatment efficacy.22,81,82 Zhang et al83 suggested that 
a possible mechanism was that GM and metabolites altered the intestinal structure and improved insulin and leptin 
resistance through the JAK2 / IRS / Akt pathway, which had a significant improvement in the glycemic-lipid metabolic 
phenotype. Another study showed that the GM of the T2DM population was significantly different from that of the normal 
glucose-tolerant population, and transplanting the GM of the normal glucose-tolerant population into mice resulted in 
a significant decrease in fasting glucose, postprandial glucose, total cholesterol, triglyceride, and low-density lipoprotein 
(LDL) cholesterol levels, and an increase in high-density lipoprotein (HDL) cholesterol levels.84 This indicated that GM 
from normal population might have the potential to improve glycolipid metabolism in T2DM patients through FMT.84 Wu 
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et al85 conducted a randomized controlled prospective study suggested that FMT alone significantly improved clinical 
indicators such as HOMA-IR and BMI in T2DM, and the donor microbiota effectively colonized in T2DM. Microbial 
diversity and community were also significantly increased compared to baseline.85 Despite the fact that most studies 
showed a significant improvement in metabolism in the receptor group, some studies observed no statistically significant 
difference in metabolic indices after FMT treatment, which might suggest that FMT alone appeared to be insufficient to treat 
or prevent metabolic disorders in humans.23,86 We have summarized the results of current studies applying FMT to the 
treatment of patients with T2DM, as shown in Table 1.

For safety, several clinical studies on the safety of FMT have shown that no serious adverse reactions have occurred 
with FMT either by cryo-capsule or endoscopy.87,88 Occasionally, tolerable gastrointestinal reactions such as bloating, 
flatulence, belching and abdominal cramps, abdominal discomfort, irregular bowel movements and vomiting have been 
observed.23,89,90 Many of the side effects are mild, self-limiting, and gastrointestinal in nature.91 Very few cases have 
been reported of death after FMT, but they were mostly due to the patient’s comorbidities and not related to the actual 
FMT procedure itself.92 Therefore, the use of FMT for T2DM treatment is feasible, but the effect of FMT on GM needs 
to be further explored, and more clinical trials on how to apply FMT to T2DM are needed.

Problems Faced in the Application of FMT in the Treatment of T2DM
In the 2017 European FMT Conference Consensus, the basic requirements for FMT in C. difficile infection including 
indications, donor selection, fecal material preparation and transportation, and late clinical management were detailed.93 

However, the norms for the use of FMT in other diseases are still being explored. FMT may be influenced by a variety of 
factors. For receptor groups, FMT may be more effective in receptors characterized by specific intestinal dysbiosis, while 
some receptors may not be amenable to FMT. FMT may also be considered in combination with other therapies to 
improve efficacy. The frequency of FMT and the route of administration are also important. As for donors, the selection 
criteria of the donor, the treatment of fecal extracts, and the transportation and preservation of the extracts may also affect 
the efficacy. We will discuss the above issues.

Screening for Specific Receptors
In diabetic patients, the composition of GM is significantly changed. Some bacteria such as Blautia and Faecalibacterium 
have been shown to be potentially associated with T2DM, and Rikenellaceae and Anaerotruncus may also serve as potential 
biomarkers for selecting patients with T2DM for FMT.28,79,94–96 Several species of Lactobacillus are also strongly 
associated with T2DM, and the Lactobacillus spp correlate positively with fasting glucose and HbA1c levels.97–99 

Studies in different population have also shown that diabetic gut microbiota have lower concentrations of 

Table 1 Major Findings from the Studies of FMT in T2DM Patients

Patient Cohort Type Groups Main Observations References

Obese with T2DM A 24-week, double-blind, 

randomised controlled trial

FMT plus LSI, FMT alone, 

sham FMT plus LSI 

A decrease in TC, LDL-C and 

liver stiffness.

Ng SC et al, 202227

T2DM A 4-week, randomized, 

controlled, prospective study

Metformin, FMT, or FMT plus 

metformin

A decrease in BMI, PBG, HbA1c, 

and FBG. HOMA-HBCI and 
HOMA-IR was improved.

Wu Z et al, 202385

T2DM A 12-week, nonblinded, one- 
armed intervention trial

FMT A decrease in HbA1c, FBG and 
UA, while postprandial 

C-peptide increased.

Ding D et al, 202228

T2DM A 90-days, controlled open- 

label trial

Diet-only, diet-FMT A decrease in BMI, FBG, HbA1c, 

and SBP.

Su L et al, 202225

Abbreviations: LSI, lifestyle intervention; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; BMI, Body Mass Index; PBG, postprandial blood glucose; 
HbA1c, glycosylated hemoglobin type A1c; FBG, fasting blood glucose; HOMA-HBCI=20×FINS/(FBG-3.5); HOMA-IR=(FBG×FINS)/22.5; FINS, fasting insulin; UA, uric acid; 
SBP, systolic blood pressure.
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Roseburiaintestinalis and Faecalibacterium prausnitzii (both butyrate-producing bacteria), and higher levels of Lactobacillus 
gasseri, Streptococcus mutans and Clostridiales members.100 One study found that an increase in fecal concentrations of 
Lactobacillus gasseri, Streptococcus mutans, and Escherichia coli could predict the development of insulin resistance.14 In 
addition, the genera Ruminococcus, Fusobacterium and Blautia, which are positively correlated with T2DM, and even the 
reduction of butyrate producing bacteria can be considered as a specific biomarker.4 Therefore, we propose that the GM of 
T2DM patients can be pre-tested, focusing on the status of microbiome closely related to T2DM, and if dysbiosis of this 
microbiome is detected, it can be used as a reference condition for the use of FMT. We recommend that patients have at 
least one gut bacteria composition measure using the 16S rRNA technique before treatment. 16S rRNA Gene Sequencing 
can detect bacterial strains with specialized functions in the gut which may have a significant effect on metabolism and 
body homeostasis.101 The advantage of this technique is that species are identified by cross-referencing with a database of 
discovered bacterial species, and identifiable species are limited to the previously sequenced range.102 Accordingly, we can 
evaluate the therapeutic effect of FMT by determining if the GM of the recipient is colonized by bacteria from the donor 
group and whether the structure of the recipient’s GM is altered toward the donor composition.103

Contraindications for FMT
Not everyone is suitable for treatment with FMT. FMT is not recommended for those with autoimmune deficiency diseases, 
malignancies, acute complications of T2DM, uncontrolled infections, severe gastrointestinal symptoms such as diarrhea, 
and serious adverse reactions after receiving FMT. Some studies have shown that adverse events in FMT are mostly related 
to the severity of the disease itself, rather than FMT itself.104,105 Therefore, it is necessary to do some evaluation of the 
patient’s condition before deciding to perform FMT. The first step is to determine whether the patient has life-threatening 
acute complications such as ketoacidosis and hyperglycemic hyperosmolar state, etc. If acute complications are present, the 
complications will be treated as a priority and the treatment with FMT will be considered after the vital signs are stabilized. 
Secondly, the adverse effects of transplant flora on the patient should be considered. If the patient is in an abnormal immune 
status, such as suffering from autoimmune diseases, malignant tumors, or currently existing uncontrolled infection means 
that after performing FMT may face an increased risk of infection and is not suitable for FMT. This is primarily due to the 
weak immune system that increases the risk of pathogen transfer and subsequent infection from the donated samples.91 

Finally, the tolerance of the body to FMT should be determined. People who experience a serious gastrointestinal reactions 
or other adverse reactions after receiving FMT should stop immediately. Currently, the adverse effects regarding the use of 
FMT in patients with T2DM are unclear and further research is needed.

Selection of FMT Donors
The selection of FMT donor plays a decisive role in the efficacy of FMT. Some of the risks of FMT can be mitigated by 
rigorous donor screening.106 We think that we can refer to the donor screening criteria and process proposed in previous 
studies.93,107–110 In addition, Alang and Kelly report an example of a patient who became obese after FMT, so we focus 
on the requirement that the donor does not have T2DM or other metabolism-related diseases and has normal fasting 
glucose and insulin levels.107 A systematic screening of the donor should be conducted before the first four weeks of 
FMT, focusing on screening for infectious disease-related pathogens, fecal-associated pathogens, glucose tolerance tests, 
and islet function measurements. In order to improve the efficiency of FMT, we recommend performing selective FMT 
aimed at selective modulation based on the dysregulated fraction of the patient’s GM. A study which compared changes 
in the composition of the bacterial community before and after FMT showed that key genera required for recolonization 
and bacterial community resilience were present in donors for FMT and showed an increase in the abundance and 
diversity of this community after treatment.111 Donors with relatively abundant strains which is dysregulated in patients 
can be selected for FMT preferentially. It has been suggested that early intervention with antibiotics or diet should be 
used to improve clinical outcomes and the intervention option depends on the microbiota status of both donor and 
recipient.89 Besides, the concept about super fecal donors was first mentioned in a randomized controlled trial using FMT 
for ulcerative colitis (UC). One donor in this trial produced feces that were more effective than the control, while patients 
treated with feces from any of the other donors had similar results to the control.112 The super fecal donor is probably 
a desirable donor due to the particularly rich diversity of the microbiota, which can significantly enhance transplantation 
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after FMT.113 We suggest that a pre-experiment could be performed after collection of donor stool to see if a super donor 
is present. If the collected stool is not observed to be different from the placebo in the pre-experiment, then a different 
donor should be considered, and conversely, if a super stool donor is found to be available, further studies can be 
conducted on the stool, and it will help us to build a more complete stool donor pool.114

Collection, Handling, Transportation and Preservation of Manure in FMT
After searching several clinical trials on the collection and handling of feces, we think that donors should be required to 
collect feces into clean containers and transport them to the hospital immediately on the day of FMT. To avoid transplanting 
too few strains, not less than 30g of feces should be used each time, and fresh feces should be processed as soon as possible 
after collection, usually within 5–6 hours after defecation.76,93,112 This time has now been reduced to less than one hour in 
China through a fully automated system.115 Collected feces must be diluted and homogenized into a form that can be 
applied.109 The stool should be filtered using a stirrer or manually suspended in saline to avoid clogging the syringe and 
tubing. Considering the inconvenience of actual clinical operation and the inability of some patients to perform FMT in 
time, we need to store the processed stools appropriately. A common method of p reservation is to freeze the processed 
stool sample, and studies have shown that frozen stool does not affect the final FMT results.116–118 The samples can 
generally be added with 10% glycerol and stored at −80°C, and labeled well for use.86,117,119 On the day of preparing the 
stool for FMT, the stool suspension should be thawed in warm water (37°C) and transplanted within 5–6 hours, avoiding 
repeated thawing and freezing as much as possible.

Clinical Operation and Treatment Frequency of FMT
There are several routes to conduct FMT clinically, the typical ones are by endoscopic delivery, naso-intestinal tube 
delivery, retention enemas, the proximal colon by colonoscopy, and recently the capsule ingestion for FMT has been 
proposed.23,76,86,93,120–125 Currently, there is no clear consensus on the optimal route of use, and there is some variability 
in the populations targeted by each route. Considering the potential for injury during invasive procedures in patients with 
T2DM, we suggest that for patients who can eat on their own and do not have swallowing difficulties and choking risks, 
the convenient and non-invasive oral capsule route can be used for transplantation. The oral capsule method is easier and 
less expensive than other clinical operations, and is conducive to multiple repetitions of FMT. The only thing to be noted 
is that the capsules need to be refrigerated for preparation and storage.119 For other patients with T2DM who are unable 
to use oral capsules there is also the option of FMT by endoscopy or enema. Since the duration of a single FMT is short, 
we recommend combining exercise and diet therapy with FMT treatment, which can significantly improve the efficiency 
and duration of effect of FMT.25,27,113 For patients with T2DM who appear to have impaired fasting glucose or insulin 
resistance but have insignificant changes in GM at a relatively early stage, single FMT plus diet and exercise therapy can 
be used to restore islet function and increase beneficial bacteria in the intestine to prevent further progression of the 
disease. Patients in the terminal stage of T2DM without serious complications can be treated with FMT in multiple 
intervals to continuously promote the conversion of the patient’s GM to the normal microbiome, in order to slow down 
the progression of complications and improve the patient’s quality of life. The frequency of treatment for FMT needs to 
be followed up further to see if there are other potential risks.

Follow-Up Management of FMT
Close follow-up observation should generally be performed for at least 8 weeks after FMT, focusing on observing 
patients for significant adverse effects, mainly including abdominal pain, diarrhea, constipation, vomiting, belching, 
fever, and new infections.93 Diabetic patients should also closely monitor their fasting and postprandial blood glucose 
after FMT. A scale of adverse reactions should be set up for follow-up and promptly dealt with when intolerable adverse 
reactions occurred. We advise a systematic examination at every 4 weeks after FMT, including fecal routine, fecal 
bacterial determination, pancreatic function and glucose determination, BMI, and metabolism-related biochemical 
indexes, etc. A method of tracking strains in the report of Smillie et al126 can also be referred to observe the change 
of bacteria before and after FMT. 16S rRNA gene deep sequencing can also be applied to compare changes in bacteria 
before and after FMT.111 It is important to determine the transplantation efficiency of FMT and to observe any significant 
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changes in GM and any improvement in the metabolic status of the recipients. After a complete FMT treatment period, 
the above indicators should be repeated to assess the efficacy of FMT, focusing on the cross-sectional comparison of 
bacteria and metabolic indicators, and the doctors can decide whether to adjust the donor conditions for FMT based on 
the composition of the recipients’ bacteria. Therefore, to facilitate better follow-up, donor fecal samples should be kept 
frozen for at least two years.115

Of course, the use of FMT does not conflict with the conventional treatment of T2DM, and there should be 
a synergistic relationship between them. Diet and exercise are fundamental in the treatment of patients with T2DM, 
and as we previously described, therapies of diet control and exercise enhancement will interact with FMT to 
maintain the effects of FMT for a long time. Drug therapy is also an important part of T2DM. Metformin is 
a common drug for T2DM, and it has been found in clinical studies that the GM in patients treated with metformin 
is altered, mainly with an increase in the bacteria associated with butyrate and propionate production and an increase 
in the number of Escherichia coli.127,128 Besides metformin, sitagliptin phosphate was also found to show some 
transformation of GM after use, but this transformation did not conflict with the trend of altered bacteria after 
FMT.129 Roux-en-Y gastric bypass (RYGB) has also been shown to be effective in reversing insulin resistance, and 
using the people after RYGB as a donor modifies the recipient’s GM and reduces insulin resistance.24 Although no 
clinical studies have been conducted to compare the efficacy of FMT treatment with the conventional methods, we 
believe that FMT has the advantage of being more convenient and less invasive in comparison and can be treated as 
a more preferred modality.

Conclusion
In summary, GM is involved in the pathogenesis of T2DM in several ways and is one of the important targets in the 
treatment of T2DM. The indications for FMT have expanded from rCDI to other metabolic diseases such as obesity, 
metabolic syndrome, and T2DM. FMT has great potential to modulate the GM of T2DM patients as well as to improve 
glucolipid metabolism and reduce weight. In the future, FMT should be optimized and standardized for patients with 
T2DM, and its long-term safety should be further investigated.
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