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Microbial interactions play a key role in ecosystem functioning, with nutrient availability
as an important determinant. Although phylogenetically distant bacteria and fungi
commonly co-occur in nature, information on their cross-kingdom interactions under
unstable, extreme environments remains poor. Hence, the aims of this work were
to evaluate potential in vitro interactions among fungi and bacteria isolated from a
phosphorous oligotrophic aquatic system in the Cuatro Ciénegas Basin, Mexico, and
to test the nutrients-based shifts. We assessed growth changes in bacteria (Aeromonas
and Vibrio) and fungi (Coprinellus micaceus, Cladosporium sp., and Aspergillus niger)
on co-cultures in relation to monocultures under diverse nutrient scenarios on Petri
dishes. Interactions were explored using a network analysis, and a metabolome
profiling for specific taxa. We identified nutrient-dependent patterns, as beneficial
interactions dominated in low-nutrients media and antagonistic interactions dominated
in rich media. This suggests that cross-kingdom synergistic interactions might favor
microbial colonization and growth under low nutrient conditions, representing an
adaptive trait to oligotrophic environments. Moreover, our findings agree with the
stress-gradient hypothesis, since microbial interactions shifted from competition to
cooperation as environmental stress (expressed as low nutrients) increased. At a
functional level consistent differences were detected in the production of secondary
metabolites, agreeing with plate bioassays. Our results based on culture experiments,
provides evidence to understand the complexity of microbial dynamics and survival in
phosphorous-depleted environments.

Keywords: arid environment ecology, cooperation, microbial interactions, metabolome, nutrient availability,
stress-gradient hypothesis

INTRODUCTION

Current work has demonstrated a stunning array of social behaviors in microorganisms (Crespi,
2001; Lazdunski et al., 2004). Individuals communicate to perform number of activities such as
reproducing, dispersing and foraging (Williams et al., 2007), forming biofilms (Webb et al., 2003;
Parsek and Greenberg, 2005; Kolter and Greenberg, 2006), and producing chemical compounds

Abbreviations: CCB, Cuatro Ciénegas Basin; FBI, fungal–bacterial interactions.
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to reduce fitness of competitors (Cordero et al., 2012). Recently,
cooperation and communication have been proposed to play a
key role in modeling communities, with nutrient availability as
an important determinant (Gulis and Suberkropp, 2003; Schuster
et al., 2003; West et al., 2007).

Altogether, fungal-bacterial interactions (FBI) have long been
of interest to microbial ecologists, yet particular attention has
been paid to pathogenic taxa (e.g., Peleg et al., 2010). In these
microorganisms, crosstalk has been suggested to play a central
role, with secreted molecules (related to a number of mechanisms
such as antibiosis, metabolite exchange, signaling chemotaxis) as
key mediators of interactions (Nazir et al., 2009). Nonetheless,
despite their abundance in nature, little is known about the
underlying conditions shaping FBI in natural communities (Frey-
Klett et al., 2011; Johnston et al., 2016).

Various forms of physical FBI have been documented, ranging
from bacterial cell contact and aggregation around hyphae,
to organized biofilms on the surface of fungal structures
(Frey-Klett et al., 2011). On the one hand, miscellaneous
evidence suggests that fungal–bacterial antagonistic relationships
prevail in natural communities (Berg et al., 2005; Mille-
Lindblom et al., 2006), which perhaps represents a costly
trade-off between the production of secondary metabolites
and decomposition enzymes essential for growth (Purahong
et al., 2016). On the other hand, mutually beneficial or
synergistic FBI have been increasingly reported (reviewed in
Johnston et al., 2016). These interactions provide advantages
for both parts under adverse circumstances and play a key
role on microbial abundance and activity (Romaní et al.,
2006; de Boer and van der Wal, 2008; Scheublin et al., 2010;
Stopnisek et al., 2016), facilitating mobilization (Warmink
and van Elsas, 2009; Warmink et al., 2011; Kohlmeier et al.,
2005) and bacterial horizontal gene transfer (Berthold et al.,
2016).

Former works have demonstrated that stoichiometric
constraints can control FBI (Gulis and Suberkropp, 2003; Danger
et al., 2013). Eutrophication experiments have shed light on
the influence of nutrient concentrations (especially N and P)
on microbial activity and microbial interactions (Suberkropp
and Chauvet, 1995; Sridhar and Bärlocher, 2000; Grattan and
Suberkropp, 2001; Gulis and Suberkropp, 2003). However,
information on the interactions among fungal and bacterial taxa
naturally occurring in fluctuating oligotrophic systems remains
largely unknown.

The Churince hydrological system lies within a natural
protected area in the CCB, in the Chihuahuan Desert of north
central Mexico. This hydrologic system is characterized by high
calcium and sulfates, but remarkably low total phosphorous
concentrations hereafter referred as oligotrophy (Mckee et al.,
1990; Elser et al., 2005; Souza et al., 2006). This enclosed
evaporitic basin supports >70 endemic species of plants and
animals, as well as unique microbial communities, representing
a desert oasis of high biodiversity. Over the past 20 years these
aquatic systems have been severely threatened by agricultural
development and water extraction, raising serious concerns about
its effects on the integrity of this unique wetland (Souza et al.,
2006; Minckley and Jackson, 2008).

This unique aquatic system harbors a diverse transient fungal
community (Velez et al., 2016) co-occurring with highly adapted
bacteria that possess interaction-related genes associated to
type III and VI secretion system (Vázquez-Rosas-Landa et al.,
2017). Remarkably, prokaryotic diversity in this area has been
shaped by oligotrophic conditions (Bonilla-Rosso et al., 2012),
developing several strategies to cope with low concentration
of nutrients, in particular phosphorous (Peimbert et al., 2012;
Aguirre-von-Wobeser et al., 2014). Hence, bacterial interactions
in these oligotrophic aquatic systems are epitomized by a notable
resistance to antibiotics, leading to a fierce competition as
observed during in situ mesocosm experiments (Ponce-Soto
et al., 2015), in a bacterial guild (Pérez-Gutiérrez et al., 2013) and
computational modeling (Zapién-Campos et al., 2015). However,
information on FBI cross-kingdom interactions is still unknown.

In an ecological perspective, the stress-gradient hypothesis
suggests that synergistic interactions are more frequent in
stressful environments (Kawai and Tokeshi, 2007). However,
FBI information for varying nutrient scenarios remains lacking,
particularly for nutrient-depleted systems. Hence, we hypothesize
that in nutrient-poor conditions, in vitro synergistic cross-
kingdom interspecific interactions might dominate among
microorganisms isolated form an oligotrophic system, shifting
under different nutrient scenarios in agreement with the stress-
gradient hypothesis. Accordingly, the objectives of this study are:
(1) to describe in vitro interactions among cultivable facultative
freshwater fungi and bacteria from a freshwater system in the
CCB; (2) to determine whether potential interactions between
these microorganisms would be altered under several nutrient
scenarios.

MATERIALS AND METHODS

Sampling
The sampling was conducted in the Churince aquatic system,
CCB, in September 2015, during a severe drought event, where
approximately 70% of the water in the system was lost. Three
sampling sites where water remained were established (N 26◦ 50′
55.3′′, W 102◦ 08′ 34.6′′; N 26◦ 50′ 55.2′′, W 102◦ 08′ 34.8′′ N 26◦
50′ 55.1′′, W 102◦ 08′ 34.5′′). Three water samples were collected
at each site from the surface into sterile 50 mL Falcon R© tubes
(Becton Dickinson, Cowley, Oxford, United Kingdom) filled to
the brim, stored at 4◦C in a dark cooler containing ice, transferred
to the laboratory and processed within 12 h. Additionally, in situ
water temperature, salinity, connectivity, pH, dissolved oxygen,
and redox potential were measured by Hydrolab MiniSonde R©

5 Multiprobe SE (Hach, Loveland, CO, United States).

Isolation of Microorganisms
Microbes from water samples were isolated according to
the dilution plate method (Warcup, 1960), using: Potato
Dextrose Agar (PDA; Fluka Analytical, Sigma-Aldrich, St.
Louis, MO, United States) and Corn Meal Agar (CMA;
Fluka Analytical, Sigma-Aldrich, St. Louis, MO, United States)
for fungi, and Pseudomonas Isolation Agar (PIA; Difco
Laboratories, Sparks, MD, United States) for bacteria, following
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the manufacturer’s instructions. We chose these media based
on literature reports on the transient aquatic fungal diversity
(Velez et al., 2016), and the cultivable prokaryotic community
(Ponce-Soto et al., 2015).

Plates were prepared using 100 µl of each water sample at
10−1–10−6 dilutions in test tubes with sterilized distilled water.
Three replicates per dilution were plated, and incubated for 2
(bacteria) and 7 (fungi) days at 25◦C with a 12 h photoperiod
in case of fungi. The plates were examined daily, and each colony
that developed was subsequently transferred to PDA for fungi and
Luria Bertani agar (LB; Lennox L Agar, Invitrogen, Carlsbad, CA,
United States) for bacteria.

DNA Extraction, Amplification, and
Sequencing
Fungal mycelium was collected and DNA was isolated using the
technique described by Doyle and Doyle (1987). For bacteria,
500 µl cell suspensions (1.5–1.7 Optical Density, OD at 600 nm)
were prepared in MgSO4 10 mM, and DNA extractions were
conducted using a DNeasy blood and tissue kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. The DNA
extracts were stored at 4◦C until used, then stored at −70◦C
in an ultrafreezer. The fungal ITS rDNA region was amplified
and sequenced using primers ITS1 and ITS4 as previously
described (White et al., 1990). The bacterial 16S ribosomal
DNA region was amplified using primers 27F and 1492R
(Lane, 1991), using previously reported conditions (Pajares
et al., 2012). Sanger sequencing reactions were performed by
the High Throughput Genomics Center Facility, University of
Washington. Cultures and total DNA were deposited in the
culture collection of the Laboratorio de Evolución Molecular
y Experimental, Instituto de Ecología, Universidad Nacional
Autónoma de México, headed by VS and are available for research
upon request.

The quality assessment, as well as the assembly of the forward
and the reverse sequences was done using the finishing tool
Consed version 27.0 (Ewing and Green, 1998; Ewing et al.,
1998; Gordon et al., 2001). The ITS rDNA region assembled
sequences were compared to the GenBank Data Base through
a BLAST search1 in order to obtain at least one reference for
each isolate. Only hit sequences with a minimum cover of 94%
of the sequence length were considered, preferably including
accessions associated with voucher strains and from published
studies. Environmental samples in the database were excluded.
For defining taxonomic homology we used the following criteria:
sequence similarity cut-off value of 98–100% for presumed
species, 94–97% for genus level, and 80–93% for order level
(Millberg et al., 2015). For conflicting hits, the lowest common
rank level was used for taxonomic assignment (Peršoh et al.,
2010). The taxonomic assignment of the assembled bacterial 16S
rDNA sequences was done using the Classifier and Sequence
Match tools of the Ribosomal Database Project (Cole et al.,
2014). A list with the GenBank Data Base accession numbers of
the analyzed sequences and OTU designation are reported on
Supplementary Table S1.

1https://www.ncbi.nlm.nih.gov

Interaction Bioassays
In vitro fungal–bacterial interactions were determined on solid
plate co-cultures using a modified agar plate antagonism bioassay
(Reddi and Rao, 1971; Rothrock and Gottlieb, 1984; Crawford
et al., 1993; Chamberlain and Crawford, 1999). We prepared
bacterial cell suspensions (0.7 OD at 600 nm) in saline solution
(0.8% w/v NaCl) for the bioassays. For test plates (co-cultures),
3-days-old actively growing fungal plugs (approximately 5 mm
of diameter) and bacteria were co-inoculated 20 mm from
each other, whereas for controls (monocultures) each isolate
was inoculated individually. Experiments were tested on four
different agar media providing several nutrient scenarios.
Tested media were as follows: carbohydrates-rich PDA (Fluka
Analytical, Sigma-Aldrich, St. Louis, MO, United States), amino
peptides-rich LB (Lennox L Agar, Invitrogen, Carlsbad, CA,
United States), carbohydrates and amino peptides-rich CP
(containing 10 g yeast extract, 11 g D(+)-glucose, 10 g NaCl,
15 g agar, 1000 ml distilled water, pH 6.2), and low-nutrient
marine medium which resembles nutrient conditions in the
CCB (MM; containing 5 g peptone, 1 g yeast extract, 0.08 g
KBr, 0.034 g SrCl2, 0.022 g H3BO3, 0.024 NaF, 0.016 g
NH4NO3, 0.08 g Na2HPO4, 0.004 g Na2SiO3, 5 g NaCl,
2.2 g MgCl2, 1 g Na2SO4, 0.4 g CaCl2, 15 g agar, 1000 ml
distilled water). All the bioassays (both controls and test
plates) were run in triplicate for 7 days at 30◦C with a 12 h
photoperiod.

Photographic record of microbial interaction bioassays was
registered using a Nikon D3000 digital SLR camera (Nikon Inc.,
Tokyo, Japan) at 72 h, 120 h, and 168 h after inoculation, using
identical camera settings and light conditions. Colony growth
(area) and image analysis were conducted using the software
ImageJ 1.49v (Schneider et al., 2012). The growth rates of the
bacterial and fungal strains used in this study are reported in
Supplementary Table S2.

Scanning Electron Microscopy of the FBI
The fungal–bacterial interface was investigated for close
synergistic associations under low nutrients condition by
scanning electron microscopy (SEM). Based on observations
from the interaction bioassays on the consistent bacterial
accumulation toward fungal hyphae, for this experiment we
selected Aeromonas sp. 1 and Coprinellus micaceus. Sterilized
glass slides covered with a thin film (30 µl) of MM culture
medium were co-inoculated with bacterial cell suspensions
(6 µl as described for the interaction bioassays) and fungal
plugs (5 mm of diameter) with a 3 mm distance from each
other. We incubated inoculated glass slides in sterile moist
chambers (to prevent the drying up of the culture medium)
for 72 h at 30◦C with a 12 h photoperiod. After incubation,
glass slides were prepared for SEM examination using standard
methods. Samples were fixed in a 4% glutaraldehyde solution
for 4 h, rinsed once using distilled water and dehydrated in
ethanol by critical-point drying, coated with metallic gold and
examined in a Hitachi S-2460N scanning electron microscope
(Hitachi High-Technologies Corporation, Tokyo, Japan) at
15 kV.
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Statistical Analysis
Growth (area) was evaluated in each tested culture medium.
Interactions were determined by comparing microbial growth in
co-cultures to controls in each culture medium. The significance
of the effects of interactions between bacteria and fungi was
assessed using two-tailed student t-tests with unequal variance,
comparing the area of colonies growing in monoculture, or in
pairs of one fungi and one bacterial strain. The threshold for
significance was set at p-values of 0.05.

Network Analysis
Data obtained from the interaction bioassays between fungi
and bacteria were used to reconstruct an interaction network.
Interaction effects were tested in both ways, namely the effects
of fungi on bacteria, as well as the effects of bacteria on fungi.
When the presence of a strain resulted in significantly larger
colonies of the other over time, the interaction was considered an
induction of growth. On the other hand, when the presence of a
strain resulted in significantly smaller colonies of the counterpart,
the interaction was considered a repression. These inductions
and repressions were used as links between the nodes (strains)
of the interaction networks. Two networks were constructed for
each medium used, one for the effects of fungi on bacteria and
the other for the effects of bacteria on fungi. To determine the
strength of the interactions on the networks, they were graded
according to the number of significant differences in the time
series, as compared to controls (Table 1). This resulted in eight
networks, which were represented graphically using a custom
script in Matlab (The Mathworks, Natick, MA, United States).

To test whether the interactions on the individual networks
had significantly more inductions or repressions, an exact
Wilcoxon rank sum test was conducted on the interactions found
on each network. These analyses were conducted in R2 using the
function wilcox.exact, from the package exactRankTests, which
uses permutations to calculate p-values, and is well suited for
datasets with tied values. In these analyses, 500 permutations
were used; and a two-sided test was performed. Thus, the null
hypothesis was that the median of the interactions equalled 0.
A significant p-value (p < 0.05) for a network was interpreted
as an overall predominance of inductions or repressions in
that medium. To determine which was the case, the median
was calculated, considering a positive value a dominance of
inductions and a negative value a dominance of repressions.

To determine if the interaction networks obtained under
different media were significantly correlated with each other,
Quadratic Assignment Procedure (QAP) tests were performed.
These tests were conducted on each pair of media, for the
effects of fungi on bacteria and for the effects of bacteria
on fungi. The function qaptest from the R package sna was
used for this purpose. These tests yielded p-values for the
correlation between all the interactions in each pair of networks,
and a significance threshold of 0.05 was used. The sign of
the correlation indicated whether two significantly correlated
networks had similar (positive correlation) or dissimilar (negative
correlation) interactions. A lack of significance was interpreted as

2www.r-project.org

different, uncorrelated behavior of the interactions in a network
pair. The connectivity of the networks was calculated as the
percentage of observed interactions (inductions or repressions),
from all possible interactions given the number of nodes and the
directionality of the networks (20 possible interactions).

Physiological Response of Synergistic
Taxa to Co-cultivation
A chromatographic analysis was implemented to explore the
changes in secondary metabolites production on co-cultured
top synergistic taxa (from interaction bioassays) in relation to
monocultures. Experiments were performed on 2.8 L Fernbach
flask using 1.5 L of liquid MM medium by duplicates. Flasks were
inoculated with 20 agar plugs (1 cm2) of each microorganism
previously grown axenically in PDA (fungi) and LB (bacteria).
Liquid cultures were set on each flask as follows (for further
information on the taxonomical designation, see Results): (1)
monoculture of Coprinellus micaceus 1, (2) monoculture of
C. micaceus 2, (3) monoculture of Aeromonas sp. 1, (4)
monoculture of Aeromonas sp. 3, (5) co-culture of C. micaceus
1 and Aeromonas sp. 1, (6) co-culture of C. micaceus 1 and
Aeromonas sp. 3, (7) co-culture of C. micaceus 2 and Aeromonas
sp. 1, and (8) co-culture of C. micaceus 2 and Aeromonas
sp. 3. Standard conditions for culture were used: flasks were
kept at 37◦C with shaking at 150 rpm for 3 weeks for the
monocultures and 2 weeks for co-cultures (as nutrients are
consumed faster). Growth was stopped by adding 1 L of
EtOAc to each flask, followed by shaking at 150 rpm for
8 h. Cultures were then filtrated using a Büchner funnel and
the organic layers were dried under vacuum. Extracts were
dissolved in MeOH and analyzed by ultraperformance liquid
chromatography-photodiode array-high-resolution tandem high
resolution mass spectrometry (UPLC-PDA-HRMS-MS/MS).
The chemical profiles were dereplicated using UV-absorption
maxima, HRMS and MS/MS data against the Dictionary of
Natural Products (Dictionary of Natural Products Online 21.2;
Taylor and Francis Group: London, 2013) and MarinLite
(University of Canterbury, New Zealand) databases as described
by El-Elimat et al. (2013), targeting for fungal and bacterial small
molecules.

RESULTS

Overall, we obtained 15 prokaryotic and four fungal isolates
from water samples. So, we chose for the FBI assays five
abundant bacterial strains, which showed prevalent competitive
traits during a preliminary antagonism screening in LB, CP, MM,
and PDA (Moreno, 2017). These strains were identified with
16S rDNA as Aeromonas sp. 1, Aeromonas sp. 2, Aeromonas
sp. 3, Aeromonas sp. 4, and Vibrio sp. Whereas, fungi were
taxonomically assigned using ITS sequences as Cladosporium sp.,
C. micaceus 1 and 2, and Aspergillus niger.

Types and intensity of interactions under the tested nutrient
conditions varied among the tested microorganisms. The fungal
taxa Cladosporium sp. and A. niger presented higher growth
rates in carbohydrates and amino peptides conditions (CP).
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TABLE 1 | Grading of repressions and inductions of growth used to determine the strength of links on the interaction networks, where 1 means that the size of the
colony was significantly larger than the control, −1 means it was significantly smaller, and 0 means no significant change.

Day Grading Interpretation Day Grading Interpretation

3 5 7 3 5 7

1 1 1 6 Strong induction −1 −1 −1 −6 Strong inhibition

0 1 1 5 Induction 0 −1 −1 −5 Inhibition

0 0 1 4 Mild induction 0 0 −1 −4 Mild inhibition

1 0 1 4 Mild induction −1 0 −1 −4 Mild inhibition

1 1 0 3 Acceleration −1 −1 0 −3 Retardation

0 1 0 2 Acceleration 0 −1 0 −2 Retardation

1 0 0 1 Acceleration −1 0 0 −1 Retardation

Other combinations of significant changes were rarely observed, but not considered for links on the networks.

FIGURE 1 | Close synergistic fungal–bacterial physical interaction in
co-culture under oligotrophic conditions during interaction bioassays, where
bacteria (Aeromonas sp. 1) are growing and accumulating toward the
interface with the fungal hyphae (Coprinellus micaceus 1 in A,C, Aspergillus
niger in B,D), forming digitiform projections shadowing hyphal growth;
bars = 7 mm in A,B, 3.5 mm in C,D.

Lower growth rates in these fungal isolates were observed in
amino peptides-rich conditions (LB) and carbohydrates-rich
medium (PDA), respectively. Coprinellus micaceus 1 and 2
showed no significant growth differences in the four tested
media. Among bacterial isolates, two optimal nutrient conditions
were observed: amino peptides-rich conditions (LB) for most
isolates, and carbohydrates and amino peptides conditions (CP)
for Aeromonas sp. 2, with growth rates generally lowering under
carbohydrate-rich conditions (PDA; data available upon request).

Interactions Response in Co-culture
In general, we observed a close physical association among
fungal and bacterial isolates in low-nutrient conditions (MM),
with bacteria living in close proximity and colonizing hyphae
surfaces (Figures 1, 2). In carbohydrates-rich conditions (PDA),
mycelial growth was favorable, yet physical association was
not detected. On the other hand, under amino peptides-rich

FIGURE 2 | Scanning electron micrographs presenting details on close
synergistic fungal–bacterial physical interactions under oligotrophic conditions
during interaction bioassays. (A) Prokaryotic (Aeromonas sp. 1) accumulation
on the surface of fungal hyphae (Coprinellus micaceus 1). (B) Bacterial
production of fibrous adhesive material (arrow) and attachment to fungal
hyphae; bars = 10 µm in A, 5 µm in B.

conditions (LB), bacterial growth was enhanced and physical
association was found occasionally. Similarly, under intermediate
nutrient conditions containing both carbohydrates and amino
peptides (CP), moderate physical associations were detected
(Supplementary Figure S1 and Supplementary Table S3).

Network Analysis
Interaction networks were constructed for the different media
tested. The interactions were represented separately for effects
of fungi toward bacteria (Figure 3), and for the effects of
bacteria toward fungi (Figure 4). All the networks had high
connectivity, ranging from 55% to 70% for the effects of fungi
on bacteria and from 35% to 70% for the effects of bacteria on
fungi (Supplementary Table S4). Several significant dominances
toward either inhibitions or repressions were observed in the
interaction networks (Exact Wilcoxon Sum Rank Test; p < 0.05).
In CP, growth inhibitions from fungi to bacteria were significantly
more frequently observed compared to favorable interactions
(Figure 3A and Table 2). In MM, almost all the interactions
from fungi toward bacteria were beneficial to the later (Figure 3B
and Table 2), whereas in rich nutrient medium PDA inhibitions
dominated over growth enhancements (Figure 3C and Table 2).
In LB, there was no significant tendency toward inhibitions of
repressions of fungi toward bacteria (Figure 3D and Table 2).
Interestingly, all fungi participated in both inductions and
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FIGURE 3 | Interaction networks indicating the effects of fungi on bacterial colony growth on (A) CP medium, (B) MM medium, (C) PDA medium, and (D) LB
medium. Circles on the top row represent fungal isolates, while circles on the bottom represent bacterial strains. Blue lines represent interactions where fungi
enhanced the growth of bacteria (induction), while red lines represent interactions where fungi inhibited the growth of bacteria (repression). The width of the line
denotes the strength of the observed interactions (see section “Materials and Methods”). Strains abbreviations are as follows: F1: Coprinellus micaceus 1; F2:
Cladosporium sp.; F3: Coprinellus micaceus 2; F4: Aspergillus niger; B1: Aeromonas sp. 1; B2: Vibrio sp.; B3: Aeromonas sp. 2; B4: Aeromonas sp. 3; B5:
Aeromonas sp. 4.

FIGURE 4 | Interaction networks indicating the effects of bacteria on fungal colony growth on (A) CP medium, (B) MM medium, (C) PDA medium, and (D) LB
medium. Circles on the top row represent bacterial strains, while circles on the bottom represent fungal isolates. Blue lines represent interactions where bacteria
enhanced the growth of fungi (induction), while red lines represent interactions where bacteria inhibited the growth of fungi (repression). The width of the line denotes
the strength of the observed interactions (see section “Materials and Methods”). Strains abbreviations are as follows: F1: Coprinellus micaceus 1; F2: Cladosporium
sp.; F3: Coprinellus micaceus 2; F4: Aspergillus niger; B1: Aeromonas sp. 1; B2: Vibrio sp.; B3: Aeromonas sp. 2; B4: Aeromonas sp. 3; B5: Aeromonas sp. 4.

repressions of bacteria, depending on the medium and the
particular bacterial strain.

In relation to the effects of bacteria on fungi, in CP no
significant enrichment of inductions or repressions was observed

(Figure 4B and Table 2), while in MM media most interactions
benefited fungal growth (Figure 4A and Table 2), as happened
in the effects of fungi toward bacteria in this media. Antagonistic
interactions dominated in PDA (Figure 4C and Table 2), while
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TABLE 2 | Exact Wilcoxon Sum Rank test results, where values are medians of all
interactions on the network, p-values are given in parentheses.

Interactions from fungi toward bacteria

CP −5 (0.0078)∗

LB −4 (0.0801)

MM 5 (0.0219)∗

PDA −5 (2e-04)∗

Interactions from bacteria toward fungi

CP 2 (0.5312)

LB −1 (0.5574)

MM 3 (0.002)∗

PDA −2 (0.0256)∗

∗Significant values (p < 0.05).

TABLE 3 | Comparison of matrices using Quadratic Assignment Procedure.

LB MM PDA

CP 0.27 (0.0696) −0.38 (0.0172)∗ 0.32 (0.0368)∗

LB 0.12 (0.2482) 0.43 (0.0072)∗

MM −0.09 (0.2964)

CP −0.08 (0.3404) 0.29 (0.0578) 0.07 (0.342)

LB −0.66 (2e-04)∗ 0.36 (0.0508)

MM −0.28 (0.0854)

Where values are product-moment correlations between the adjacency matrices
of the network pairs, p-values are shown in parentheses. ∗Significant values
(p < 0.05).

no significance was found in LB (Figure 4D and Table 2).
All bacteria participated in inductions and repressions of fungi,
according to the pattern observed with fungi.

When comparing the interaction networks obtained in
different media, significant correlations were obtained for some
media pairs (Table 3). In networks representing the effects
of fungi toward bacteria, a significant positive correlation was
obtained in both rich media, PDA and LB, indicating that
similar interaction patterns are obtained for these rich media,
although the dominance of repression was more apparent in PDA
(Table 2). A positive correlation was also found between PDA and
CP in effects of fungi on bacterial growth networks. Interestingly,
the networks for LB and CP showed a negative correlation in
these interactions. As for the effects of bacteria on fungi, a strong
negative correlation was observed between MM and LB (Table 3).

Metabolic Profiling From Co-cultures
and Monocultures
For the monocultures, we observed similar UPLC-PDA-HRMS-
MS/MS profiles between fungal isolates C. micaceus 1 and
C. micaceus 2, as well as between bacterial cultures Aeromonas sp.
1 and Aeromonas sp. 3 (Supplementary Figure S2), resembling
their phylogenetic placement at the same genus level. However,
the amounts of organic extract produced by C. micaceus 2 and
Aeromonas sp. 1 were higher when comparing to C. micaceus
1 and Aeromonas sp. 3. Therefore, we focused our analysis
in the co-culture of these two taxa, where two compounds at

retention times (tR) of 4.53 and 5.29 min were enhanced from
the rest of the compounds in the chromatogram (Figure 5).
The comparison of the UV profiles and HRMS-MS/MS data of
these two compounds against the DNP and MarinLite databases
showed no hits, perhaps as a result of chemical information
on these particular taxa. Therefore, scale-up studies of this co-
culture and MS-guided isolation are needed in order to elucidate
the structures of the induced compounds.

DISCUSSION

Former work on the nutritional requirements of A. niger account
for growth increases when iron, zinc, manganese and copper
are incorporated into the medium, representing irreplaceable
components for the metabolism and sporulation of this fungus
(Bortels, 1927, 1929; Roberg, 1928, 1931; Steinberg, 1935).
Additionally, Abdel-Rahim and Arbab (1985) reported that
carbohydrates (glucose) and nitrogenous compounds promote
conidia germination. In this sense, our experimental conditions
provided this fungus with essential elements for growth and
sporulation, especially on the carbohydrates and amino peptides-
rich CP medium (where the best growth of monocultures was
observed), yet optimum development was observed on all the
tested culture media. Furthermore, for Cladosporium members
literature indicates that these fungi are able to use several
carbohydrate sources including fructose, glucose, mannose, and
sucrose (Simola and Lönnroth, 1979). Similarly, C. micaceus
isolates have been typically cultured on malt extract agar, showing
vigorous growth and fructification (Badcock, 1943), yet adequate
growth has also been achieved on a number of culture media
(Routien, 1940). Overall, all of our tested fungal taxa have been
demonstrated to adapt to various nutrient conditions, possessing
the ability to exploit available nutrient sources. Examples include,
gluconic acid lactone (Lakshminarayana et al., 1969), sorbitol
(Desai et al., 1969), glucose, mannose, fructose, and even
hydrocarbons as sole carbon sources (Walker and Cooney, 1973;
Simola and Lönnroth, 1979).

Whereas, information on the nutritional requirements for the
tested bacteria indicate no particular trends, as the utilization
of nutrients differs greatly between species and even strains.
For example, Abbott et al. (2003) revealed that only 14%
of biochemical tests in Aeromonas spp. yielded to uniform
results, concluding that the fermentation of carbohydrates is
a species-specific trait. Besides, these prokaryotes can utilize
a wide range of low molecular-weight compounds, including
amino acids, carbohydrates and long-chain fatty acids at a
concentration of a few micrograms per liter (van der Kooij,
1991). Correspondingly, individual nutrimental necessities such
as purines (e.g., hypoxanthine) have been recognized (Bhaskaran
and Rowley, 1956) for some Vibrio spp., yet generally these
bacteria are able to grow on simple inorganic medium with
ammonium ions as the sole source of nitrogen. Moreover,
it seems that sodium, and in some cases magnesium and
calcium (salt requirement), represents a key factor for growth
for these bacteria (Holt et al., 1994). Our results indicating
that in monoculture, amino peptides-rich LB medium provided
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FIGURE 5 | Metabolome UPLC-MS profiles of the EtOAc extracts for potentially synergistic microbes, showing a differential production of metabolites on co-culture
in relation to monocultures (arrows). (A) Co-culture of Coprinellus micaceus 2 and Aeromonas sp. 1; (B) Coprinellus micaceus 2 monoculture; and (C) Aeromonas
sp. 1 monoculture. UV (top) and HRMS (bottom) spectra of compounds at (D) tR 4.53 (m/z 355.2603 [M – H]− calc for 355.2602 C19H35N2O4, 1mi = +0.2 ppm)
and (E) 5.29 (m/z 325.1845 [M – H]− calc for 325.1841 C10H25N6O6, 1mi = +1.2 ppm) minutes in the co-culture.

optimal nutrient conditions for our bacterial isolates agree with
previously reported nutrimental needs. Contrastingly in co-
culture, this trend changed suggesting an enhanced bacterial
growth under oligotrophic conditions, perhaps as a result of
dual culture with a fungus (occupying a distinct ecological
niche).

Microbial cross-kingdom interactions fulfill an important role
of nutrients cycling in aquatic systems (Das et al., 2007; Worden
et al., 2015). However, most of the current knowledge is derived

from a handful of species inhabiting few ecosystems. So, the
exploration of novel autochthonous microbial models is needed
in order to characterize their physiological capacities in relation
to different physicochemical variables and their interspecific
interactions in both, laboratory and natural environments
(Grossart and Rojas-Jimenez, 2016). Despite our in vitro culture-
based FBI data may not necessarily mimic in situ interactions, it
contributes to the knowledge on the potential synergistic cross-
kingdom interactions among fungi and bacteria isolated from an
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oligotrophic freshwater ecosystem and their response to shifting
nutrient scenarios.

Microorganisms identify and interact with neighboring
species in a complex, ever-changing environment. Consequently,
polymicrobial interactions involve numerous mechanisms and
molecules, which remain poorly understood (Braga et al., 2016).
For instance, recent work has demonstrated that close, physical
interaction between A. nidulans and Streptomyces rapamycinicus
activates fungal secondary metabolite genes related to the
production of aromatic polyketides (Schroeckh et al., 2009),
resembling our results on the production of some secondary
metabolites in co-culture that were not observed under axenic
cultures.

de Boer et al. (2005) discussed the opportunity for bacteria to
establish in new niches based on the consumption of substrates
derived from fungal metabolism. Exudation of soluble fungal
storage sugars (e.g., trehalose), polyols (e.g., mannitol; Danell
et al., 1993; Frey et al., 1997; Rangel-Castro et al., 2002), organic
acids, and antibiotics (Sidorova and Velikanov, 2000) has been
suggested as a mechanism for selection of fungal-associated
bacteria (Dutton and Evans, 1996; Landeweert et al., 2001). Our
results suggest no significant differences in the interactions of
basidiomycetes and ascomycetes with bacteria, agreeing with
reports on non-specific bacterial adherence to fungal hyphae
and spores (Bianciotto et al., 1996; Jana et al., 2000; Xavier
and Germida, 2003). This may indicate that these isolates
(Aeromonas and Vibrio from the CCB) are equally susceptible
to the exudates from the tested fungal taxa, perhaps an adaptive
trait.

Since most studies exploring fungal surfaces have been
conducted for agricultural and economically important
fungi (e.g., mycorrhiza, pathogens, and edible taxa) and
their associated bacteria (Pseudomonas, Burkholderia, and
Bacillus, thought to be the principal inhabitants of fungal
surfaces; revised by de Boer et al., 2005), information
on the mechanisms underpinning these interactions is
largely restricted. Consequently, almost all research efforts
aiming to elucidate the relationship between fungi and their
associated bacteria, during close physical interactions have
been limited to these groups (de Boer et al., 2005). To our
knowledge, our work contributes with the first evaluation
of cross-kingdom interactions among Ascomycota (A. niger
and Cladosporium sp.), Basidiomycota (C. micaceus),
and bacteria (Aeromonas and Vibrio) isolated from an
oligotrophic ecosystem, documenting the close physical
in vitro association among these taxa under oligotrophic
conditions.

We provide evidence on the in vitro synergistic interaction
among Coprinellus and Aeromonas members, which constitute
an important portion of the transient aquatic fungal communities
in the CCB. Although Coprinellus members have been typically
regarded as terrestrial macrofungi, further records from
freshwater systems (Duarte et al., 2015), arid soils (Romero-
Olivares et al., 2013), and marine sponges (Paz et al., 2010;
Passarini et al., 2015), suggest a broader ecological niche than the
traditionally considered. In addition, as the studied freshwater
spring represents an open system, the input of allochthonous

material such as plant remains (colonized by terrestrial
microorganisms) and inocula (spores can be easily transported)
is plausible (e.g., Kodsueb et al., 2016). Despite we ignore the
source (mycelia or spores) of our Coprinellus isolates, it is feasible
that spores were present in water and waited for the appropriate
conditions to germinate, which might resemble desiccation
conditions in the margin of the studied freshwater system. In
this case, theory predicts that these transient taxa might undergo
selection processes after a considerable time lag, acquiring the
capacity to successfully proliferate under fluctuating conditions,
transiting from terrestrial to aquatic systems. We speculate that
these selection processes perhaps include the establishment of
cross-kingdom synergistic interactions with further members
of the microbial community. Therefore, we suggest future work
should focus on the detailed in situ evaluation of the interactions
between bacteria (Aeromonas) and fungi (e.g., Coprinellus)
to evaluate the ecological significance of aquatic transient
organisms in dissection springs on arid and nutrient-poor
ecosystems.

Despite synergistic interactions have been unveiled for
terrestrial systems (Kohlmeier et al., 2005; Scheublin et al.,
2010; Warmink et al., 2011; Stopnisek et al., 2016), vast
evidence indicates that freshwater FBI might be ruled by
antagonistic mechanisms (Gulis and Stephanovich, 1999;
Wohl and McArthur, 2001; Gulis and Suberkropp, 2003;
Mille-Lindblom and Tranvik, 2003). Our results document
the potential cross-kingdom beneficial interactions among
the isolated aquatic bacteria and aquatic transient fungi in
low nutrient conditions. Under this condition, we speculate
that temporal heterogeneity of the studied oligotrophic
desiccation spring might enhance species exchange with
surrounding terrestrial system. Thus, considering fungal
high adaptability and exoenzymatic versatility (Das et al.,
2007; Danger et al., 2016), we suggest the establishment of
temporarily beneficial cross-kingdom interactions to cope
with nutrient stress, shifting in accordance to environmental
conditions is feasible. However, more evidence is clearly
required, representing an area worthy to further examine in the
future.

In addition, the observed close fungal–bacterial proximity
under low nutrients conditions (Figures 1, 2) resembled previous
reports on mycophagy. This term describes the ability of bacteria
to grow at the expense of their fungal counterpart having
no detrimental effect (de Boer et al., 2005; Fritsche et al.,
2006). During this interaction, bacterial cells colonize hyphal
surfaces, improving their ecological performance involving no
detrimental effect to the fungus (Bengtsson, 1992; Lee et al.,
2000; Leveau and Preston, 2008). Our findings resemble previous
observations revealing the presence of bacteria on the surfaces
of fungal hyphae spores, mycorrhizal roots, and fruiting bodies
(Katznelson et al., 1962; Neal et al., 1964; Oswald and Ferchau,
1968; Schelkle et al., 1996; Nurmiaho-Lassila et al., 1997;
Andrade et al., 1998; Timonen et al., 1998; Mogge et al.,
2000; Mansfeld-Giese et al., 2002). Nonetheless, panoply of
both experimental and ecological designs could be used in
the future in order to dissect the particular cost benefit trade
off of the interaction. Nevertheless, regrettably the Churince

Frontiers in Microbiology | www.frontiersin.org 9 August 2018 | Volume 9 | Article 1755

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01755 August 6, 2018 Time: 11:56 # 10

Velez et al. Nutrient Mediated Fungal–Bacterial Interactions

system, where these players were isolated, is under imminent
danger as the aquifer has been almost depleted as a result
of over-exploitation in 2017, jeopardizing the possibility of
in situ work in the close future; thus urgent water policy
changes, and integrative conservation efforts are needed in this
region.

Differences in the composition of the fungal-associated
microbial community have been linked to the ability of the
bacterial counterpart to use nutrients in fungal exudates, and
to tolerate secondary metabolites (de Boer et al., 2005; Frey-
Klett and Garbaye, 2005; Roesti et al., 2005). Under oligotrophic
conditions we observed an enhanced bacterial growth, in
contrast to PDA, a carbohydrate-rich medium where bacterial
growth was consistently reduced. Although this finding might
be associated to a number of causes, such as an increased
fungal antibiotics production (Bu’lock, 1975), or chemical
composition of the media, among others; it also corroborates
our assumptions on co-adaptive cross-kingdom interactions
under oligotrophic conditions, shifting in accordance to nutrient
conditions.

A detailed understanding of ecosystem functioning remains
as a difficult task due to the complexity of multiple and
often multifactorial ecological interactions (Chapin et al.,
2011). These interactions may involve genetic characteristics
(different genotypes will typically compete; Mitri and Foster,
2013), signaling (e.g., quorum sensing; Abisado et al., 2018),
physiochemical changes, metabolite exchange, metabolite
conversion, chemotaxis and genetic exchange (Braga et al., 2016).
Although these factors remain unknown for most systems,
some key elements have been identified for model communities
(reviewed in Santoyo et al., 2017 in soil). These include:
potassium, carbon, calcium (Degens et al., 2000; Drenovsky et al.,
2004; Ahmed et al., 2008; Stomeo et al., 2012), nitrogen (Suding
et al., 2005), pH (Fierer and Jackson, 2006; Rousk et al., 2010;
Andrew et al., 2012), dissolved organic matter (Cleveland et al.,
2007), anthropogenic pressures such as agricultural practices
disturbances (Liu et al., 2000), and temperature (Mosier et al.,
2015). Considering this wide arrange of environmental factors
modeling microbial associations, inferences on the interactions
between our microbial strains in the natural environment should
be taken with care, as our experimental conditions (temperatures,
pH, light regimens, etc.) did not mimic natural environmental
conditions at the CCB.

The network analysis revealed in vitro strong two-way
ecological links between the assessed bacteria and fungi, which
could support the cross-feeding hypothesis as an adaptive
trait to endure oligotrophic environments. In accordance with
previous work (de Boer et al., 2003, 2007) nutrient-based
microbial interactions were detected, as in low-nutrients medium
(MM) almost all the interactions were beneficial (inductions),
whereas in rich nutrients media (PDA and LB), antagonistic
interactions (repressions) dominated (although only significantly
in PDA). Furthermore, under an in-between scenario (CP
medium, containing amino acids, peptides and carbohydrates),
inhibitions from fungi to bacteria were more common than
inductions. These results suggest that nutrients variations might
trigger changes in cross-kingdom microbial interactions that may

represent a key variable modeling microbial communities in
fluctuating environments.

Resource availability influences community structure (Tilman
et al., 1981; Smith, 1993; Brauer et al., 2012), and thus
mutually beneficial interactions may be relevant in structuring
communities in stressful environments by changing resource
availability for interacting species (Bertness and Callaway, 1994;
Brooker and Callaghan, 1998; Kawai and Tokeshi, 2007; Daleo
and Iribarne, 2009). In accordance to these investigations, our
results also agree with the stress-gradient hypothesis, as in vitro
microbial interactions shifted from competition to cooperation as
environmental stress (nutrient availability) increased. Moreover,
the observed nutrient-dependent FBI resemble recent studies
demonstrating bacterial shifting interactions in response to
resource conditions (Rivett et al., 2016).

Fungi and bacteria produce a complex combination of
low and high molecular weight metabolites such as terpenes,
polyketides, alkaloids, nonribosomal peptides, fatty acids, etc.
(Griffiths et al., 1994; de Boer et al., 2005; Medeiros et al., 2006),
and a wide variety of iron-chelating siderophores, which may
be assimilated by other microorganisms in the communities
(Winkelmann, 2007). Therefore, the small molecules profiling
of mixed liquid cultures represents a useful tool to assess
potential microbial interactions mimicking natural environments
(Netzker et al., 2015). We found that bacteria and fungi isolated
from an oligotrophic environment produce in co-culture some
secondary metabolites that were not observed under axenic
liquid cultures. These metabolites could be the result of the
induction of silent secondary metabolite gene clusters (epigenetic
induction), associated with chemical communication/inhibition
signals between the species. Since an exact identification was not
possible due to the small amounts of compound produced in co-
culture, and also to the lack of chemical data on these particular
genus, further chemical investigations of large scale mixed
liquid cultures are recommended to characterize these molecules.
Moreover, the chemical motifs of the induced metabolites and
specific biosynthetic gene cluster studies are further required to
establish the function of these compounds.

CONCLUSION

Determining the effects of biotic and abiotic factors is highly
relevant to understanding how an ecosystem works as a
whole. Several elements such as nutrients play a key role
modeling microbial diversity; still poor information is available
for microbial communities in extreme ecosystems. Besides,
disentangling the ecological interactions between microbial
species, under fluctuating conditions is central to understanding
how these organisms respond to perturbations. Here, we present
the first in vitro evaluation of cross-kingdom interactions
among fungi and bacteria isolated from an ancient oligotrophic
freshwater system, testing several nutrient scenarios. Although
the in vitro evaluation of these mechanisms may be limited
by laboratory conditions, it provides important insights into
ecosystem processes and energy pathways. Our results evidenced
the strong effect of nutrient variations on the interactions
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among some members of the microbial community isolated from
an oligotrophic desert oasis, which should be considered for
conservation efforts of the CCB aquatic systems in face of not
only aquifer depletion, but also the potential input of nutrients
from human activities, and the over-exploitation of the deep
aquifer (resulting in enduring drought phenomena).

Moreover, we broadened traditional perspectives on the
close physical interaction between agricultural and economically
important fungi such as mycorrhiza and pathogens, and their
associated bacteria (typically Pseudomonas, Burkholderia, and
Bacillus), evidencing the possibility of this cross-kingdom
interactions among fungal taxa such as A. niger, Cladosporium
sp., C. micaceus and bacterial strains such as Aeromonas and
Vibrio isolated from a nutrient-poor ecosystem. Nevertheless,
there is still a lot to understand about FBI and the factors
modeling them. The development and adaptation of tools
and methods including in vitro and in situ models are still
highly required to achieve a better understanding of microbial
interactions, particularly for endangered unique ecosystems
(Braga et al., 2016).
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