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Big Data (BD) and Big Data Analytics (BDA) 
are changing our lives significantly. Most of 
us use Google and Amazon, and it is difficult 
not to notice how well they can predict our 
interests, preferences, etcetera. To be able to 
do so, Google and Amazon needed several 
things: huge amounts of data, BD and new 
tools including BDA, Artificial Intelligence 
(AI) and Machine Learning (ML). These 
tools are capable of processing and analyzing 
mountains of data to generate correlations 
and make predictions. The BD approach 
thus allows Google, Amazon and others to 
find correlations, make predictions, and 
generate new information and knowledge.

One of the most clear beneficiary of using 
BD and BDA approaches would be the 
‘most complex disease of the most complex 

organ’, traumatic brain injury (TBI). TBI 
is when ‘physics meets biology’, in other 
words, when physical forces suddenly disrupt 
the structural integrity of the brain leading 
to functional impairments. Approximately 
70% of TBI cases are caused by sudden 
acceleration/deceleration of the head result-
ing from falls, traffic and sport accidents, 
among others [1]. Over 85% of TBIs are mild, 
also called concussion, and result in large part 
from playing contact sports [2]. The physical 
forces of impact can be measured, recorded 
and analyzed in the context of the biologi-
cal response. Using the BD approach, a TBI 
‘dosimetry’ can be established that, in anal-
ogy with ionizing radiation, can assess injury 
severity, guide therapeutic interventions and 
provide predictions. In the case of severe 
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TBI, modern neurointensive care monitors dozens of 
physiological and biochemical parameters, thereby 
generating huge amounts of real-time data. Analyz-
ing such data in the context of outcomes using the BD 
approach can significantly assist in making therapeu-
tic decisions. Using the BD approach in experimental 
TBI research would help to close the substantial gap 
between preclinical and clinical studies by collecting 
and analyzing the physical data in the context of bio-
logical response. The third critically important appli-
cation of the BD approach is to ‘mine’ existing, legacy 
data published in the scientific literature. This latter 
task is probably even more challenging than design-
ing and performing experiments and studies with set 
parameters in mind such as Common Data Elements 
(CDEs) and BD approaches.

Despite enormous scientific and monetary invest-
ment during the last several decades to identify evi-
dence-based, specific, efficient pharmaco- (or other) 
therapy, there is still no treatment to mitigate the acute 
and the long-term consequences of TBI. These facts 
clearly show that the TBI field has reached its ‘strate-
gic inflection point’ and that repeating the same will 
not result in new and much needed information and 
knowledge. The BD approach offers solutions to many 
of TBI’s most vexing issues.

In this review, we will briefly outline the potential 
of BD and BDA, and the possible benefits and main 
challenges of using these approaches in experimental 
and clinical TBI.

Big Data
BD is a term for extremely large datasets that are so 
large and complex that they cannot be analyzed using 
traditional data processing applications [3–15]. The 
analysis of BD requires specialized BDA, AI and ML 
that can reveal patterns, trends, associations, cor-
relations and interactions and make predictions. BD 
in another definition is “any voluminous amount of 
structured, semi-structured or unstructured data that 
have the potential to be mined for information” [3]. BD 
is characterized by the three V’s: Volume, Variety and 
Velocity. In addition, BD also has Variability, Veracity 
and Complexity.

Volume is the most important characteristic of BD. 
The volume of data is growing exponentially. For 
example, in 2009 the world’s total data volume was 
approximately 1.5 zettabytes (1 zettabyte is 1000 tera-
bytes or 1018 gigabytes). In 2015, the data volume grew 
to 8 zettabytes and it is predicted that by 2020 it will 
be 44 zettabytes [16]. Biomedical data have contributed 
substantially to this overall growth in volume due to 
data-rich technologies such as various imaging modali-
ties and the various omics (genomics, proteomics, etc.).

Variety or diversity of data is another characteristic 
as well as the main challenge of BD. The overwhelm-
ing majority of data including data in the biomedical 
literature is in an unstructured format containing text, 
images, multimedia, among others. Scientific articles 
are typical examples of unstructured data in that they 
do not have a predefined data model, as they are not 
organized in a predefined manner. They include raw 
text, images, videos, physiological and pathological 
data, among others. Such unstructured data are very 
difficult to understand using traditional programs due 
to irregularities and ambiguities. A combination of text 
mining, image, nucleotide and/or amino acid sequence 
analyses and other preprocessing steps are needed to 
give structure to this raw data and to extract the infor-
mation or generate quantitative signature vectors. The 
most challenging is text preprocessing, requiring statis-
tical parsing, computational linguistics and/or ML [17] 
to generate numerical summaries.

Velocity data have temporal dimension, are data 
in motion and is the third main characteristic of BD. 
Velocity means that the data collected can vary from 
a single batch/sampling, for example, the selected 
experimental end point through periodic sampling, 
in other words, multiple time points, through near 
real-time collection to real-time streaming data. An 
example of near real-time or real-time data collection 
is neuro intensive care monitoring. The importance of 
such continuous data collection is obvious as it can 
provide the clinicians with trends, such as improv-
ing or worsening conditions over time. As the costs of 
collecting and storing data are getting less expensive, 
near real-time or real-time data streaming is becoming 
increasingly common.

In addition, BD also has Variability, Veracity and 
Complexity. Variability differs from variety in that 
it refers to the absence of uniformity. For example, 
a parameter that is expected to be the same can vary 
due to human or machine error. Variability can have 
substantial impacts on the reliability of data, in other 
words, how representative each data point really is, 
which in turn will affect data homogeneity. Veracity 
means that the data are uneven in quality, incomplete, 
ambiguous or deceptive. Filtering out inaccurate data 
is a serious challenge as it can lead to the classic ‘gar-
bage in, garbage out’ scenario. Complexity is generally 
defined as many different components that interact 
with each other in multiple ways causing a higher order 
organization that is greater than the sum of its parts.

Incompleteness of data represents an especially seri-
ous challenge of BD approaches in biomedical research, 
including TBI research. Publications represent only a 
fraction of total data collected and accumulated during 
experimental TBI work or clinical studies, and these 
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data are ‘curated’. According to conservative estimates, 
some 50% of the data from experimental and or clini-
cal TBI research is never published for various reasons 
including failure of the experimental data to support 
the hypothesis. In addition to the unpublished data, 
which may be available in digital format, large propor-
tions of ‘dark data’ contain laboratory notes, clinical 
notes, animal care records, among others. These data 
may reside on paper, analog media and/or on per-
sonal hard drives, and are thus called the ‘file-drawer 
phenomenon’ [8].

Although it appears counterintuitive, large volumes 
of incomplete messy data are more valuable and enable 
higher probability of correlation than clean, curated 
small datasets that may or may not be representative 
and almost certainly biased. One can call it the IBM 
versus Google approach for creating language transla-
tion. IBM fed the French and the English versions of 
Canadian parliamentary transcripts – small selected 
curated samples – into its machines to infer which 
French word is the best equivalent of the English word. 
The huge undertaking became stuck in the com-
plexities of mathematical probabilities. The Google 
approach has been different. Google collected all avail-
able data from the Internet, an arguably messy task, 
and an incomplete and inaccurate source of languages, 
as opposed to the clean but small IBM sampling. 
Google has taken in billions and billions of pages from 
all kinds of sources and documents in multiple lan-
guages. The result speaks for itself: Google Translate 
currently covers 104 languages and the quality of the 
translations is fairly accurate. We should note here 
that IBM is catching up with Google as IBM’s Wat-
son cognitive computing technology can analyze BD 
to identify novel drug targets, among other biomedical 
applications [5].

Traumatic brain injury
TBI is a spectrum disease. The severity of the impact 
ranges from severe to mild, with the latter also called 
concussion [18]. TBI accounts for approximately 30% of 
deaths caused by injury among young people under age 
45, and it is the single most common cause of death and 
permanent disability in this group [19]. The incidence 
of TBI is staggering. In 2015, approximately 2 million 
individuals suffered with TBIs in the USA alone, and 
the number worldwide was approximately 60 million. 
The medical, economical and social expenses directly 
related to TBI are approximately 96 billion dollars 
annually in the USA alone. Injuries that include TBI 
cause the deaths of approximately 150 people per day in 
the USA resulting in approximately 50,000 deaths per 
year. The incidence of TBI has been steadily increasing 
and the number of TBI cases nearly doubled from 2001 

to 2010 from 521 to 824 per 100,000 people in the 
USA [1]. The WHO has predicted that by 2020, TBI 
will be among the top three diseases causing death and 
disability [20]. As indicated by the difference between 
the rate of increase in emergency department visits 
versus hospitalization (70 vs 11%), the rise is mostly 
due to the surge in mild TBI/concussion cases [2]. Due 
to lack of uniformity in reporting requirements, there 
are controversies regarding changes in mortality [21]. 
However, mortality decreased substantially at loca-
tions with improved neurocritical care [22]. Severe and 
moderate forms of TBI increase the risk of Alzheimer’s 
disease 2.3- to 4.5-times [23], and consequently mul-
tiply the already staggering medical, fiscal and social 
expenses related to TBI. At the other end of the sever-
ity scale, mild TBI/concussion accounts for approxi-
mately 85% of all TBI cases [2,24]. Mild TBI, especially 
when repetitive in nature, increases the risk for devel-
oping neuro degenerative conditions, such as chronic 
traumatic encephalopathy three- to five-times, thereby 
further increasing the disease-associated expenses [24].

The physical impact results in the primary injury 
process, structural and functional damage that is 
instantaneous and cannot be treated but only pre-
vented by avoiding TBI. Based on the type of physi-
cal forces and how they interact with the head/brain, 
the primary injury process includes damage to axons, 
blood vessels, neurons and glia, and triggers the highly 
complex and dynamically changing secondary injury 
process [25].

There appears to be a correlation between physical 
forces and the secondary injury process. Mild TBI or 
concussion predominantly causes transient metabolic 
changes; whereas, severe acceleration/deceleration in TBI 
results in vascular [26] and axonal [27] injuries followed 
by complex downstream processes including inflam-
mation [28]. Blast-induced TBI appears to have unique 
pathophysiology [29–31]. However, the exact correlation 
between physical forces and the biological response is 
not known. Moreover, the biological responses change 
over time, so the temporal aspect of these changes dra-
matically increases the data to be measured, monitored, 
collected, stored and analyzed. The cellular, molecu-
lar and structural changes associated with the primary 
(physical) and secondary (biological) responses to the 
injury manifest in functional changes observed clini-
cally. These changes include a whole array of altered 
physiological responses, for example, decreased cerebral 
perfusion, depressed glucose metabolism, altered water 
balance, edema, among others, and neurobehavioral 
changes ranging from dizziness, confusion and memory 
impairment to loss of consciousness [32]. These clinically 
observed signs and symptoms change over time post TBI 
leading to the ever-increasing amounts of clinical data.
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Current use of BD in TBI
Efforts to improve the clinical practice guidelines to 
assess the severity of concussion have resulted in the 
development of several algorithms to evaluate changes 
in physical, cognitive, behavioral, imaging and neu-
ropsychological levels [33]. Traditionally, the use of 
BD in concussion research has incorporated clinical 
guidelines that include multimodal subjective fea-
tures, thereby producing significant challenges for 
clinicians attempting to diagnose concussion and the 
severity of the injury [33,34]. Collecting biological data 
that include functional testing results and blood bio-
marker analyses in combination with the collection 
of physical data that describe frequency, location and 
force of impacts will provide complex information at 
multiple levels, thereby generating massive amounts 
of data. Managing and sharing these data have led 
to efforts to improve sharing and distribution of BD 
within the TBI field. In response to the explosion in 
the amount of TBI data, numerous models for data-
base repositories have been proposed and some have 
been established. Building upon a foundation created 
in 2009 by the International Mission for Prognosis 
and Analysis of Clinical Trials (IMPACT), an initia-
tive to establish CDEs for TBI, was launched to stan-
dardize data collection across clinical trial sites. Data 
included demographics, clinical care, genetic and pro-
teomic markers, neuroimaging and outcome measures 
to represent a range of TBI data including data rel-
evant to all TBI studies, highly heterogeneous datasets 
and measures for which no consensus or validation has 
been achieved [35,36]. Importantly, the database con-
tains few imaging data and virtually no monitoring 
data, thus greatly limiting the use of the database for 
BDA. Transforming Research and Clinical Knowl-
edge in TBI multicenter prospective observational 
studies were then conducted to validate the feasibil-
ity of implementing CDEs among 650 subjects who 
received CT scans in the emergency room within 24 h 
of injury from level I trauma centers and one rehabili-
tation center in the USA [36]. Currently, Transform-
ing Research and Clinical Knowledge in TBI houses 
data on 3000 patients from 11 sites in the USA and 
was the first to populate the Federal Interagency TBI 
Research (FITBIR) informatics system. Collaborative 
efforts between the National Institute of Neurological 
Disorders and Stroke and the Department of Defense 
created a national resource for archiving and sharing 
clinical research data on TBI [37]. The goals of FIT-
BIR informatics system are to promote data sharing in 
the field of TBI, enable data sharing among individual 
laboratories and encourage connectivity with other 
platforms [38]. FITBIR currently stores over 200,000 
data records that include detailed demographics, 

outcome assessments, imaging and biomarkers. 
By implementing the comprehensive interagency 
CDEs for TBI research as defined by the CDE work 
group, FITBIR provides tools and resources to extend 
the data dictionary. In this platform, qualified research-
ers can gain access to the data in the hopes that novel 
modeling approaches may uncover relationships not 
realized by the original data collectors, thereby lead-
ing to additional studies and successful clinical trials 
for treatment of TBI. The CDE initiatives for clinical 
as well as preclinical TBI studies are giant steps toward 
improving disease severity classification, unifying data 
entry, depositing and archiving data. The success of 
the initiative is reflected in the increasing entries as 
well as analyses and studies using FITBIR.

Neurointensive care units (NICU) generate very 
large volumes of data collected during continuous 
monitoring of vitals, physiological and biochemical 
parameters such as cerebral perfusion pressure, cere-
bral blood flow, brain tissue oxygenation, intracranial 
pressure, changes in intracranial glucose metabolism, 
among others [32,39]. Combined with the outputs of 
various imaging modalities, EEGs and other diag-
nostic monitoring, each patient generates staggering 
amounts of data during the NICU stay. However, 
there is currently no unified protocol for analyzing 
data to help in developing guidelines for the patient’s 
management, and in the absence of follow-ups, the 
correlation between early disease management and 
long-term outcomes cannot be established [40]. While 
neurointensive monitoring generates digital and rela-
tively simple datasets, neuroimaging, probably the 
most powerful diagnostic tool in NICU, produces 
huge amounts of very complex data. The absence of 
standardized timing of image acquisitions, lack of 
uniformed imaging protocols and other unresolved 
issues make the BD approach in the NICU rather 
challenging [41].

In this context, Smith et al. created a defined 
set of CDEs for use in preclinical models that con-
sisted of ten modules divided into a Core Module 
with 57 CDEs and Injury-Model-Specific modules 
for nongeneralizable elements [42]. Among the Core 
CDEs, CDE domains included animal characteris-
tics, animal history, assessments and outcomes and 
injury model characteristics. Within the Injury-
Model-Specific modules, categories included weight 
drop, fluid percussion, blast, penetrating ballistic-
like, hemorrhage, increased intracranial pressure 
and porcine rotational acceleration. Taken together, 
development of preclinical CDEs promotes the use 
of a common language among researchers using ani-
mal models of TBI thereby facilitating ease of cross 
comparison among studies.
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Future of BD in TBI
The simultaneous increases in data availability and 
analytical capabilities create a golden opportunity to 
use BDA in TBI. We have illustrated some of the poten-
tial data sources for BDA in experimental (Table 1) and 
clinical TBI (Table 2). The data sources represent CDEs 
recommended by National Institute of Neurological 
Disorders and Stroke’s Expert Panel for preclinical [42] 
and clinical TBI [43], respectively. Of the many CDEs 
detailed in these publications, we have selected eight 
potential data sources and listed their strengths and 
current limitations. Figures 1 and 2 list some of the 

potential applications of and benefits resulting from 
using the BDA approach in experimental and clinical 
TBI, respectively. From the eight listed data sources, we 
discuss three in more detail: sensors, imaging and bio-
chemical markers. These sources were selected because 
they have high translational relevance between experi-
mental and clinical TBI studies and provide quanti-
fiable and structured data ideal for BDA approaches. 
Combining and analyzing BD even from these three 
sources would provide important correlations and bet-
ter understanding of the relationship between physical 
forces and biological outcomes, in other words, the 

Table 1. Some potential data sources for Big Data Analytics in experimental traumatic brain injury.

Source Description Strengths Limitations

Animal 
characteristics

Species, age, sex, weight Homogeneous population, 
reproducibility

Gender and age biased (mostly 
young males used), translational 
value is an issue, unstructured 
data

Animal history 
and injury model

Experimental details, surgery, 
modeling (closed, open, rotational, 
focal), etc. severity (physical 
parameters)

Reproducible, set and 
quantifiable physical 
parameters

Mostly small rodents used, 
scalability (anatomy, physiology) 
to human is a major issue, 
unstructured data

Sensors Extracranial or implanted Quantitative, 3D distribution 
of actual g-forces

Extracranial sensors are not 
frequently used in animal 
studies, implanted sensor data 
are challenging to translate into 
clinical use

General 
physiology, 
vital signs, 
neurobehavioral 
assessments

Indicate injury-induced changes in 
physiological parameters, (heart 
rate, blood oxygenation, etc.) and in 
specific neurobehavioral functions 
(learning, memory, anxiety, etc.)

Objective measures of 
changes in physiology, 
structured data, specific 
functional impairments and 
translational relevance

Physiological monitoring is 
rarely used in experimental 
TBI, neurobehavioral data are 
investigator dependent and 
unstructured

Imaging Various modalities (CT, MRI, PET) Clinically relevant, repeatable, 
noninvasive, provides 
morphological (molecular 
PET) information

Rarely performed in experimental 
TBI, no standardized analysis 
programs, difficulties comparing 
data from different laboratories, 
very large data

Biochemical 
markers

Injury-induced changes in serum or 
CSF (or bECF) levels of metabolites, 
nucleic acids and proteins

Can identify the molecular 
pathology of the injury 
process, can identify targets 
for therapeutics. Quantitative, 
structured data

Too many candidate biomarkers, 
no consensus, no clear association 
between biomarker values and 
injury and outcomes, not widely 
available

Histopathology Standard histology and 
immunohistochemistry

Identifies brain regions 
affected by injury, provides 
cellular and molecular level 
of information about the 
pathobiology

Terminal stage, difficulty in 
translating to clinical outcome 
measures; unstructured data, 
variability among laboratories

Long-term 
follow-up

Neurobehavioral testing at late 
postinjury time points

Assessing disease progression 
and/or the efficacy of 
therapeutic interventions

Rarely performed in animal 
studies, the correlation between 
rodent and human physiology 
and timelines are not well 
understood

bECF: Brain extracellular fluid; CSF: Cerebrospinal fluid; CT: Computer-assisted tomography; g-force: Gravitational force; TBI: Traumatic brain injury.
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pathological changes triggered by the insult. Time-
dependent sampling of these outcomes, imaging and 
biochemical markers can indicate disease progression 
and significantly improve predictions. Developing pre-
dictive models would result in substantial savings in 
healthcare costs and would improve patient care.

Sensors
Because TBI is caused by physical forces that can be 
measured and quantified, an important step toward 
using BD approaches and developing a TBI dosimetry 
is to understand the correlation between the physical 
forces and the biological response [45]. The distribu-
tion of g-forces, focal or diffuse impacts along with 
their intensities directly delivered to the head, gener-
ates highly complex biomechanical responses to the 
physical forces. Analyzing the physical parameters of 
the impact as a function of the biological response 
can provide critical data about the physical and bio-
logical threshold for injury severity and pathomecha-
nisms [46,47]. In the absence of outward signs of brain 
injury, tracking the frequency and severities of head 
impacts currently relies heavily on self-report or film 
review and is therefore estimated at best [48,49]. More-
over, gauging the force from an impact is not possible 
using these reporting approaches. Implementing meth-
ods to lessen injury associated with TBI is dependent 
upon tracking accurate measurements of forces trans-
mitted to the head. Thus, approaches to track and 
gauge the cumulative effects of repeated mild TBI are 
at the forefront of investigation. Understanding the 
relationships among frequency, location, force and 
thresholds for concussion with those of acute and long-
term changes in physiology, cognition, vision, balance 
and presence of blood markers is hindered by accuracy 
of recording impacts sustained. Adding to this already 
complex landscape, the use of instrumented acceler-
ometers has significantly increased the ‘long tail’ data 
in neuroscience [8]. In fact, many organizations employ 
instrumented accelerometers placed in helmets, on 
caps or headbands worn under the helmet or embed-
ded in mouth guards [50–52]. Tracking the numbers, 
location and force with which an impact is sustained 
for individuals generates massive amounts of data. For 
example, in one study, the maximum number of head 
impacts for a single player was 1444 for the season [53] 
illustrating the vast amount of data that can be col-
lected using instrumented accelerometers. Capabili-
ties of such recordings include information regarding 
the numbers of hits, location of the impact, linear and 
rotational g-force, and allow for theoretical thresholds 
to be set to gauge force required for concussion and 
measurable changes in other output modes such as 
vision, balance, cognition, among others.

Numerous studies have been conducted using the 
Head Impact Telemetry (HIT) system that allows for 
comparisons of numbers, force and location of impacts 
with acute clinical outcome of symptomology, neuro-
cognitive performance, balance and others [53–64]. As 
illustrated by these studies, the amounts of data gen-
erated by this recording system are vast and diverse. 
Objectives of studies range from attempting to set 
g-force thresholds for accurate diagnosis of a concus-
sion, to the location of impact on the head as a diag-
nostic factor, to the relationship between magnitude 
of impact and postural control. Recordings from one 
study using the HIT system in 72 collegiate football 
players, recorded over 57,000 head hits, each with a 
specific location and linear versus rotational accelera-
tion [55]. Other studies aimed to translate the number 
of hits and thresholds of 60 g (low) and 90 g (high) 
into changes in neurocognitive function and bal-
ance performance [54]. Studies conducted by Green-
wald et al. collected data from over 289,000 individual 
impacts [57]. In these studies, 17 concussions were diag-
nosed from which a single impact was identified as the 
concussive event. Tracking events that may have led up 
to or contributed to the concussion is made possible 
with instrumented systems [57]. Broglio et al. tracked 
all head impacts in 78 high school football players and 
recorded 54,247 individual impacts [65]. These studies 
report that rotational acceleration, linear acceleration 
(>96.1 g) and location (front, top and back) yielded the 
highest predictive values for concussion. Results from 
earlier studies suggested that the HIT system proved 
effective to collect real-time impact events that could 
be combined with clinical evaluations [66].

Results from several studies utilizing mouthguard-
embedded accelerometers also illustrate the complexity 
and volume of data that are collected in investigations. 
In one study conducted with rugby players, a total 
of 20,687 head impacts >10 g and up to 106 g were 
recorded from 38 players over 379 player match hours 
during the season yielding a mean of 564 ± 618 head 
impacts per player, each with unique linear and rota-
tional kinematic parameters associated per hit [52]. In 
another set of studies, attempts to associate the number 
of hits, and linear and rotational forces with clinical 
and cognitive changes and investigated if subconcus-
sive impacts during preseason football practice in col-
legiate football players caused changes in near point of 
convergence or symptom scores using the Sports Con-
cussion Assessment Tool 3 [48]. This study stratified 
players into low- and high-impact groups based on the 
frequency and linear and rotational forces with which 
they were hit. Results indicated that in the high-impact 
group there was a linear increase in near point of con-
vergence over time that resolved post season whereas, 
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no changes were detected in the low-impact group [67]. 
No changes were observed in the Sports Concussion 
Assessment Tool 3 symptom scores in either group 
supporting the need for multilevel testing approaches. 
Collectively, results from these studies highlight the 
scale and diverse types of data that can be collected 
and analyzed using instrumented systems to track 
impacts and thus emphasize the need for streamlining, 
management and sharing of pre-existing common data 
elements and interpretation of variables.

Biochemical markers
The presence of brain-derived proteins in the blood or 
cerebrospinal fluid (CSF) can provide objective mea-
sures for determining TBI’s severity, identifying the 
pathomechanisms of the secondary injury process and 
predicting recovery [29,44,68–71]. There is a vast litera-
ture reporting changes in candidate TBI biomarkers 
in both small and large cohort studies. The paradox of 

blood-based protein biomarkers in TBI is that there are 
fairly well-established biomarkers for severe TBI [72] 
where other diagnostics, primarily imaging also pro-
vides detailed information about the type and sever-
ity of injury. In mild TBI/concussion where imaging 
is negative, there is a substantial need for blood- or 
CSF-based biomarkers [71,73]. Also, even though cur-
rent blood-based biomarkers can indicate the extent 
of damage, they do not provide information about the 
pathological changes of the secondary injury process, 
and thus they cannot identify therapeutic targets or 
help with evidence-based therapy.

Currently, two approaches are used in the discovery 
of potential biomarkers: the top-down and bottom-up 
methods [74,75]. Top-down approaches involve consider-
ation of a disease process and hypotheses are formed and 
tested, often resulting in bias and low throughput effi-
ciency [74]. On the other hand, bottom-up approaches 
utilize high throughput -omics modeling, whereby 

Table 2. Some potential data sources for Big Data Analytics in clinical traumatic brain injury.

Source Description Strengths Limitations

Patient 
information

Patient demographics (age, 
gender, etc.), comorbidities, 
medications, injury date and time

Diverse data reflecting the 
actual medical records, 
previous conditions

Not always available electronically, 
or in timely manner, mixture of 
structured and unstructured data

Injury severity, 
functional 
impairment

GCS, LOC, etc., assess key 
neurological and behavioral 
functions, indicators of severity

GCS, LOC, widely used, 
international standard 
of assessing functional 
impairment, numeric output

Subjective, not useful in mild TBI/
concussion, multiple pathologies can 
lead to identical GCS score

Physiological/
vital parameters

Injury-induced changes in key 
physiological parameters (heart 
rate, blood oxygenation, etc.)

Standardized outputs, 
structured data

At present, data are not universally 
stored and available for (meta)
analysis; co-morbidities (polytrauma) 
can majorly affect data

Imaging Imaging data from CT, MRI, PET Routine technology and 
consistency of CT, increasing 
usage of MRI and its various 
modalities

Data quality is uneven, variability 
in data types, atlases and 
interpretations, user specific

Cerebral 
monitoring

ICP, CBF, qEEG provide quantitative 
data about intracranial physiology 
and brain activity

Standardized, numeric, 
structured data, real-time or 
near real-time dataflow

Data quality is uneven, variability in 
data types, variability among users

Biochemical 
markers

Protein or metabolic data in serum 
or CSF (or bECF) samples

Can potentially inform about 
the secondary injury process, 
can guide therapy

Many candidates, no verified marker, 
assays are not widely performed, 
presence of structured and 
unstructured data, user specific

Sensors Helmet or mouthguard providing 
physical data

Reflect the actual cranial, 3D 
distribution of g-forces, real 
time dataflow, quantitative

Not standardized, multiple types, 
the relationship between g-forces 
and biological outcome needs to be 
established

Long-term 
follow-up

GOS, WAIS, SWLS, DRS, FIM, 
etc., measure wide range of 
neurobehavioral and quality-of-
life outcomes,

Multiple time points 
enable monitoring disease 
progression, assessing 
treatment efficacy

Not universally performed, 
expensive, needs dedicated staff

bECF: Brain extracellular fluid; CBF: Cerebral blood flow; CSF: Cerebrospinal fluid; CT: Computer-assisted tomography; DRS: Disability Rating Scale; FIM: Functional 
Independence Measure; GCS: Glasgow Coma Scale; g-force: Gravitational force; GOS: Glasgow outcome scale; ICP: Intracranial pressure; LOC: Loss of consciousness; 
qEEG: Quantitative electroencephalography; SWLS: Satisfaction with Life Scale; TBI: Traumatic brain injury; WAIS: Wechsler Adult Intelligence Scale.
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unbiased quantification of all molecules of a specific 
type (e.g., cytokines) results in large lists of potential 
candidates. These two methodologies are limited in 
their capacity to provide novel connections among 
complex molecular events associated with TBI and rely 
on previously identified interactions. However, infor-
mation provided by both approaches may be combined 
into a data repository format where systems biology 
networks can provide yet another level of integration 
of our knowledge base [69]. For example, as explained 
by Feala et al., TBI high-throughput data consisting 
of canonical pathways and protein–protein interaction 
maps can be integrated to identify TBI-specific path-
ways and protein interactions [74]. In this model, begin-
ning from a list of condition-specific (e.g., severity level 
or post-TBI time point) high-throughput-omics data, 
mapping these hits onto pathways and protein–pro-
tein interaction scaffolds would allow for determina-
tion of patterns related to injury-specific responses [74]. 
Importantly, this systems biology approach may con-
tribute to refining some of the emerging CDEs as our 
understanding of the global picture of TBI expands [36]. 

In response to these challenges, Yue et al. conducted a 
prospective multicenter observational study to validate 
the feasibility of applying CDEs for TBI. In a study by 
Dabek and Caban, a framework was presented, whereby 
longitudinal data from nearly 100,000 concussion 
patients were utilized to build a predictive model of the 
likelihood of developing a psychological disorder within 
the first year post-TBI [34]. Using post-traumatic stress 
disorder as an example, the model validated 16,045 
patients from among 89,840 service members with over 
5 million clinical encounters with an accuracy of 85% 
(86.52% area under the curve [AUC]) for developing 
this condition during the first year post-TBI.

Changes in levels of many potential blood biomark-
ers have been proposed to correlate with brain injury, 
but differences in study design and interpretation have 
made it difficult to validate TBI-specific markers. 
Although numerous blood biomarkers are under intense 
investigation, to date there are no US FDA approved 
biomarkers for brain injury. One problem with identi-
fying a suitable biomarker has been the sensitivity and 
specificity for TBI. Diversity across cohort-based studies 

 2(3)

Figure 1. Overview of potential Big Data Analytics approaches in experimental traumatic brain injury. Examples 
of data sources (see also [42]) and potential application using BDA approaches that can improve modeling, 
understanding the pathobiology and translatability between experimental and clinical TBI.
AI: Artificial Intelligence; BDA: Big Data Analytics; bECF: Brain extracellular fluid; CSF: Cerebrospinal fluid; 
CT: Computer-assisted tomography; ML: Machine Learning; TBI: Traumatic brain injury.
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impedes the utility of large database repositories in mak-
ing diagnoses based on blood marker changes reported 
in the literature. In this context, some studies propose to 
combine measures from several biomarkers to gain more 
clear insight into changes in biological processes post-
TBI [69,76]. In line with these studies, FITBIR outlines 
detailed procedures for blood and CSF collection post-
TBI to promote standardization and decrease variations 
in experimental approaches. Other questions surround-
ing the choice of a particular blood biomarker relate to 
cellular origin, normal and pathological function, and 
possible reasons for changes in blood levels [77]. In fact, 
in a study examining the magnitude of the effect sizes of 
biomarkers, results showed that highly cited biomarker 
studies many times report larger effect estimates for 
hypothesized associations than are supported by meta-
analyses evaluating these associations [78]. In addition, 
given the complex nature of primary and secondary 

injury components in TBI, biomarker development has 
added limitations in specificity, as TBI shares many 
neuropathological features, such as inflammation and 
cellular damage with other CNS diseases and disorders.

Despite current problems with biochemical mark-
ers, some of them listed above, injury-induced 
changes in biochemical marker levels in various bio-
fluids, blood or CSF are ideal data sources for BDA 
approaches for several reasons. The data are numeric, 
structured, frequently measured at various post-injury 
time points, collected in both experimental and in 
clinical TBI studies, recorded and archived. When 
and where they are measured, important additional 
clinical or experimental data such as injury sever-
ity, the extent of functional impairments, imaging, 
among others, are also available enabling the use of 
BDA to analyze biomarker data in the context of other 
data sources.

Figure 2. Overview of potential Big Data Analytics approaches in clinical traumatic brain injury. Examples of data 
sources (see also [43,44]) and potential application using BDA approaches that can result in improved patient care, 
reduced mortality and better postinjury quality of life.
AI: Artificial Intelligence; BDA: Big Data Analytics; bECF: Brain extracellular fluid; CBF: Cerebral blood 
flow; CSF: Cerebrospinal fluid; GCS: Glasgow Coma Scale; ICP: Intracranial pressure; ML: Machine learning; 
qEEG: Quantitative electroencephalography; TBI: Traumatic brain injury.
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Imaging
With significant and rapid advances in the field, 
including the technology to acquire various imaging 
modalities coupled with high-speed image processing 
and analytics programs, in vivo imaging represents a 
perfect example of promises and challenges of using 
the BDA approach in TBI research, diagnosis and 
management.

Due to their data-rich nature, in vivo imaging rep-
resents unique challenges because as technologies 
improve so do the increases in the amount of data 
generated. As of today, just the acquired neuroimag-
ing data alone are an average of 20 GB per published 
study [79]. This amount of data is only the tip of the 
iceberg as publications may or may not include aggre-
gated and annotated data generated by using Brain-
Map, BrainSpell or other tools. This enriched data 
enable re-analysis, data mining and meta-analyses. The 
amount of data increases substantially when unthresh-
olded statistical maps are also deposited allowing re-
use and complete re-analyses, both of which are impor-
tant requirements for BDA approaches. While a single 
study of this size does not pose difficulties for process-
ing and analysis, large numbers of datasets required for 
a successful BDA approach pose significant challenges. 
Currently, an fMRI scan can obtain multiple BOLD 
image volumes of the whole human head per second 
and advanced diffusion tensor imaging (DTI) imag-
ing is capable of resolving 512 or more fiber directions 
resulting in incredibly fine resolution and huge vol-
umes of data [80]. These and other technical improve-
ments mean that the amount of data is doubling in 
roughly every 2 years. To illustrate some of the issues 
with the amount of data imaging generates, the Human 
Connectome Project’s first dataset is approximately 
18 terabytes, which is currently available on multiple 
hard drives delivered by mail [79]. Probably, the most 
advanced imaging repositories have been established 
for Alzheimer’s disease (Alzheimer’s Disease Network 
Initiative) [81–83]. However, the nature of the disease is 
substantially different from TBI, so it may not serve 
as a good example for TBI. FITBIR [37] and Stroke-
Net [11] are two interrelated imaging repositories for 
BDA approaches. However, in the context of TBI, the 
lack of validation of many techniques in large cohorts 
using consistent methods for retrieval and analyses 
of data yields inferential conclusions. The absence of 
truly normative data also creates a significant obsta-
cle in identifying specific changes, especially in cases 
of mild to moderate injuries [84,85]. During a ‘Joint 
ASNR-ACR-HII-ASFNR TBI Workshop: Bringing 
Advanced Neuroimaging for TBI into the Clinic’ to 
reach agreement on recommendations for creating 
a normative database, the committee recommended 

streamlining collection, phenotypic and outcomes data 
to allow sharing and queries across platforms by using 
CDEs [86]. Head computed tomography, MRI includ-
ing T1- and T2-weighted, fluid attenuated inver-
sion recovery, diffusion- or susceptibility-weighted 
sequences can detect acute intracranial sequelae and 
chronic effects of TBI, but methods outside of these 
more standard approaches lack validation for milder 
forms of TBI and are therefore, not established for 
clinical use at the individual level [11,84].

There are substantial challenges at the technical 
level for imaging in TBI. The main challenge is stan-
dardization or how to take into account differences 
between various laboratories using different acquisi-
tion rates, resolutions, scanning parameters, among 
others [79]. Even identical scanners used at different 
locations can generate differences in the quality of pri-
mary data, which in combination with different atlases 
and analytical programs make large-scale comparative 
studies challenging. BDA approaches will play a major 
role in establishing such a model by combining incom-
ing high fidelity imaging data that includes white mat-
ter connectivity and functional activity in addition 
to basic anatomical information. The amount of data 
from TBI studies will increase exponentially as more 
and more institutions are using scanners at increasing 
frequency. Analyzing imaging data to find correlations 
between structural and molecular changes (biomark-
ers) and neurobehavioral outcomes represents a serious 
challenge due to the size and varying structures of data.

Cellular biomechanics, in vitro & in vivo 
modeling
Connecting cellular biomechanics data to data derived 
from animal modeling and applying the combined 
knowledge to clinical TBI would substantially increase 
our understanding about the physical to biological 
coupling down to the molecular level, which would 
guide evidence-based therapies. The physical forces 
encountered by individual cells will determine sur-
vival or death, and in the case of survival, it initiates 
a complex molecular response to recover and regener-
ate. In contrast to other systems, such as the vascular 
system, which is constantly exposed to mechanical 
loading, stretch during the cardiovascular cycle, neu-
rons and glia are mechanically naive and protected. 
Also, the forces of the mechanical insults are extremely 
high-velocity events in contrast to the systolic/diastolic 
cycle [87].

Cell culture models [87–89] in combination with 
various outcome measures have provided critical 
insights into cellular and subcellular responses to 
mechanical forces. These works identified several 
structures termed ‘mechanosensors’ that include the 
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voltage-gated sodium channel, or NMDA receptor 
that responds to the mechanical forces induced by cell 
deformation with altered channel activation [87]. Data 
from these experiments are used to build in silico mod-
els of TBI [90–92]. However, the human brain contains 
approximately 100 billion neurons and ten-times more 
glial cells. Thus, high-fidelity modeling of TBI that 
includes detailed molecular responses to mechanical 
forces cannot be accomplished without considerable 
use of BDA approaches.

From the biomechanical perspective, the cranium 
and the intracranial structures such as the dura and 
pia mater, and the trabeculae provide the first line of 
defense in mitigating the physical impact and have 
distinct tissue properties from the cerebrum and cer-
ebellum proper, each responding to the physical impact 
in different ways [93–95]. The biomechanical properties 
and responses to physical/kinetic forces of the various 
anatomical structures, tissue types have been measured, 
analyzed and the data are available for re-analysis and 
integration with other, for example biochemical data. 
Boundaries or intracranial ‘fault lines’ exist between 
different anatomical structures with different material 
properties, brain tissue versus blood vessels, gray ver-
sus white matter or brain tissue versus CSF. Such fault 
lines exist at the cellular and subcellular levels due to 
different material properties, elasticity, compressibility 
of axons versus cell bodies; capillaries, endothelial cells 
versus astroglial foot processes; myelin sheaths versus 
axons. These fault lines are the anatomical substrates 
for the vascular and axonal injuries triggered by the 
physical insult [96–98]. Neuro anatomy (e.g., the direc-
tionality of white matter tracks) greatly modifies and 
determines the extent of damage caused by similar 
g-forces. Accordingly, in addition to the actual g-forces, 
the 3D distribution of the g-force is critical in deter-
mining the biological response to the mechanical forces 
further increasing the number of data elements. In vitro 
modeling using cell and tissue culture systems have gen-
erated substantial amounts of data at the cellular and 
subcellular levels about the biomech anical/biological 
responses as functions of physical forces [88,99–101].

One of the greatest challenges in TBI is to improve 
translatability of experimental data into clinical prac-
tice. There have been numerous animal models devel-
oped over the last several decades that have attempted 
to mimic clinically observed conditions. They are cat-
egorized as focal, diffuse, penetrating, blast, among 
others types of injuries with each focusing on a spe-
cific type of physical impact. Animal modeling of 
TBI including issues with current models has been 
recently reviewed in an excellent book chapter [102] and 
is beyond the scope of this review. Animal modeling 
of TBI has resulted in 3000+ publications containing 

mostly unstructured data. Roughly 90% of the mod-
els are using rodents that have lissencephalic brains. In 
addition, basic biology, physiology and pathobiology 
of rodents are significantly different from humans, so 
without employing BDA approaches, the correlation 
and relevance between experimental findings and clin-
ical cases remain rather subjective guesswork. These 
issues are known but are easily addressable gaps in 
outcome measures between experimental and clinical 
TBI research. The physical forces are known for in vivo 
TBI studies but, without the BD approach, we cur-
rently lack the ability to combine in vitro and in  vivo 
data aimed to identify the pathobiology of TBI at the 
cellular, subcellular and molecular levels.

Legacy data
CDE and FITBIR are important for current and future 
TBI studies, but what can be done about the TBI leg-
acy data accumulated over decades? Full implementa-
tion of CDE is not yet in sight. Moreover, it would take 
enormous amounts of time, effort and funding to load 
existing, unstructured data into traditional relational 
databases (such as FITBIR).

Powerful tools using BD and BDA approaches are 
available and they have been successfully employed in 
counter-terrorism efforts, fighting crime, bank fraud, 
among others. Palantir [103] and Ayasdi [104] have devel-
oped BD Analysis software capabilities and ML/AI 
systems. Tools developed by these and other compa-
nies, such as IBM provide predictions, relationships 
and correlations by analyzing giant, messy, unstruc-
tured incomplete datasets. Think of TBI/concussion as 
a massive, complicated intelligence game where impor-
tant facts are hidden in huge amounts of irrelevant 
and unstructured data. Tools such as those developed 
and used by, for example, Palantir Technologies can 
uncover terrorist networks and plans to prevent attacks 
using far less reliable, more fragmented, less structured 
information available to the intelligence community 
than is available to the TBI community. Using simi-
lar tools may uncover correlations and connections 
addressing some of the TBI field’s most pressing issues.

Similar to other fields, a potential solution for BDA 
in TBI is to aggregate the existing raw data along with 
extended metadata in a ‘data lake’ and use Palantir’s 
or Ayasdi’s or IBM’s algorithms, ML/AI capabilities to 
identify repeatable patterns, relationships and correla-
tions [5]. A data lake is a storage repository that contains 
a huge amount of raw data in its native, unstructured 
format in so-called flat (nonhierarchical) architecture. 
Data elements are tagged with a unique identifier and 
extended metadata tags. Such a data lake can be que-
ried then with a specific question and a smaller dataset 
can be analyzed to answer a specific question.
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A typical article in a scientific journal, with images, 
is in the megabyte size range and the entire published 
TBI literature is in the terabyte/petabyte range, but 
the published data represents only a fraction of data 
collected during the study. From the BD perspective, 
in addition to their unstructured formats, there are 
other issues with the published TBI or virtually any 
other biomedical literature [7,12–13]. They are part of the 
so-called ‘long-tail’ data comprised of both published 
data and unpublished dark data [8]. Publications rep-
resent only a fraction of total data collected and accu-
mulated during experimental TBI works or clinical 
studies, and they are curated. The current total TBI 
literature published in peer-reviewed journals is just 
over 33,000 papers. If we take into account the previ-
ously mentioned dark data, completed but unpublished 
works and additional information, the number is close 
to 100,000 in text heavy, unstructured data format. 
Current mining of this legacy data is performed manu-
ally using PubMed or similar search engines involv-
ing heavy use of the searcher’s skills as well as judg-
ments, and so this approach is prone to be subjective 
and biased.

Challenges
Successful use of BDA approaches will require three 
critical changes in our current practices and think-
ing: collect and store all data; accept messiness of the 
data; and give up causation for correlation. It should be 
noted that employing BDA will originally reveal only 
correlations but not causations, but the accumulated 
correlations over time will allow establishment of caus-
ative relationships. A lot of evenly unstructured data 
with uneven quality is better than a small, curated 
dataset.

Experimental (preclinical) and clinical TBI stud-
ies use different outcome measures, methodologies, 
different species with different anatomy, physiology, 
different physical forces resulting in an enormous gap 
between the two fields. Leading examples are the use 
of the Glasgow Coma Scale, length of loss of con-
sciousness, alterations in mental/conscious state and 
post-traumatic amnesia, Glasgow Outcome Scale in 
clinical TBI for triaging and selecting patients for 
clinical trials and assessing disease progression and 
clinical trials. There are somewhat similar functional 
assays such as Injury Severity Score, Neurological 
Severity Score, among others, available for rodents 
in experimental TBI, but we do not know how these 
correlate with the gold standard Glasgow Coma Scale 
and other clinical tests [105]. The resulting paradox 
is that we know the extent of the functional deficits, 
but not the parameters of the causative physical forces 
in clinical TBI; whereas, in experimental TBI, we 

know the parameters of the physical forces (we can 
calibrate them), but not functional deficits caused by 
these forces. The approach to collect both physical 
data using sensors as well as monitoring functional 
deficits and collecting biochemical data as outlined 
above will help to identify the correlation between 
physical impact and biological response. But the field 
badly needs BD approaches to establish the correla-
tion between injury-induced changes, functional defi-
cits, biochemical and structural changes detected in 
humans and in rodents using already available data. 
Only after we understand the correlation between 
injury-induced changes in clinical versus experimental 
TBI can we translate promising preclinical pharmaco-
therapies into clinical trials with high fidelity, and 
vice versa can we design more clinically relevant 
experimental studies.

As we collect more and more data, for example, 
from patient monitoring at NICUs [40] or physical, 
biological and clinical data from athletic fields follow-
ing concussions, we will be able to understand corre-
lations. In biology or in diseases such as TBI, most 
events are probabilistic rather than certain. Imagine, 
for example, if all NICUs collected and stored all the 
functional, imaging and biochemical, and similiar 
data from all patients [40]. Or, all the physical, bio-
chemical, imaging and functional data related to 
concussion were collected at the sidelines of athletic 
fields. Or, if in experimental TBI, animals were being 
monitored for outcome measures mirroring clinical 
practices and all of the data were collected and stored 
along with unique experimental data such as histopa-
thology [105]. Using BDA would enable us to use the 
collected BD to discover correlations between, for 
example, altered cerebral perfusion pressure, cerebral 
blood flow, cerebral metabolic rate of oxygen, cere-
bral metabolic rate of glucose consumption and long-
term functional outcome; or to discover correlations 
among g-force, directionality, biochemical changes, 
functional impairments and long-term outcome; or to 
discover correlations between biochemical and func-
tional outcome measures and cellular and molecular 
levels of pathological changes bringing experimental 
TBI studies closer to clinical needs. However, we must 
accept that the collected data will be incomplete and 
messy. But, large volumes of incomplete, messy data 
are more valuable and enable higher probability of cor-
relation than clean, curated small datasets that may or 
may not be representative.

Maybe the greatest challenge for us as TBI research-
ers is to change our habits. Such changes should include 
recording and storing everything digitally so we can 
reduce the amount of dark data. We must make all 
the data available for (re) analysis. The increasing use 
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of CDEs will enable us to fill FITBIR with structured 
data that is relatively easy to analyze. The reality is 
that due to the nature of the disease, TBI/concussion 
is the result of accidents, so only a fraction of critical 
information will be deposited according to standards 
(CDE). This is especially true for mild TBI, where 
the individual may or may not be taken to the ER, 
and may or may not be seen by a concussion special-
ist. Accordingly, most of the data will remain incom-
plete, unformatted, fragmented and unstructured so 
we need to seriously think about employing Palantir, 
Ayasdi, among others, type massive BDA approaches 
to analyze existing data and also incoming clinical 
data. On the experimental side, there is a goldmine 
of published legacy data available, also unstructured, 
messy and incomplete and only BDA can help to find 
the correlations we so much need to improve protec-
tion and patient care.

Future perspective
BD and BDA will revolutionize the TBI field within the 
next decade. The changes will be driven by the combi-
nation of increasingly powerful and capable BDA, and 
AI and ML (AI/ML) platforms coupled with financial 
incentives to use these technologies. One of the first 
fields transformed by implementing BDA and AI/ML 
approaches will be neurocritical care. BDA and AI/ML 
will enable us to find correlations between the dozens 
and dozens of streaming real-time data from physiologi-
cal monitoring, imaging, biochemical and functional 
biomarkers. This new approach will transform the cur-
rent practice of triaging, diagnostics, treatments and 
prognosis into highly integrated, evidence-based patient 
care. Because applying BDA and AI/ML technologies 
at NICU will result in significant savings in healthcare 
costs, insurance companies will provide the necessary 
financial incentives to implement these technologies. 

Executive summary

Traumatic brain injury
•	 Traumatic brain injury (TBI) is the most heterogeneous and most complex among the disorders of the CNS.
•	 Mild TBI (concussion) is the most common type of TBI and when sustained repetitively increases the risk of 

developing neurodegenerative disorders.
•	 TBI is rapidly becoming one of the top three diseases causing death and disability worldwide.
•	 TBI is caused by wide ranges and types of physical forces.
•	 Biological responses to TBI occur at multiple levels including structural, physiological, behavioral and 

molecular that manifest in complex and dynamically changing clinical symptoms.
•	 The pathobiology of TBI is poorly understood, there are no accurate diagnostics and prognostics for TBI.
•	 There is no specific therapy for TBI, the failure rate of clinical trials is 100%.
•	 It appears that the current approach of analyzing small, representative, curated data will not be able to 

provide solutions to the complexity of the disease.
Big Data
•	 Big Data (BD) enables collecting, storing and analyzing voluminous amount of data.
•	 BD approaches can use unstructured, incomplete, irregular and ambiguous data as long as the dataset is large.
•	 Analyzing BD using Artificial Intelligence, Machine Learning and Cognitive Computing can identify new 

correlations not available by traditional approaches.
•	 BD has been successfully employed in fields of logistics, counter-terrorism efforts and healthcare.
BD in TBI
•	 BD is ideally suited for TBI where most of the data is unstructured, incomplete and messy.
•	 BD TBI requires collecting and storing all data elements, physical, biological, structural and clinical that may 

not be curated and may remain incomplete.
•	 Employing Big Data Analytics (BDA) in TBI can reveal correlations between physical forces collected by sensors, 

biological responses such as imaging, functional impairments, molecular pathologies and their temporal 
patterns.

•	 The accumulated correlations over time will allow establishing causative relationships.
•	 The Federal Interagency TBI Research and Common Data Elements initiatives provide the framework for TBI 

data deposition.
Future of BD in TBI
•	 In order to take advantage of BD, investigators should collect, store and make all data available for (re) 

analysis and reduce ‘dark data’ in TBI.
•	 Employ or customize existing BDA approaches such as Palantir or Ayasdi that have been proven successful in 

identifying correlations using similar complex data.
•	 An important proof of concept of such a BDA approach would be to establish correlations between 

experimental and clinical data.
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Another implementation of BDA and AI/ML will be 
(re) analyzing existing ‘legacy’ data. Only BDA and 
AI/ML approaches can help to establish new correla-
tions using TBI legacy data that have accumulated over 
decades of TBI research. These tools will uncover new 
correlations and connections that will drive diagnostic 
and therapeutic Research and Development (R&D) 
efforts. Using BDA and AI/ML approaches will enable 
fast and efficient validation of experimental data ‘in 
silico’ which are much less expensive than repeating 
entire sets of preclinical and clinical studies. This will 
guide R&D efforts and eliminate unnecessary dupli-
cations. The availability of these approaches will moti-
vate pharmaceuticals – which have withdrawn from the 
TBI R&D field [106] – to invest in the use of BDA and 
AI/ML because of the profit they can generate given the 
share size and potential of the TBI pharmaco therapy 
market. The third major change – quantum leap – in 
utilizing BDA and AI/ML in TBI will be in the estab-
lishment of predictive ‘dosimetry’. The physical forces 
will be measured and recorded by using the next gener-
ation of sensors. Streaming real-time data from sensors 
will generate a whole new level of data both in quantity 
and in quality. BDA and AI/ML will determine the 
correlations between physical forces and the biological 
response (the physical-to-biological coupling) using leg-
acy data as well as actual imaging data with biochemi-
cal, neurobehavioral, among others. monitoring. Estab-
lishing correlations between physical and biological data 
will help to develop better head protection and safety 

guidelines, and will also help to determine ‘safe return 
to play’ and ‘safe return to duty’. Such predictive TBI/
concussion dosimetry will revolutionize entire indus-
tries ranging from automotive, sport/athletics, health-
care, elderly care, among others. These industries along 
with insurance companies will be investing massively in 
using BDA and AI/ML because of the enormous finan-
cial benefits derived from developing improved physical 
protection, reducing insurance claims and costs associ-
ated with healthcare, especially with elderly care. TBI 
R&D has reached its ‘strategic inflection point’, more of 
the same will not work as sadly illustrated by the 100% 
failure rate of clinical trials, BDA and AI/ML have the 
potential to put TBI R&D back into a new phase of 
potentially exponential growth. Welcome to the future!
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