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Abstract. Competition among trees is an important driver of community structure and
dynamics in tropical forests. Neighboring trees may impact an individual tree’s growth rate and
probability of mortality, but large-scale geographic and environmental variation in these com-
petitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of
competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151
~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear
models that accounted for wood density, tree size, and neighborhood crowding. Using these
models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influ-
enced the predicted plot-level strength of competition (i.e., the extent to which growth is
reduced, or mortality is increased, by competition across all individual trees). On both conti-
nents, tree basal area growth decreased with wood density and increased with tree size. Growth
decreased with neighborhood crowding, which suggests that competition is important. Tree
mortality decreased with wood density and generally increased with tree size, but was appar-
ently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of
competition was most strongly related to plot basal area (i.e., the sum of the basal area of all
trees in a plot), with greater reductions in growth occurring in forests with high basal area, but
in Amazonia, the strength of competition also varied with plot-level wood density. In Amazo-
nia, the strength of competition increased with water availability because of the greater basal
area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was
weakly related to soil fertility and invariant across the shorter water availability gradient. Over-
all, our results suggest that competition influences the structure and dynamics of tropical forests
primarily through effects on individual tree growth rather than mortality and that the strength
of competition largely depends on environment-mediated variation in basal area.

Key words: climatic water deficit; competition; forest dynamics; mortality; neighborhood effects; soil
fertility; trait-based models; tree growth; tropical forest; wood density.

INTRODUCTION

Competition is an important driver of community
structure and dynamics in forests worldwide (Kunstler
et al. 2016), particularly in closed-canopy forests such as
mature, undisturbed tropical forests, where low light
levels under the canopy typically limit tree growth. Gen-
erally, competition with neighboring trees is expected to
decrease growth and increase the probability of mortal-
ity of individual tropical trees (Uriarte et al. 2004, Lasky
et al. 2015). However, effects of competition on growth
and mortality of individual trees have only been quanti-
fied within single tropical forest sites to date (e.g., Uri-
arte et al. 2004, Baribault et al. 2012). Whether strong
effects of competition on demographic rates are perva-
sive, and whether they vary across environmental gradi-
ents in the tropics, remains unresolved.

Better knowledge of the effects of competition on
tropical tree growth and mortality, and the geographic
variation thereof, is essential for enhancing understand-
ing of the global terrestrial carbon balance. Mature trop-
ical forests have increased in biomass over recent
decades (Lewis et al. 2009), and those in Amazonia have
become more dynamic (McDowell et al. 2018). Mortal-
ity rates have a key role in controlling biomass in tropi-
cal forests (Johnson et al. 2016), as increases in mortality
over time are influencing the carbon balance of Amazon
forests (Brienen et al. 2015). Changes in the average
strength of competition in forests might be one of the
driving factors of such dynamic changes, because
increased biomass (i.e., increased neighborhood crowd-
ing) leads to enhanced competition, with expected
impacts in turn in decreased growth and increased mor-
tality. More generally, the underlying causes of tree mor-
tality in the tropics are still actively debated (e.g.,
McDowell et al. 2018), and quantifying their effects on
the terrestrial carbon balance is a key challenge for ecol-
ogists and global change scientists. In addition to
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mortality that results from competition, trees may die
from a range of other processes, including hydraulic fail-
ure in response to drought (large trees in particular; Phil-
lips et al. 2010, Bennett et al. 2015, Rowland et al. 2015),
from senescence (although effects are weak; Mencuccini
et al. 2005), and from large-scale wind disturbance
(Esp�ırito-Santo et al. 2014), but which process(es) domi-
nate(s) remains poorly understood.
Environmental conditions vary considerably across

tropical forest sites, and this variation is known to influ-
ence forest structure and dynamics strongly. Across the
Amazon basin, for example, water availability generally
decreases from north to south, and soil fertility increases
from east to west (ter Steege et al. 2006). Drier forests
generally have a lower stature, lower aboveground bio-
mass and basal area, and a more open canopy than wet
forests (Quesada et al. 2012), with typically lower rates
of tree growth (Toledo et al. 2011) and stem turnover
(Quesada et al. 2012). Forests are more dynamic on the
high-fertility soils of western Amazonia, with higher
coarse woody productivity (Malhi et al. 2004, Baker
et al. 2009), higher stem mortality (Johnson et al. 2016),
lower basal area and aboveground biomass, and lower
mean wood density (WD) than eastern Amazonia
(Baker et al. 2004, Malhi et al. 2006, ter Steege et al.
2006, Quesada et al. 2012). Environmental gradients are
also found across African tropical forests, where basal
area decreases with both rainfall seasonality and soil fer-
tility (sum of bases; Lewis et al. 2013).
Effects of competition on tree growth and mortality

are expected to vary across continental environmental
gradients in Amazonia and tropical Africa because water
and soil nutrient availability influence forest structure
and understory light availability. Competition has been
hypothesized to intensify with resource availability
because high resource levels lead to rapid growth and
resource depletion, whereas plant growth is generally
low in stressful habitats (Grime 1979). In tropical forests,
competition is likely to be strongest at high resource
(water and/or soil nutrient availability) levels, which sup-
port a higher basal area. Then, the resulting crowding
leads to stronger competition because of reduced light
availability to individual trees.
The response of any given focal tree to competition

will likely depend not only on the degree of crowding in
its local neighborhood, but also on its size and func-
tional traits. Smaller trees are more strongly affected by
competition (Uriarte et al. 2004) because they are more
heavily shaded by taller neighbors, and likely suffer from
greater belowground competition. Shade-intolerant tree
species, which typically have low wood density (WD;
van Gelder et al. 2006), respond more strongly to
changes in light availability than shade-tolerant species
(Bazzaz 1979), and thus are likely to be more strongly
affected by competition. Indeed, shade-intolerant (Hub-
bell et al. 2001, Canham et al. 2006, Kunstler et al. 2011)
and low WD tree species (Kunstler et al. 2016) often
show greater growth decreases in response to

neighborhood crowding. Hence, variation in the plot-
level strength of competition (i.e., the extent to which
growth is reduced, or mortality is increased, by competi-
tion across all individual trees in a plot) across environ-
mental gradients may not only depend on forest basal
area, but also on tree size distributions and mean wood
density. Nevertheless, forest basal area is expected to
have the largest effect, because the basal area of neigh-
bor trees directly influences resource availability to a
focal tree.
In this study, we quantify the effects of neighborhood

crowding on tree growth and mortality across gradients
of moisture and soil nutrient availability in Amazonia
and tropical Africa. Neighborhood crowding likely
reflects competition for light (although competition for
water and soil nutrients may also play a role), as light is
typically the main factor limiting tree growth in closed-
canopy forests. We use data from 151 ~1 ha-plots to fit
nonlinear growth and mortality models based on tree
WD, size, and neighborhood crowding. We use these
models to estimate the predicted plot-level strength of
competition, i.e., to what extent growth across all trees is
reduced compared to a low level of neighborhood
crowding, and assess how water availability and soil fer-
tility influence the strength of competition through rela-
tionships with average tree size, plot basal area, and plot
wood density. Specifically, we test the following predic-
tions: (1) tree growth will decrease, and mortality
increase, with neighborhood crowding; (2) low WD spe-
cies will be most strongly affected by neighborhood
crowding; (3) variation in the plot-level strength of com-
petition will be more strongly related to plot basal area
than to wood density or mean tree size; (4) the plot-level
strength of competition will intensify with increasing cli-
matic water availability through relationships with plot
basal area on both continents; and (5) the predicted
plot-level strength of competition will be negatively
related to soil fertility in Africa because of decreasing
basal area with increasing soil fertility (sum of bases;
Lewis et al. 2013), but be largely independent of soil fer-
tility in Amazonia because of weak correlations between
soil fertility and basal area (Quesada et al. 2012).

METHODS

Plot data

We used data from 102 permanent plots in Amazonia
from the RAINFOR network and 49 in tropical Africa
from the AfriTRON network, curated at ForestPlots.net
(Lopez-Gonzalez et al. 2009, 2011; Fig. 1), to span the
environmental gradients in each tropical lowland forest
region. Plots were all below 500 m above sea level
(a.s.l.), in nonflooded, closed-canopy forests, with a five-
fold range of mean annual precipitation in Amazonia
(855–4273 mm) and twofold range in Africa (1,377–
2,716 mm). Soil fertility, estimated by soil total exchange
bases (in cmol(+)/kg), varied from 0.5 to 13.2 cmol(+)/
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kg in Amazonia, and from 2 to 13.5 cmol(+)/kg in
Africa. Most plots were 1 ha in size, but plot size ranged
from 0.25 to 9 ha (Appendix S1: Table S1). Trees ≥10-
cm diameter at breast height (dbh), or above buttresses,
were measured for their diameter, identified to species,
and either mapped or assigned to 0.04-ha subplots.
Across all plots, 2,947 species and 73,100 trees were
included in Amazonia, and 695 species and 20,705 trees
in Africa. For each plot, we included data from two cen-
suses with an average interval length of 6.3 yr (range:
3.0–12.7 yr; Appendix S1: Table S1) and an average
starting year of 1994 (range: 1971–2008), and calculated
annual basal area growth (in cm2/yr) for trees that were
present in both censuses. We excluded monocotyle-
donous species (palms and Strelitziaceae) from the
growth models, as they do not have secondary growth.
Neighborhood crowding was expressed as the total basal
area of neighbor trees within a 0.04-ha subplot (BAneigh)
in the first census. We defined neighborhoods based on
subplots instead of on a fixed radius around each focal
tree, to allow inclusion of plots for which individual trees
were not mapped (Appendix S2). We found that BAneigh

accurately captured local effects of competition
(Appendix S2). Neighborhood crowding likely reflects
competition for light, although competition for water
and soil nutrients may also occur. Other processes, for
example pathogen accumulation at high densities of con-
specific trees that increase mortality (negative density
dependence; NDD), may also contribute, but effects of
NDD are typically weak for large trees (Zhu et al. 2015).

Environmental conditions and wood density

Average annual rainfall (in mm/yr) for each of the
plots was obtained from WorldClim 2 (Fick and Hij-
mans 2017). Climatic water deficit (CWD; in mm/yr;
Chave et al. 2014) was included as a measure of seasonal

drought stress.1 CWD is defined as the cumulative
amount of water lost by the environment during months
in which evapotranspiration exceeds rainfall. CWD is
negative for sites that experience seasonal drought stress;
a CWD of 0 indicates absence of seasonal drought stress.
Topsoil total exchange bases (TEB; in cmol(+)/kg) was
included as an indicator of soil fertility, and was
obtained from the World Harmonized Soil Database
(FAO/IIASA/ISRIC/ISS-CAS/JRC 2012). Wood density
(WD) data were obtained from a global database (Chave
et al. 2009, Zanne et al. 2009). In cases where a species-
specific WD value was not available, we used genus- or
family-level mean WD (Baker et al. 2004). Genus-level
WD was used for 1,578 (out of 2,947) and for 233 (out
of 695) species in Amazonia and Africa, respectively.
Family-level WD was used for 235 and 186 species in
Amazonia and Africa, respectively. For stems that
remained unidentified, or for which family-level mean
WD was unavailable (for 37 species in Amazonia and 31
in Africa), we used the mean WD across all stems in the
plot.

Modeling approach

We used a combination of (modeling) approaches to
evaluate whether the predicted strength of competition
varied across environmental gradients in Amazonia and
Africa. First, we used the plot data from both continents
to construct nonlinear models of individual tree growth
and mortality as functions of tree size (dbh), neighbor-
hood crowding, and WD. Separate models were fitted
for Amazonia and tropical Africa. Second, we used the
estimated parameters of the fitted growth models to cal-
culate the strength of competition (Cplot) at the plot level
(mortality was excluded because competition effects on

−1,500

−1,000

−500

0

−20

−10

0

10

−80 −70 −60 −50 −40 −10 0 10 20 30 40

0 500 1,000 1,500 km

CWD (mm yr    )

TEB (cmol kg   )

–1

–1

(a) (b)

TEB (cmol kg )–1

(a)

< 4
4−7.9
8−11.9
≥ 12

−1,500

−1,000

−500

0

0 500 1,000 1,500 km

CWD (mm yr   )–1

(b)

Longitude Longitude

La
tit

ud
e

FIG. 1. Maps of the plot locations across gradients in climatic water deficit (CWD) and soil total exchange bases (TEB). (a)
Amazonia (102 plots); (b) tropical Africa (49 plots).

1 http://chave.ups-tlse.fr/pantropical_allometry.htm
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mortality were very weak; see Results). As a last step, we
assessed (1) whether Cplot varied with water availability
and soil fertility, and (2) how Cplot was influenced by
variation in plot basal area, plot-level WD, and average
tree size. Variation in Cplot could arise from plot-to-plot
differences in average neighborhood crowding (i.e., plot
basal area), average WD, or average tree size, as each of
these influenced the modeled effect of competition on
individual tree growth. We describe each of these steps
in greater detail below.
We modeled the annual basal area growth (G) and the

annual probability of mortality (M) for individual trees
on each continent as follows:

G ¼ aG � pG � SG � CG

M ¼ 1þ aM � pM � SM � CMð Þ�1

where aG and aM are constants, pG and pM are plot-level
random effects, and S and C (each subscripted for
growth and mortality) are nonlinear functions that cap-
ture effects of tree size and competition, respectively:

S ¼ dbhs1 � exp �s2 � dbhð Þ

C ¼ exp �c1 � dbhc2 � BAneigh
� �

where s1, s2, c1, and c2 control the shape of the functions
and have separate values for growth and mortality. S has
a flexible form that can produce either an intermediate
peak or a continuous increase in tree growth with tree
size (dbh; Coomes et al. 2014). For mortality, S can pro-
duce a U-shaped response where mortality both
decreases with size for small trees and increases with size
for larger trees (R€uger et al. 2011, Iida et al. 2014). C is a
decreasing function that can produce lower growth and
higher mortality in trees with greater neighborhood
crowding. The sensitivity of growth and mortality to
competition may vary with tree size (as determined by
c2), as large trees may be less susceptible to competition
than small trees.
We applied a trait-based approach to account for tax-

onomic variation in growth and mortality, as a species-
level approach was not feasible given the huge diversity
of tree species in the tropics (e.g., an estimated 15,000
tree species in the Amazon basin; ter Steege et al. 2015).
WD is known to be a good predictor of tropical tree
growth and mortality (e.g., Chao et al. 2008, Poorter
et al. 2008, Wright et al. 2010, R€uger et al. 2012, Aleixo
et al. 2019); therefore we defined model parameters a, s1,
s2, c1, and c2 as linear functions of WD. As such, WD
could influence growth and mortality directly, as well as
indirectly through effects on size relationships and
responses to competition (e.g., H�erault et al. 2011, Iida
et al. 2014, Kunstler et al. 2016). Models were fit using a
hierarchical Bayesian approach (Appendix S2, Data S1:
Model_script.R).

Using the fitted growth models, we calculated the
strength of competition for each plot (Cplot) as the per-
cent reduction in plot-level basal area growth due to
competition compared to a low, baseline level of neigh-
borhood crowding by assessing to what extent growth
was reduced for each individual tree:

Cplot ¼ 1�
Pn

i¼1 G
ch i
iPn

i¼1 G
lch i
i

 ! !
� 100

where for tree i, G ch i
i represents predicted basal area

growth with the observed level of competition, and G lch i
i

represents its potential growth at a low, baseline level of
competition. Quantifying plot-level competition based on
the growth reduction compared to potential growth in the
absence of competition may be unrealistic, because a
BAneigh of zero is rarely found. Per continent, we calcu-
lated the 10th percentile of the plot-level 10th percentile
values of BAneigh (11.3 m2/ha for Amazonia; 9.8 m2/ha
for Africa). We therefore calculated the strength of com-
petition based on a general baseline level of
BAneigh = 10 m2/ha for both continents. Thus, Cplot was
calculated by comparing predicted plot-level growth
(based on all individual trees) with competition to growth
at a BAneigh of 10 m2/ha. Growth predictions were based
on the posterior means of the model parameters.
For each continent, we examined whether Cplot was

correlated with water availability (CWD) or soil fertility
(TEB). To assess whether variation in Cplot was driven
by variation in plot basal area, plot-level WD (basal
area-weighted mean), or average tree size (the diameter
of a tree with mean basal area;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dbh2

� �
=n

q
)), we mod-

eled Cplot as a function of plot BA, plot-level WD, and
average tree size using linear regression. In order to com-
pare effect sizes among the three predictors, predictors
were standardized by subtracting the mean and dividing
the difference by the standard deviation. All analyses
were performed in R 3.1.2 (R Development Core Team
2014).

RESULTS

Overall responses to competition

Individual tree growth was strongly affected by com-
petition (Fig. 2; Appendix S1: Table S2), but competi-
tion effects were stronger in Amazonian than African
tropical forests. For example, for a 20-cm diameter tree
with a WD of 0.6 g cm�3, growth decreased by 34%
in Amazonia (Fig. 2e, g) and 17% in Africa (Fig. 2f,
h) as BAneigh increased from 10 to 50 m2/ha. Further,
even though plot-level basal area was on average
slightly lower in Amazonia (25.9 � 0.44 m2/ha;
mean � SE) than in Africa (28.7 � 0.64 m2/ha), the
stronger response of trees to competition in Amazonia
resulted in greater predicted decreases in plot-level
wood production than in Africa. Competition reduced
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plot-level basal area growth (compared to a baseline,
low-BAneigh value of 10 m2/ha) by, on average, 31.1%
(range: 4.5–25.2%; Fig. 3a, c) in Amazonia, and by
7.4% in Africa (range: 5.3–11.7%; Fig. 3b, d).
In contrast to effects on growth, competition with

neighboring trees had little or no effect on the probabil-
ity of mortality. Nevertheless, the mortality model that

included competition performed better than the no-com-
petition model for Amazonia (Appendix S1: Table S2).
The predicted probability of mortality for a 20-cm dbh
tree with a WD of 0.6 gr cm�3 remained constant at
1.4% (Fig. 2m, o) and 1.0% (Fig. 2n, p) per year as
BAneigh increased from 10 to 50 m2 ha�1 in Amazonia
and Africa, respectively.
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FIG. 2. Effects of wood density (WD), tree size, and competition (subplot neighbor basal area; BAneigh) on predicted annual
basal area growth and mortality across Amazonia (n = 102 plots) and tropical Africa (n = 49). Solid lines and symbols indicate pre-
dicted effects based on the posterior means; shaded areas indicate the 95% credible interval. Boxplots indicate the distribution of
the variable on the x-axis. BAneigh was kept constant at the mean for quantifying effects of WD and tree size on growth and mortal-
ity; tree size was kept constant at 20-cm diameter for quantifying effects of WD and BAneigh. dbh = diameter at breast height.
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Effects of wood density and tree size

Tree basal area growth decreased with increasing WD
on both continents (Fig. 2a, b). In Amazonia, a 20-cm tree
with low WD (0.3 g/cm3) grew more than twice as fast as
a high-WD (0.9 g/cm3) tree of the same size (Fig. 2a). In

Africa, the growth decrease with increasing WD was less
pronounced (Fig. 2b). Growth increased with tree size on
both continents (Fig. 2c, d), with low WD species exhibit-
ing stronger size-related increases in growth.
On both continents, small trees were more strongly

affected by competition than large trees (Fig. 2e, f). In
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FIG. 3. Relationships between the strength of competition on basal area growth (Cplot: reduction in plot-level basal area growth
by competition based on a reference value of 10 m2/ha) and climatic water deficit (CWD), soil total exchange bases (TEB), plot
basal area (BA), plot wood density (WD), and mean tree size in Amazonia (n = 102 plots) and tropical Africa (n = 49 plots). (a–d)
Gray bars represent 95% credible intervals; Pearson’s correlation (r) and partial (rpart) correlation coefficients are indicated; (e, f)
standardized regression coefficients with 95% confidence intervals are indicated.
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Amazonia, growth of a 10-cm tree and a 30-cm tree
decreased by 49% and 27%, respectively, as neighbor
basal area increased from 10 to 50 m2/ha (Fig. 2e). Simi-
lar growth decreases were found in Africa, with a 28%
and 18% growth decrease for a 10-cm and a 30-cm tree,
respectively (Fig. 2f). Amazonian trees with different
WD showed similar absolute decreases in growth result-
ing from competition, but on a proportional basis high
WD species expressed greater decreases than low WD
species (48% and 17%, respectively) as BAneigh increased
from 10 to 50 m2/ha (Fig. 2g). Conversely, the growth of
high WD species in Africa was less affected by competi-
tion than that of low WD species (decreases of 14% and
28%, respectively; Fig. 2h).
The probability of mortality decreased with WD on

both continents (Fig. 2i, j), but the decline was more
pronounced and more consistent in Amazonia than in
Africa. Mortality generally increased with tree size
(Fig. 2k, l), particularly for trees >50-cm dbh, although
low abundances increased uncertainty for large trees.
Small trees with low WD had higher mortality than
mid-sized trees (7% and 23% higher mortality at 10-cm
dbh than at 50-cm dbh in Amazonia and tropical Africa,
respectively), leading to a U-shaped size–mortality rela-
tionship. Effects of competition on mortality were very
weak on both continents, regardless of WD or tree size
(Fig. 2m, n, o, p).

Variation in the strength of competition

In Amazonia, the plot-level strength of competition
(Cplot) was strongly and positively correlated with CWD,
but negatively correlated with TEB, particularly after
accounting for variation in CWD (Fig. 3a, b). Plot basal
area had the largest effect on Cplot, followed by a posi-
tive effect of plot WD, and a small negative effect of
mean tree size (Fig. 3e). In Africa, Cplot was not corre-
lated with CWD, and just weakly, positively correlated
with TEB (Fig. 3c, d). Like in Amazonia, Cplot was lar-
gely driven by a positive effect of plot basal area. Unlike
Amazonia, plot-level WD had little influence on Cplot in
tropical Africa (Fig. 3f).

DISCUSSION

Large variation in the strength of competition on tree
growth across environmental gradients

Across two continents, we found that competition is
an important driver of tropical tree growth, but unex-
pectedly not of mortality. Variation in the plot-level
strength of competition across tropical forests was large
for both continents. As expected, individual tree growth
was most strongly affected by competition in forests with
high basal area, although in Amazonia competition was
also strong in high WD forests. In Amazonia, as
expected, the strength of competition on tree growth
increased with water availability (CWD), likely because

of higher plot basal area in wetter forests (Appendix S1:
Fig. S1). However, the strength of competition declined
slightly with soil fertility (TEB), likely because of lower
plot-level WD at high soil fertility (Appendix S1:
Table S3), and because low WD species in Amazonia
appeared to be less susceptible to competition. Unex-
pectedly, the strength of competition did not vary with
water availability, nor with soil fertility, in Africa. This
may have been due to the shorter water availability and
soil fertility gradients compared to Amazonia in our
study, which likely partly explains the lack of relation-
ships with environmental conditions in tropical Africa.
Given these differences, we must be careful in drawing
general conclusions across continents. Across the same
range in environmental conditions (based on Africa,
excluding two outliers; Fig. 3b, d), the relationship
between the strength of competition and CWD was
stronger in Amazonia (Pearson’s r = 0.40, n = 38 plots)
than in Africa (r = �0.12). The relationship between the
strength of competition and TEB was somewhat stron-
ger for Africa because of outlier exclusion (r = 0.23)
than for Amazonia (r = 0.10, n = 41 plots). Overall, our
results are partly consistent with Grime’s (1979) hypoth-
esis that competition is strongest in resource-rich envi-
ronments because of the increased strength of
competition under high water availability in Amazonia.

Effects of WD and tree size on growth and mortality

In contrast, effects of WD and tree size on individual
tree growth and mortality were largely consistent
between Amazonia and tropical Africa. In general, our
results confirmed findings of previous studies that were
based on a single, or a few, tropical forest sites, and indi-
cated that these attributes control growth and mortality
across most of the tropical forest biome. Tree growth
and mortality both decreased with WD, as reported by
smaller-scale Neotropical studies (e.g., Chao et al. 2008,
Keeling et al. 2008, Poorter et al. 2008, Wright et al.
2010, R€uger et al. 2012). Low WD is associated with an
acquisitive strategy that confers rapid growth, but that
comes at the cost of high mortality because of lower tol-
erance to stress and damage compared to high WD spe-
cies (Wright et al. 2010). Basal area growth increased
with tree size, presumably because larger trees have more
resources and/or leaf area available to support assimila-
tion of carbon (Stephenson et al. 2014). The ontogenetic
increase in growth was strongest for low WD species
(Fig. 2c, d), probably because of the low construction
cost of low-density wood. These findings are consistent
with single-site studies that found that low-WD tropical
tree species had the strongest increase in diameter
growth at intermediate tree size (King et al. 2006,
H�erault et al. 2011, but see R€uger et al. 2012).
Our study is one of the first to show a clearly U-

shaped size–mortality relationship (cf. R€uger et al. 2011,
Iida et al. 2014, Pillet et al. 2018), which we found for
low-WD species. For trees ≥30 cm dbh, and for high
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WD trees in general, the risk of death increased nearly
monotonically with size. Small trees, particularly those
with low WD, may be most susceptible to physical dam-
age in the understory (Clark and Clark 1991). The
higher mortality risk for large trees may be a result of
the stronger risk of hydraulic failure for large trees (Row-
land et al. 2015) rather than senescence (Mencuccini
et al. 2005).

Competition decreased tree growth but did not influence
mortality

Our results show that growth decreases with increased
neighborhood crowding across tropical forests on two
continents, particularly for small trees. This provides
large-scale confirmation that results reported to date for
single Neotropical forest sites in Costa Rica, Ecuador,
Panama, and Puerto Rico (Uriarte et al. 2004, Baribault
et al. 2012, Grote et al. 2013, Lasky et al. 2015, Fortunel
et al. 2016) are typical of the biome. We also expected
that low-WD species would be most strongly affected by
competition. Low-WD species were indeed most affected
by competition in Africa, consistent with earlier findings
of strong growth responses of low-WD species to com-
petition (Kunstler et al. 2016) and light availability
(R€uger et al. 2012), which supports the notion that
shade-intolerant tree species respond more strongly to
changes in resource levels. However, it remains unclear
why high WD species in Amazonia were more suscepti-
ble to competition. The mean and range of neighbor-
hood crowding levels did not vary across WD classes
(<0.35 g/cm3; 0.35–0.75 g/cm3; >0.75 g/cm3; results not
shown), thus effects of competition were not weaker
because low WD species were confined to areas with low
neighborhood crowding.
Our results suggest that competition does not strongly

influence tree mortality in either Amazonia or tropical
Africa. The lack of evidence for impacts of competition
on mortality could be partly due to only including trees
≥10 cm dbh in our study. Generally, mortality rates are
highest for seedlings and saplings (trees <10 cm dbh;
Clark and Clark 1992, Condit et al. 1995) because of the
low-light conditions in the understory, and mortality
resulting from negative density-dependent effects (Zhu
et al. 2015). Those studies that have found clear effects
of competition on tropical tree mortality included trees
<10 cm dbh, and likely included a larger range of
resource levels by focusing on forests in recovery from
disturbances such as agricultural use (Lasky et al. 2014)
and hurricanes (Uriarte et al. 2004). Our findings sug-
gest that competition is not a widespread and important
driver of mortality for trees ≥10 cm dbh in mature tropi-
cal forests. Instead, it appears that processes such as
hydraulic failure (e.g., Rowland et al. 2015) and stochas-
tic wind disturbances (Esp�ırito-Santo et al. 2014, Aleixo
et al. 2019) may be the dominant causes of mortality,
although accelerated growth may eventually increase
mortality by ensuring that trees reach larger sizes more

quickly (cf. Brienen et al. 2015, McDowell et al. 2018).
Nevertheless, the effects of competition on growth may
still indirectly lead to an increased risk of mortality, as
suppressed trees will be less likely to escape from sup-
pression because of their slow growth, and thus accumu-
late mortality risk over a longer period of time.

Implications for projecting the tropical forest carbon sink

Our results provide some insights into how competi-
tion may influence ongoing and future changes in the
tropical forest carbon sink. First, we found that the
decrease in basal area growth due to competition
increased strongly with forest basal area. Hence, when
forests gain basal area over time, greater competition
between trees is likely to reduce tree growth, which
might explain why long-term increases in productivity in
Amazonia have leveled off since 2000 (Brienen et al.
2015). Secondly, we found that, particularly in Amazo-
nia, effects of competition are also influenced by stand-
level WD. Changes in WD over time (e.g., van der Sande
et al. 2016) may not only influence standing biomass
(Baker et al. 2004), but also alter the strength of compe-
tition.
Competition effects should be appropriately incorpo-

rated into models that are used for projecting future
dynamics of tropical forests. In individual-based forest
dynamics models, effects of competition are typically
included (Fyllas et al. 2014), but models could be further
improved by also including effects of WD, and tree size,
on the strength of competition. These changes are rela-
tively easy to implement, as direct effects of tree size are
already included, and WD data are available for many
species (Chave et al. 2009). In dynamic global vegetation
models that are applied over broad geographical scales,
inclusion of forest basal area as a measure of neighbor-
hood crowding will mostly account for geographical
variation in the strength of competition. Such models
could be improved further by including average plot
WD.
In conclusion, our study revealed that in 151 forest

plots distributed across Amazonia and tropical Africa
competition is an important driver of individual tree
growth rates, but not of the probability of tree mortality.
This is, to our knowledge, the first study to evaluate the
effects of competition on tropical tree growth and mor-
tality at such a broad geographical scale. Given that geo-
graphic variation in the strength of competition is
mainly driven by forest basal area (i.e., neighborhood
crowding), we anticipate that wood production might
decrease as tropical forests accrue higher basal area.

ACKNOWLEDGMENTS

The field data used in this study have been generated by two
continental tropical forest networks, RAINFOR and Afri-
TRON. RAINFOR and AfriTRON have been supported by a
Gordon and Betty Moore Foundation grant; the European
Union’s Seventh Framework Programme projects 283080

July 2020 COMPETITION EFFECTS IN TROPICAL FORESTS Article e03052; page 9



(GEOCARBON) and 282664 (AMAZALERT); ERC
Advanced Grant (T-FORCES: Tropical Forests in the Changing
Earth System); Natural Environment Research Council
(NERC) Urgency, Consortium and Standard Grants ‘AMAZO-
NICA’ (NE/F005806/1), ‘TROBIT’ (NE/D005590/1), and
‘Niche Evolution of South American Trees’ (NE/I028122/1);
Conselho Nacional de Desenvolvimento Cient�ıfico e Tec-
nol�ogico of Brazil (CNPq), project Programa de Pesquisas
Ecol�ogicas de Longa Durac�~ao (PELD-403725/2012-7). Forest-
Plots.net data management was supported by the above grants
and additionally an award from Microsoft Research to OP, SL,
and TB. DR and MV acknowledge funding from the University
of Regina; OP is a Royal Society–Wolfson Research Merit
Award holder. This study is number 786 of the Biological
Dynamics of Forest Fragments Project (BDFFP–INPA/STRI)
Technical Series.

LITERATURE CITED

Aleixo, I., D. Norris, L. Hemerik, A. Barbosa, E. Prata, F.
Costa, and L. Poorter. 2019. Amazonian rainforest tree mor-
tality driven by climate and functional traits. Nature Climate
Change 9:384–388.

Baker, T. R. et al. 2004. Variation in wood density determines
spatial patterns in Amazonian forest biomass. Global Change
Biology 10:545–562.

Baker, T. R. et al. 2009. Do species traits determine patterns of
wood production in Amazonian forests? Biogeosciences
6:297–307.

Baribault, T. W., R. K. Kobe, and A. O. Finley. 2012. Tropical
tree growth is correlated with soil phosphorus, potassium,
and calcium, though not for legumes. Ecological Monographs
82:189–203.

Bazzaz, F. A. 1979. Physiological ecology of plant succession.
Annual Review of Ecology and Systematics 10:351–371.

Bennett, A. C., N. G. McDowell, C. D. Allen, and K. J. Ander-
son-Teixeira. 2015. Larger trees suffer most during drought
in forests worldwide. Nature Plants 1:15139.

Brienen, R. J. W. et al. 2015. Long-term decline of the Amazon
carbon sink. Nature 519:344–348.

Canham, C. D., M. J. Papaik, M. Uriarte, W. H. McWilliams, J.
C. Jenkins, and M. J. Twery. 2006. Neighborhood analyses of
canopy tree competition along environmental gradients in
New England forests. Ecological Applications 16:540–554.

Chao, K. J., O. L. Phillips, E. Gloor, A. Monteagudo, A. Tor-
res-Lezama, and R. V�asquez-Mart�ınez. 2008. Growth and
wood density predict tree mortality in Amazon forests. Jour-
nal of Ecology 96:281–292.

Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson,
and A. E. Zanne. 2009. Towards a worldwide wood eco-
nomics spectrum. Ecology Letters 12:351–366.

Chave, J. et al. 2014. Improved allometric models to estimate
the aboveground biomass of tropical trees. Global Change
Biology 20:3177–3190.

Clark, D. A., and D. B. Clark. 1992. Life-history diversity of
canopy and emergent trees in a neotropical rain-forest. Eco-
logical Monographs 62:315–344.

Clark, D. B., and D. A. Clark. 1991. The impact of physical
damage on canopy tree regeneration in tropical rain-forest.
Journal of Ecology 79:447–457.

Condit, R., S. P. Hubbell, and R. B. Foster. 1995. Mortality
rates of 205 Neotropical tree and shrub species and the
impact of a severe drought. Ecological Monographs 65:419–
439.

Coomes, D. A., O. Flores, R. Holdaway, T. Jucker, E. R. Lines,
and M. C. Vanderwel. 2014. Wood production response to

climate change will depend critically on forest composition
and structure. Global Change Biology 20:3632–3645.

Esp�ırito-Santo, F. D. B. et al. 2014. Size and frequency of natu-
ral forest disturbances and the Amazon forest carbon bal-
ance. Nature. Communications 5:3434.

FAO/IIASA/ISRIC/ISS-CAS/JRC. 2012. Harmonized World
Soil Database (version 1.2). FAO, Rome, Italy and IIASA,
Laxenburg, Austria.

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km
spatial resolution climate surfaces for global land areas. Inter-
national Journal of Climatology 37:4302–4315.

Fortunel, C., R. Valencia, S. J. Wright, N. C. Garwood, and N.
J. B. Kraft. 2016. Functional trait differences influence neigh-
bourhood interactions in a hyperdiverse Amazonian forest.
Ecology Letters 19:1062–1070.

Fyllas, N. M. et al. 2014. Analysing Amazonian forest produc-
tivity using a new individual and trait-based model (TFS vol.
1). Geoscientific Model Development 7:1251–1269.

Grime, J. P. 1979. Plant strategies and vegetation processes.
John Wiley and Sons, Chichester, UK.

Grote, S., R. Condit, S. Hubbell, C. Wirth, and N. R€uger.
2013. Response of demographic rates of tropical trees to
light availability: Can position-based competition indices
replace information from canopy census data? PLoS ONE
8:e81787.

H�erault, B., B. Bachelot, L. Poorter, V. Rossi, F. Bongers, J.
Chave, C. E. T. Paine, F. Wagner, and C. Baraloto. 2011.
Functional traits shape ontogenetic growth trajectories of
rain forest tree species. Journal of Ecology 99:1431–1440.

Hubbell, S. P., J. A. Ahumada, R. Condit, and R. B. Foster.
2001. Local neighborhood effects on long-term survival of
individual trees in a neotropical forest. Ecological Research
16:859–875.

Iida, Y., L. Poorter, F. Sterck, A. R. Kassim, M. D. Potts, T.
Kubo, and T. S. Kohyama. 2014. Linking size-dependent
growth and mortality with architectural traits across 145 co-
occurring tropical tree species. Ecology 95:353–363.

Johnson, M. O. et al. 2016. Variation in stem mortality rates
determines patterns of above-ground biomass in Amazonian
forests: implications for dynamic global vegetation models.
Global Change Biology 22:3996–4013.

Keeling, H. C., T. Baker, R. Martinez, A. Monteagudo, and O.
Phillips. 2008. Contrasting patterns of diameter and biomass
increment across tree functional groups in Amazonian forests.
Oecologia 158:521–534.

King, D. A., S. J. Davies, and N. S. M. Noor. 2006. Growth and
mortality are related to adult tree size in a Malaysian mixed
dipterocarp forest. Forest Ecology and Management
223:152–158.

Kunstler, G., C. H. Albert, B. Courbaud, S. Lavergne, W. Thuil-
ler, G. Vieilledent, N. E. Zimmermann, and D. A. Coomes.
2011. Effects of competition on tree radial-growth vary in
importance but not in intensity along climatic gradients. Jour-
nal of Ecology 99:300–312.

Kunstler, G. et al. 2016. Plant functional traits have globally
consistent effects on competition. Nature 529:204–U174.

Lasky, J. R. et al. 2015. Ontogenetic shifts in trait-mediated
mechanisms of plant community assembly. Ecology 96:2157–
2169.

Lasky, J. R., M. Uriarte, V. K. Boukili, and R. L. Chazdon.
2014. Trait-mediated assembly processes predict successional
changes in community diversity of tropical forests. Proceed-
ings of the National Academy of Sciences of the United
States of America 111:5616–5621.

Lewis, S. L. et al. 2009. Increasing carbon storage in intact Afri-
can tropical forests. Nature 457:1003–U1003.

Article e03052; page 10 DANA€E M. A. ROZENDAAL ETAL. Ecology, Vol. 101, No. 7



Lewis, S. L. et al. 2013. Above-ground biomass and structure of
260 African tropical forests. Philosophical Transactions of
the Royal Society B http://dx.doi.org/10.1098/rstb.2012.0295

Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, and O. L. Phil-
lips.2009. ForestPlots.net Database. www.forestplots.net

Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, and O. L. Phillips.
2011. ForestPlots.net: a web application and research tool to
manage and analyse tropical forest plot data. Journal of
Vegetation Science 22:610–613.

Malhi, Y. et al. 2004. The above-ground coarse wood productiv-
ity of 104 Neotropical forest plots. Global Change Biology
10:563–591.

Malhi, Y. et al 2006. The regional variation of aboveground live
biomass in old-growth Amazonian forests. Global Change
Biology 12:1107–1138.

McDowell, N. et al. 2018. Drivers and mechanisms of tree mor-
tality in moist tropical forests. New Phytologist 219:851–869.

Mencuccini, M., J. Martinez-Vilalta, D. Vanderklein, H. A.
Hamid, E. Korakaki, S. Lee, and B. Michiels. 2005. Size-me-
diated ageing reduces vigour in trees. Ecology Letters 8:1183–
1190.

Phillips, O. L. et al. 2010. Drought–mortality relationships for
tropical forests. New Phytologist 187:631–646.

Pillet, M. et al. 2018. Disentangling competitive vs. climatic dri-
vers of tropical forest mortality. Journal of Ecology
106:1165–1179.

Poorter, L. et al. 2008. Are functional traits good predictors of
demographic rates? Evidence from five Neotropical forests.
Ecology 89:1908–1920.

Quesada, C. A. et al 2012. Basin-wide variations in Amazon
forest structure and function are mediated by both soils and
climate. Biogeosciences 9:2203–2246.

R Development Core Team. 2014. R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. www.r-project.org

Rowland, L. et al. 2015. Death from drought in tropical forests
is triggered by hydraulics not carbon starvation. Nature
528:119–122.

R€uger, N., A. Huth, S. P. Hubbell, and R. Condit. 2011. Deter-
minants of mortality across a tropical lowland rainforest
community. Oikos 120:1047–1056.

R€uger, N., C. Wirth, S. J. Wright, and R. Condit. 2012. Func-
tional traits explain light and size response of growth rates in
tropical tree species. Ecology 93:2626–2636.

Stephenson, N. L. et al. 2014. Rate of tree carbon accumulation
increases continuously with tree size. Nature 507:90–93.

ter Steege, H. et al. 2006. Continental-scale patterns of canopy
tree composition and function across Amazonia. Nature
443:444–447.

ter Steege, H. et al. 2015. Estimating the global conservation
status of more than 15,000 Amazonian tree species. Science
Advances 1:e1500936.

Toledo, M. et al. 2011. Climate is a stronger driver of tree and
forest growth rates than soil and disturbance. Journal of
Ecology 99:254–264.

Uriarte, M., C. D. Canham, J. Thompson, and J. K. Zimmer-
man. 2004. A neighborhood analysis of tree growth and sur-
vival in a hurricane-driven tropical forest. Ecological
Monographs 74:591–614.

van der Sande, M. T. et al. 2016. Old-growth Neotropical for-
ests are shifting in species and trait composition. Ecological
Monographs 86:228–243.

van Gelder, H. A., L. Poorter, and F. J. Sterck. 2006. Wood
mechanics, allometry, and life-history variation in a tropical
rain forest tree community. New Phytologist 171:367–378.

Wright, S. J. et al. 2010. Functional traits and the growth–mor-
tality trade-off in tropical trees. Ecology 91:3664–3674.

Zanne, A. E. et al. 2009. Data from: Towards a worldwide wood
economics spectrum. Dryad Digital Repository. https://doi.
org/10.5061/dryad.234

Zhu, Y., L. S. Comita, S. P. Hubbell, and K. P. Ma. 2015. Con-
specific and phylogenetic density-dependent survival differs
across life stages in a tropical forest. Journal of Ecology
103:957–966.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.3052/suppinfo

July 2020 COMPETITION EFFECTS IN TROPICAL FORESTS Article e03052; page 11

http://www.forestplots.net
https://doi.org/10.5061/dryad.234
https://doi.org/10.5061/dryad.234
http://onlinelibrary.wiley.com/doi/10.1002/ecy.3052/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.3052/suppinfo

