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Abstract

The function of the majority of genes in the human and mouse genomes is unknown. Investi-

gating and illuminating this dark genome is a major challenge for the biomedical sciences.

The International Mouse Phenotyping Consortium (IMPC) is addressing this through the

generation and broad-based phenotyping of a knockout (KO) mouse line for every protein-

coding gene, producing a multidimensional data set that underlies a genome-wide annota-

tion map from genes to phenotypes. Here, we develop a multivariate (MV) statistical

approach and apply it to IMPC data comprising 148 phenotypes measured across 4,548 KO

lines.

There are 4,256 (1.4% of 302,997 observed data measurements) hits called by the uni-

variate (UV) model analysing each phenotype separately, compared to 31,843 (10.5%) hits

in the observed data results of the MV model, corresponding to an estimated 7.5-fold

increase in power of the MV model relative to the UV model. One key property of the data

set is its 55.0% rate of missingness, resulting from quality control filters and incomplete

measurement of some KO lines. This raises the question of whether it is possible to infer

perturbations at phenotype–gene pairs at which data are not available, i.e., to infer some in

vivo effects using statistical analysis rather than experimentation. We demonstrate that,

even at missing phenotypes, the MV model can detect perturbations with power comparable

to the single-phenotype analysis, thereby filling in the complete gene–phenotype map with

good sensitivity.

A factor analysis of the MV model’s fitted covariance structure identifies 20 clusters of

phenotypes, with each cluster tending to be perturbed collectively. These factors cumula-

tively explain 75% of the KO-induced variation in the data and facilitate biological interpreta-

tion of perturbations. We also demonstrate that the MV approach strengthens the

correspondence between IMPC phenotypes and existing gene annotation databases. Anal-

ysis of a subset of KO lines measured in replicate across multiple laboratories confirms that

the MV model increases power with high replicability.
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Introduction

The function of the majority of genes in the human and mouse genomes is unknown. Investi-

gating and illuminating this dark genome is a major challenge for the biomedical sciences [1].

Developing a comprehensive catalogue of mammalian gene function will be a vital underpin-

ning to studies of rare and common disease and advances in precision medicine. The Interna-

tional Mouse Phenotyping Consortium (IMPC) is a collaboration between 21 research

institutions worldwide aimed at addressing the challenge of the dark genome through the gen-

eration and broad-based phenotyping of a knockout (KO) mouse line for every protein-coding

gene (www.mousephenotype.org).

In excess of 300 measurements are conducted on each animal, ranging from clinical blood

chemistry, through calorimetry and body composition, to behavioural phenotypes [2]. By

inference from the multidimensional data sets produced, the IMPC is compiling a genome-

wide annotation map from genes to phenotypes that is already providing unique insights into

mammalian gene function and the genome landscape of diverse diseases [3,4,5,6,7,8].

By March 2022, approximately 10,000 KO mouse lines, many for poorly understood genes,

have so far been generated, and 8,623 of those lines have been phenotyped using standardised

procedures for a wide variety of disease systems. In this paper, we analyse a partial IMPC data

set comprising 4,548 KO lines with phenotype data from some of 148 quantitative phenotypes

as of 26 March 2018.

In the IMPC adult phenotyping pipeline, a sequence of standardised measurements is per-

formed on single-gene KO and control mice aged between 9 and 16 weeks. We refer to the mea-

surements as phenotypeswith these being measured in groups called procedures; all phenotypes

within a given procedure are measured in a specific week of age (S1 Fig). The scientific purpose,

experimental design, and detailed description for each procedure are presented at the IMPC web-

site [9]. The primary scientific goal is to identify statistically significant KO-induced phenotypic

perturbations, also referred to as phenotypic hits or positive annotations. The experimental design

of the IMPC measures on average 14 animals (7 of each sex) from each KO line, contemporane-

ously with the rolling baseline of control animals. This is visualised for a pair of phenotypes at one

of the phenotyping centres, MRC Harwell, in Fig 1. The statistical goal is to estimate and test for a

difference in phenotypic mean between each KO line and the shared set of control animals. Con-

ceptually, an unpaired t test between KOs and controls is the basic statistical idea, but in practice,

multilevel modelling is necessary due to the complex experimental structure. For example, litters

and other experimental strata are occasionally confounded with the gene-KO effects of interest,

necessitating the use of hierarchical models to identify effects of interest [10,11,12].

So far, the literature on high-throughput phenotyping has focused exclusively on calling

hits (testing for a perturbation) at one phenotype at a time, using so-called univariate (UV)

models [11,12]. However, initial results from the IMPC have revealed strong correlation

between perturbations at different phenotypes. Multivariate (MV) association methods have

already proven successful in many genetic applications, such as genome-wide association stud-

ies [15,16,17] and multi-tissue eQTL studies [18,19,20,21,22]. This points to an opportunity

for improving inference in the IMPC by sharing information across phenotypes using MV

methods. In particular, when sample size is severely limited on ethical and financial grounds,

the hope is that MV methods can computationally increase the information extracted from the

data that are gathered. Further, in our IMPC data set, not all phenotypes are available on each

KO line. This raises the question of whether it is possible to infer perturbations at (phenotype,

KO line) pairs at which data are not available, i.e., to infer some in vivo effects using statistical

analysis rather than experimentation. We set out to implement an MV model that can effec-

tively perform this type of inference when some data are missing.
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We adopt a composable approach to MV modelling that is computationally attractive while

effectively capturing the important variation in the IMPC data set. First, we fit a UV multilevel

model [11] for each phenotype separately. Second, we take the UV model’s outputted effect

estimates and standard errors and fit an MV model to these, building methodologically on the

work of [22,23]. We contextualise and compare performance of our methods against the back-

ground of this existing work in Methods–Comparison with existing methods.
A major goal of the IMPC is to create a comprehensive gene–phenotype annotation map.

From a statistical perspective, this involves testing the null hypothesis that there is no pheno-

typic perturbation. Alongside the MV model, we design a permutation-based approach to

hypothesis testing aimed at powerful inference under careful control and monitoring of false

positive rates. Our approach is based on the generation of synthetic null KO lines by structured

random resampling from control animals (details in Methods–Control of error rates). By ana-

lysing synthetic null lines alongside true KO lines, we are able to select significance thresholds

for effective error rate control.

Fig 1. Experimental design of the IMPC. Each point corresponds to 1 animal, with data from 2 KO lines—labelled g and eg—displayed

alongside contemporaneous data from a large number of control (wild-type, or WT) animals in grey (see legend). Panels (a) and (b)

show data from phenotypes p (Triglycerides) and ep (Body fat percentage), respectively. Our goal is to quantify the underlying expected

perturbations of the red/blue coloured points from the rolling WT baseline (illustrated with a smooth black curve), in the presence of

structured experimental noise. Annotated on the plot, to the right of the red/blue measurement data of each gene–phenotype pair, are

the posterior mean estimates from the UV and MV models, byUVpg with empty squares and byMV
pg with filled squares (see legend), along with

error bars denoting ±2 posterior SDs. In the current paper, we combine the information in byUVpg across multiple related phenotypes, such

as p and ep, thereby generating improved estimators byMV
pg . The relative means and SDs of the UV and MV estimators shown in the plot

are illustrative of their general properties—MV posterior means are shrunken towards zero (towards the black curve here) relative to

the UV posterior means in 90.2% of cases (phenotype–gene pairs); while MV posterior SDs are smaller than UV posterior SDs

in> 99.9% of cases. The data and code used to generate this figure are available at [13,14]. IMPC, International Mouse Phenotyping

Consortium; KO, knockout; MV, multivariate; UV, univariate; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001723.g001
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We validate our MV method in a number of ways. We evaluate the efficacy of inference in

the presence of missing data by artificially masking data and comparing the masked data

results to the fully observed data results. We independently assess the MV hit-calling method

by examining the replicability of hits called on the same KO lines measured across multiple

laboratories. We also perform a number of additional checks, around the biological reason-

ableness of the results, as well as assessing quantitative measures of model robustness and fit.

Our checks indicate that the MV approach can substantially increase hit rates in the IMPC,

while retaining error rate control and replicability, even when calling hits in cases of missing

phenotype data. The development of a sensitive, replicable, and comprehensive gene–pheno-

type map will ensure that the number of animals used in follow-up experiments to the IMPC is

minimised, in alignment with the 3Rs of replacement, reduction, and refinement [24].

Results

We have previously designed a UV Bayes linear multilevel model targeting the phenotypic per-

turbation of gene KO animals relative to wild-type (WT) animals [11]. We fit this model to

each (phenotype, centre) combination separately, yielding an estimate (and SE) of the pheno-

typic perturbation, byUVpg (andbsUVpg ), for each (phenotype p = 1,. . .,P, gene g = 1,. . .,G) pair at

which measurements are available. Example data and estimates of byUVpg are illustrated in Fig 1.

In this paper, we develop an MV modelling framework, building on the methodological

work of [22,23]. The method takes as input the UV results, byUVpg (bsUVpg ), and outputs MV esti-

mates byMV
pg (bsMV

pg ) across all (phenotype p, gene g) combinations, including those pairs at which

data are unavailable. The MV model is based on a covariance structure Σ allowing perturba-

tions to be correlated across different phenotypes, as illustrated between Triglycerides and

Body fat percentage in Fig 1. The method also incorporates a correlation matrix, R, to account

for structure in experimental noise across phenotypes. A practically useful property of this

2-stage model is its composability, whereby results can be transferred efficiently between 2 dif-

ferent analyses or computational tools—here from an arbitrarily complex UV model to a

highly structured MV model.

We lay out the results in 3 conceptual stages. First, we provide high-level technical descrip-

tions of the UV and MV models. Second, we characterise the IMPC hit calling results, con-

trasting the UV and MV models, and with a focus on demonstrating statistical power and

replicability. Finally, we look to applications to demonstrate how the MV approach can illumi-

nate relationships between phenotypic perturbations and underlying biological mechanisms,

and do this relatively effectively compared to its UV counterpart. These examples provide

extra evidence of the MV method’s validity and replicability by illustrating how its results

make intuitive sense and are aligned with existing scientific knowledge.

Univariate model

The parameter of interest throughout is denoted by θpg and represents the expected perturba-

tion of the pth phenotype in the gth gene KO, relative to WT animals (Fig 1). This UV model,

fitted only to data from KO line g accompanied by data from the entire rolling baseline of WT

animals, takes the form of a linear multilevel model (or mixed-effects model):

yi ¼ ypgIðanimal i is in line gÞ þ xTi βþ
X

r

zTriαr þ εi ð1Þ

αr � MVNormalð0; s2

r IÞ
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ε � MVNormalð0; s2

residIÞ;

where yi is the Box–Cox transformed [25] measurement of the pth phenotype on the ith mouse.

The parameters in β adjust additively for sex, sex–genotype interaction, strain, investigator, and

other experimental metadata, while day and litter effects are modelled hierarchically via αday

and αlitter with variance components s2
day and s2

litter. In this paper, we focus on estimation of θpg,
the main effect of genotype g on phenotype p. In cases where genotype effects differ between

sexes [5], θpg is interpretable as the average of those sex-specific effects. Longitudinal changes in

the measurement baseline are modelled using a penalised spline which features in both fixed

and random components [26]. Noninformative priors are specified for θpg, β and the σr, with

the model being fitted via Markov chain Monte Carlo (MCMC) and outputting samples from

the marginal posterior distribution p(θpg|y) (for further details, see S1 Note and [11]).

The UV inference outputs an estimate and standard error for each θpg, i.e., the posterior

mean byUVpg and posterior SDbsUVpg , respectively. We perform careful quality control of the UV

results, conservatively filtering out (from downstream MV analysis) any centre–procedure

combinations that exhibit anomalous longitudinal patterns in UV results; such patterns can be

indicative of unmodelled experimental artefacts rather than the biological effects (S2 Fig).

Next, to ensure that there are sufficient data at each phenotype, we apply a post-QC heuristic

filter whereby we retain only those phenotypes with UV effect estimates for at least 500 KO

lines. After QC and filtering, the UV estimates (and SEs) are scaled so that the byUVpg have unit

SD for each phenotype within each phenotyping centre and are then taken forward as input

for the MV model.

Multivariate model

In collecting together the results of the UV multilevel model, we obtain unbiased estimates

bθUV
�g (and SEsbsUVpg ) for θ�g that are affected by MV experimental noise, having the covariance

structure bSUV
g RbSUV

g . Further, the latent P-dimensional MV perturbations θ�g tend to exhibit

strong P×P covariance structure. These aspects of the data suggest a model following the form

of [22,23]:

bθUV
�g ¼ NðbθUV

�g jθ�g;bS
UV
g RbSUV

g Þ ð2Þ

pðθ:gjΣ1:S; πÞ ¼
XM

m¼1

XS

s¼1

pmsNðθ:g j0;omΣsÞ ð3Þ

where the parameters Σs represent the covariance of θ�g, i.e., of the expected phenotypic pertur-

bation for a KO line, and the hyperparameter R models the correlation structure of the experi-

mental noise. The bSUV
g ≔diag ðbsUV1g ; . . . ;bsUVPg Þ are known diagonal matrices of standard errors

outputted by the UV model. The density of the latent perturbations, p(θ�g|Σ, π1:M), is an MV

Gaussian mixture model with mixing probabilities π1:M;1:S over a specified ladder of scales

given by constants ω1:M [22,27], and S�1 covariance matrices S1:S to be learned [23]. We relate

our approach to [22,23] in more detail and compare performance in Methods–Comparison
with existing methods.

We constrain Σs to factor-model form (see, e.g., [28]):

Σs ¼WsW
T
s þΨs; ð4Þ
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where Ws is a P×Kmatrix, and Ψs a diagonal P×P matrix having positive diagonal elements.

We performed the full analysis for fixed K2{15,20,30,40}. The results presented in the manu-

script are for a choice of K = 20 and S = 1, selected with reference to false discovery rate–con-

trolled (Fdr-controlled) hit rates [29,30], and cross-validated likelihood measures of model fit

(see Methods–Comparison with existing methods).
We take an empirical Bayes approach to inference in the MV model specified at (2)–(4).

The experimental correlation hyperparameter, R, is estimated from synthetic null data and

fixed at bR in advance [22]. The expectation–maximisation (EM) algorithm is used to obtain

maximum a posteriori (MAP) estimates of hyperparameters Σ1:S and π under flat priors (a der-

ivation and further details of the EM algorithm are in S2 Note). Conditional on the MAP esti-

mates bΣ1:S; bπ , the posterior for θ�g is available in closed form (see Methods–MVmodel when
data are missing).

Visual overview of results

For a global comparison between UV and MV models, we visualise the output of the UV and

MV analyses via z-statistics defined as z≔by=bs. For enhanced interpretation, z-statistics are

scaled by their corresponding significance threshold, i.e., we plot ez≔z=t, so that jezj � 1 corre-

sponds to a significant perturbation (Fig 2). There is a greater proportion of significant z-statis-

tics in the MV model, with significance often co-occurring across phenotypes in the same

procedure, and a tendency for direction to be correlated within procedure. Instances of miss-

ing data denoted by white regions in the UV model heatmap.

We go on to present heatmaps of the estimates of correlation corresponding to bΣ and bR
(Fig 3). There are obvious blocks of correlation within several procedures, which is expected as

similar phenotypes tend to cluster in procedures. While almost all of the experimental correla-

tion in bR occurs between phenotypes within the same procedure, there is a substantial off

block-diagonal correlation structure in bΣ, indicative of correlated phenotypic perturbations

across different procedures. For example, in Fig 3A, KO–gene perturbations are correlated

between Open Field and Light–Dark Test, Clinical Chemistry and Body Composition, Audi-

tory Brain Stem Response and Acoustic Startle, Body Composition and Echo, and Hematology

and Clinical Chemistry.

Power to detect KO perturbations

We first compare the statistical power of the MV and UV models to detect perturbations, i.e.,

call hits, at gene–phenotype pairs where data are observed, and so at which both UV and MV

results are available. We control the Fdr below 5% using the Westfall–Young permutation pro-

cedure [31,32] based on specially created synthetic null data; details are in Methods–Control of
error rates.

Fig 4 visually represents the relative power and overlap of the various methods, including

comparing to the existing IMPC database, which contains results from a different UV

approach [12]—we will discuss this comparison in more detail in Results–Comparison with
IMPC database. There are 4,256 (1.4% of 302,997 observed data measurements) hits called by

the UV model, compared to 31,843 (10.5%) hits in the observed data results of the MV model,

corresponding to an estimated 7.5-fold increase in power of the MV model relative to the UV

model. When we examine concordance between the UV and MV results, there are 95 (0.0%)

hits called by the UV model only, compared to 27,682 (9.1%) hits called by the MV model

only. Of the 4,256 UV model phenotype hits, the MV model co-calls a hit with the same direc-

tionality in 4,161 (97.8%) cases and never calls a hit in an opposite direction to the UV model.
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See also S3 Fig for a scatterplot comparing the scaled z-statistics outputted by the UV and MV

models.

We go on to examine the relative sensitivity of the MV and UV models in more detail, by

comparing the number of hits called by the 2 models at each phenotype (Fig 5A) and KO gene

Fig 2. Global representation of increased sensitivity of the MV model. Each row corresponds to a phenotype, with multiple phenotypes grouped by procedure,

labelled left. Each column corresponds to a KO line, with multiple lines grouped by phenotyping laboratory, labelled bottom. For effective visualisation, only a

random subset of 500 KO lines is shown. The heatmaps display scaled z-statistics, so that ez > 1 and ez < � 1 correspond to a gene KO causing a significant

increase/decrease respectively in the phenotype (Methods–Control of error rates). (a) UV model, where white squares indicate missing phenotype data; and (b)

MV model. The data and code used to generate this figure are available at [13,14]. KO, knockout; MV, multivariate; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.g002
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(Fig 5B). The MV model identified more perturbations than the UV model in all 148 pheno-

types and in 2,750 (60.5% of) KO lines; the UV model identifies more perturbations in 33

(0.7% of) KO lines. On average, the MV model calls 186.4 more hits per phenotype and 6.1

more hits per KO line than the UV model. Fig 5C examines the procedure-wise power

enhancement of the MV method, presenting the proportion of KO lines that have at least one

significantly perturbed phenotype in each procedure (see also S4 Fig for the phenotype-wise

comparison, as well as details of the proportion of missing data for each phenotype).

Inference when data are missing

Even for gene–phenotype pairs at which no data are measured, referred to here as missing
data, the MV model can be used to infer gene KO effects via the correlation structure that

exists between unmeasured and measured phenotypes. The MV model identifies perturbations

in 4,819 (1.3% of 370,107 missing data cases), which compares favourably with the UV model’s

hit rate of 1.4% on observed data. When missing data results are combined with the observed

data results, the MV model detects a total of 36,662 perturbations, an 8.6-fold increase com-

pared to 4,256 detected by the UV method.

It is important to note that estimation of θ�g when bθUV
�g is only partially observed can be per-

formed coherently provided the statistical model is well specified with respect to the

Fig 3. Heatmaps of correlation matrices underlying a systematic co-perturbation of phenotypes in the IMPC. (a) Estimated correlation matrix for the biological

covariation induced by gene KOs, bΣ. (b) Estimated experimental correlation matrix, bR, attributable to the measurement process rather than the targeted biology.

The data and code used to generate this figure are available at [13,14]. IMPC, International Mouse Phenotyping Consortium; KO, knockout.

https://doi.org/10.1371/journal.pbio.3001723.g003
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underlying data generating mechanism, and the unobserved data are missing at random

(MAR) [23,33,34]. While there is a large proportion of missing data, it is clear from Fig 2 that

the bulk of data is missing in obvious blocks and is a result of certain measurements/proce-

dures not being performed in some centres. In this context of certain centres systematically

not performing a subset of measurements, the MAR assumption is reasonable, in that the miss-

ing data mechanism, “given the missing data and the value of the observed data, is the same

for all possible values of the missing data.” [33].

In spite of this reassuring observation, there is naturally still going to be some relatively

small proportion of data that violate the MAR assumption in such a large and complex data set

as this. We therefore perform additional checks on how practically reasonable the MAR

assumption is. These are described in Results–Validating replicability (with reference to Fig 6C

and 6D), and in Methods–Predicting masked data. Our recommendation to practitioners is

carefully to examine the appropriateness of the MAR assumption in their particular context in

the light of the work of Rubin and colleagues [33,34]. If there are any doubts about the MAR

assumption’s validity, we recommend further empirical checks. In particular, the cross-vali-

dated mask and predict approach described in Methods–Predicting masked data can be imple-

mented in a wide variety of MV datasets with missing data, and we recommend this as a tool

for checking accuracy post hoc when the rate of missingness is high.

Fig 4. Visual comparison of the methods’ hit rates and overlap for observed and missing measurements. The large black and red outlined circles denote,

by area, the number of observed and missing measurements. Each of the circles corresponding to a method has area representing the number of hits called

(on observed or missing data). The overlapping area between circles represents the number of hits called by both methods. The data and code used to

generate this figure are available at [13,14]. IMPC, International Mouse Phenotyping Consortium; MV, multivariate; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.g004
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Fig 5. Power enhancement: The MV method offers increased sensitivity to detect gene-KO-induced perturbations. (a) Number of perturbations

per phenotype identified by MV vs. UV models. (b) Number of perturbations per KO line identified by MV vs. UV models. (c) The proportion of

lines with at least 1 hit in a procedure (i.e., having at least 1 phenotype perturbed in that procedure) is used to compare the power of the UV method
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Validating replicability

We validate the UV and MV results by leveraging the multilaboratory nature of the experi-

mental data. As part of the IMPC, a small number of KO lines have been measured multiple

times across several labs, blind to their special status, i.e., the same gene KO, phenotyped in

multiple labs; we refer to these as the reference lines. We analyse them under the UV and MV

models while ensuring the models are blind to their correspondence to one another as repli-

cated samples. After analysis, we reveal the reference lines and examine the replicability of

findings on the same reference line across multiple phenotyping centres.

S5 Fig plots the annotation results for the reference lines under the UV and MV models.

This visually reinforces the impact of the MV model: It strongly increases the hit rate (denoted

by a higher density of crosses) and does so in a replicable way. The directionality of pair-wise

reference line hits of the MV model is concordant in 295 cases and discordant in 7 cases.

Observed levels of replicability can be usefully interpreted in terms of a corresponding false

sign rate (Fsr), described in Methods–Replicability and false sign rates and estimated using the

IMPC reference lines. We attain a reassuringly low global estimate of cFsrreplicate = 1.2% (95%

CI: 0.6% to 2.4%) for the MV model.

Fig 6 provides further insights into the degree of replicability across laboratories in the ref-

erence line replicates. The blue/red shaded regions in each panel contain instances where

results respectively agree/disagree across laboratories. The MV model (Fig 6B, 6C and 6D)

identifies more perturbations than the UV model (Fig 6A) and does so with a high level of rep-

licability, as measured by the small number of points in the red shaded regions and quantified

by Fsr estimates (cFsrreplicate) shown at top of each panel corresponding to the results shown in

that panel. Importantly, the level of agreement across laboratories is good regardless of

whether the data were missing (Fig 6C) or measured (Fig 6B) or were measured in one labora-

tory but not in the other (Fig 6D).

Comparison with IMPC database

We compare the signed phenotype calls of our UV and MV models to the existing calls in the

IMPC database, which are based on a different UV method [12]. The hit rate in the relevant

subset of the IMPC database is 1.9%, while our UV model hit rate is 1.4% and our MV model

hit rate on measured data is 10.5%. It is not straightforward to make direct comparisons with

the IMPC database hit rate, owing to differences in error rate control (nominal p<10−4 in the

IMPC database versus Fdr < 5% for our UV and MV models). However, when we inspect the

concordance of our methods with the existing database, we see good agreement (Table 1),

pointing to effective error rate control in all cases. Our UV model agrees with the IMPC data-

base in all cases where both call a significant phenotype hit. Our MV model disagrees with the

IMPC database in only 3 cases (0.1% of instances where they both call a hit). We examine

these disagreements in more detail in Methods, where we conclude there to be little evidence

among these 3 cases of either model outperforming the other.

Heterozygotes versus homozygotes

For some genes in the IMPC, both the heterozygote and homozygote KO lines are measured.

It is biologically reasonable that heterozygote and homozygote phenotypic perturbations,

and MV method (on measured and missing data). Procedures are ordered by the UV model’s hit rate. The data and code used to generate this figure

are available at [13,14]. KO, knockout; MV, multivariate; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.g005
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Fig 6. Replicability validation scatterplots comparing results across phenotyping laboratories. Each panel examines a different type of comparison of a

pair of replication results: (a) UV model vs. UV model, (b) MV model (measured) vs. MV model (measured), (c) MV model (missing) vs. MV model

(missing), (d) MV model (measured) vs. MV model (missing). We examine the interlaboratory agreement for the KO reference lines by scatterplotting

scaled z-statistics, ez , for the same KO line but measured in different laboratories. Significant perturbations correspond to jez j > 1, as delimited on the

graphs with dashed red lines. Each point in the plots corresponds to 2 different laboratories measuring the same phenotype on the same KO line. The most

informative cases for estimating the false sign rate (Fsr) occur when both laboratories detect significant perturbations, which correspond to points lying in

the blue/red shaded regions on the scatterplot. The laboratories agree in the blue shaded regions but disagree in the red shaded regions. cFsrreplicate estimates

(95% CIs) are shown at the top of each panel and are based on the level of agreement/disagreement observed in the shaded regions (Methods–Replicability
and false sign rates). Counts (%) for each significance combination are superimposed; while the axes extend to [–3, 3], the counts apply to all data,

including those beyond the plot’s scale. The data and code used to generate this figure are available at [13,14]. Fsr, false sign rate; KO, knockout; MV,

multivariate; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.g006
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should they exist, are likely to act in the same direction. We can therefore compare the hetero-

zygote/homozygote pairs for concordance in results (S6 Fig). As is expected biologically,

homozygote lines are called as hits more frequently by the MV model (7.6%) than the corre-

sponding heterozygote lines (2.3%). In cases where both the heterozygote and homozygote

lines for a gene are called as hits, we observe directional concordance in 594 cases and discor-

dance in only 46 cases. Under the assumption that all heterozygote/homozygote pairs truly

perturb the phenotype in the same direction, then this level of discordance is consistent with

cFsrreplicate of 3.7% (95% CI: 2.8% to 5.0%). This low Fsr estimate contributes further evidence

that our control of false positive rates in hit calling is effective, adding to the evidence provided

by the reference lines replicability analysis. In reality, there may be exceptions whereby the het-

erozygotes and homozygotes actually perturb the phenotype in different directions, in which

case this zygosity-based estimate cFsrreplicate may still be usefully interpreted as an upper bound

on the actual Fsrreplicate.

Gene ontology co-enrichment

Gene Ontology (GO) uses a directed graph to annotate and interrelate biologically meaningful

GO terms [35,36] such as sensory perception of sound (GO:0007605) and locomotory behaviour
(GO:0007626). Each GO term has its own gene set, a list of mouse genes assigned either by

manual curation of published experimental literature or via automated computational meth-

ods. Analogously, our analysis of the IMPC database generates, for each IMPC phenotype, a

set of genes that cause significant phenotypic perturbations; we say each IMPC phenotype has

its own gene set.

By identifying GO terms and IMPC phenotypes with overlapping gene sets, we aim to

increase understanding about the general biological characteristics of genes that affect a phe-

notype. Furthermore, observing co-enrichment between GO terms and IMPC phenotypes

adds evidence that the statistical methods are performing well (assuming the false positive rate

for detecting co-enrichment is controlled appropriately). In this section, we therefore ask the

question: Which pairs of GO term gene sets and IMPC gene sets share a larger set of genes

than expected by chance? An example of this type of co-enrichment analysis is presented in

Fig 7, where we quantify the overlap between gene sets for GO:locomotory behavior and IMPC:

Locomotor activity.
We test for co-enrichment between each of the 148 IMPC gene sets and 5,368 GO terms in the

Biological Process (BP) Sub-Ontology that are annotated to one or more IMPC KO genes. We

focus on genes exhibiting large perturbations (� 2 population SDs) and control the family-wise

error rate at each phenotype below 5% for testing across all BP GO terms; see Methods–Gene
ontology analysis for further details. Across all gene sets, the MV model identifies co-enrichment

between 1,359 pairs of IMPC and GO gene sets, compared to the UV model, which shows co-

enrichment at 342 pairs. The MV model identifies more co-enriched GO gene sets than the UV

Table 1. Comparison of signed hits with the existing IMPC database. (a) UV model; and (b) MV model. Each model is compared to the corresponding hits called in

the existing IMPC database (top). We represent calls by a number in {−1,0,1}, with 1 and −1 denoting significant positive and negative phenotypic perturbations, respec-

tively, and 0 denoting a lack of statistical significance.

(a) UV Model (b) MV Model

−1 0 1 −1 0 1

−1 902 384 0 1,678 10,008 3

IMPC database 0 1,215 188,395 875 943 207,387 742

1 0 364 458 0 7,075 995

https://doi.org/10.1371/journal.pbio.3001723.t001
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model at 80 (54% of) IMPC gene sets, while the UV model identifies more co-enriched GO gene

sets at only 17 (11% of) IMPC gene sets (Table 2 presents a more detailed comparison).

Fig 8 provides a global characterisation of the systematic relationships between IMPC phe-

notypes and biological pathways. A comparison with the corresponding UV model’s map (S7

Fig) illustrates the greatly increased number of GO annotations arising from the MV model,

while also demonstrating qualitative agreement between the UV and MV results in cases

where both models show gene enrichment. In Fig 8, the rows and columns are clustered on

the basis of co-enrichment patterns. This clustering is performed without reference to the

grouping of phenotypes by procedure, so it is remarkable that phenotypes from the same pro-

cedure tend to be clustered together in the horizontal direction (phenotype labels are coloured

according to procedure—see legend at bottom left of Fig 8).

The global picture in Fig 8 is one of concordance between the co-enrichment analysis and

existing scientific knowledge. To illustrate this, we now examine in detail a few representative

rows of the heatmap in Fig 8, labelled (a-h), presented in more detail in the subtables of Fig 9.

• GO:regulation of lipid biosynthetic process is co-enriched with IMPC:Total cholesterol, IMPC:

HDL-cholesterol and IMPC:Triglyceride phenotypes from the IMPC:Clinical Chemistry pro-

cedure (Fig 9A).

Fig 7. Illustrative 2-by-2 contingency tables for co-enrichment testing. (a) UV model; (b) MV model. Each contingency table allocates each gene to one of 4

categories according to whether it is in the GO term gene set (left) and/or IMPC phenotype gene set (top). Fisher exact test p-values are shown above each table.

GO, Gene Ontology; IMPC, International Mouse Phenotyping Consortium; MV, multivariate; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.g007

Table 2. Co-enrichment counts compared across the UV and MV models. (a) Number of GO terms co-enriched with each IMPC phenotype; e.g., there are 23 pheno-

types that have 0 GO terms enriched for the UV model but which have between 1 and 5 GO terms enriched for the MV model. (b) Number of IMPC phenotypes co-

enriched with each GO term; e.g., there are 180 GO terms that have 0 phenotypes enriched for the UV model but which have between 1 and 5 phenotypes enriched for the

MV model.

(a) GO terms per phenotype (b) Phenotypes per GO term

MV model MV model

0 1–5 6–10 11–20 >20 0 1–5 6–10 11–20 >20

0 50 23 6 15 7 5,006 180 15 7 0

1–5 7 3 1 5 10 64 48 13 10 10

UV model 6–10 2 1 1 0 2 0 0 7 7 1

11–20 1 0 5 4 4 0 0 0 0 0

>20 0 0 0 0 1 0 0 0 0 0

https://doi.org/10.1371/journal.pbio.3001723.t002
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Fig 8. Co-enrichment of GO terms (left) with IMPC phenotypes (bottom) for hits called by MV model. Statistically significant

co-enrichment between GO terms and IMPC phenotypes is denoted by bold outlined squares (controlling family-wise error

rate< 5% for each phenotype). The colour of the square indicates the percentage of significantly perturbing KO genes at the GO

term that change the phenotype in the positive direction (see scale bar at top). IMPC phenotypes are clustered by GO term pattern
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• GO:locomotory behavior is co-enriched with phenotypes from the IMPC:Open Field proce-

dure, which is used to assess anxiety and exploratory behaviours; IMPC:Bone Area also

shows overlap with GO:locomotory behavior, compatible with abnormal bone structure con-

tributing to impaired movement (Fig 9B).

• GO:brain development displays interesting overlap with metabolic phenotypes from the

IMPC:Body Composition (DEXA lean/fat) (DEXA) procedure and also with IMPC:Insulin
(Fig 9C).

• GO:circulatory system development overlaps with heart-function phenotypes from the IMPC:

Electrocardiogram (ECG) procedure (Fig 9D).

• GO:growth and GO:anatomical structure development are co-enriched with a broad range of

IMPC phenotypes representative of systemic perturbation affecting body size, strength and

metabolism (Fig 9E and 9H.

• GO:chemical synaptic transmission is co-enriched with phenotypes from the IMPC:Open
Field procedure, thereby pointing to the connection between synaptic dysfunction and

impaired movement, anxiety and exploratory behavioural phenotypes (Fig 9F).

• GO:sensory perception of sound is co-enriched with IMPC phenotypes are mainly in the

IMPC:Auditory Brain Stem Response (ABR) and IMPC:Acoustic Startle and Pre-pulse Inhibi-
tion (PPI) procedures. This makes sense as the ABR procedure [37] directly targets hearing

sensitivity, while the PPI procedure is largely used to assess sensorimotor gating (the ability

of a sensory event to suppress a motor response) [38] (Fig 9G).

To close the GO co-enrichment section, we note that this type of analysis will have greatest

power and provide optimal insight once all gene KOs in the IMPC have been phenotyped and

the data analysed. Our discussion here is intended just to give a flavour of what insights will be

provided by the final analyses of the complete data set.

Factor analysis of MV perturbations

An eigendecomposition of the MV model’s fitted covariance structure (bΣpooled of (26) in Meth-

ods–Cross-validation and model averaging) shows that 75% of the correlation structure is

explained by the first 20 eigenvectors; S8 Fig plots the cumulative variance explained. We

rotate these eigenvectors to a sparse, interpretable set of loadings, or factors, which are visual-

ised in Fig 10A. The important notion of sparsity in this context, illustrated in Fig 10A, is that

the vast majority of phenotypes at any particular factor have loadings close to zero (i.e., they

are coloured green). Each factor therefore defines a small cluster of phenotypes that have large

positive or small negative loadings. From a biological perspective, each cluster of phenotypes

tends to be perturbed collectively by gene KOs.

By examining each cluster of phenotypes, and taking into account the signs of its loadings,

we manually curate labels describing the biological interpretation of each factor. For example,

the first factor defines a cluster according to negative loadings on Bone Mineral Content, Bone

Area, Lean mass, Body length, and Heart weight; this factor is therefore labelled “Body size

along the horizontal axis, while BP GO terms are clustered vertically by phenotype pattern. Phenotype labels are coloured according

to procedure as per legend at bottom left. A subset of GO terms, labelled by row (a-h) at right, are examined in more detail in Fig 9.

For legibility, we only include in the plot those IMPC phenotypes and GO terms that have at least 3 instances of significant co-

enrichment. The data and code used to generate this figure are available at [13,14]. BP, Biological Process; GO, Gene Ontology;

IMPC, International Mouse Phenotyping Consortium; KO, knockout; MV, multivariate.

https://doi.org/10.1371/journal.pbio.3001723.g008
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Fig 9. Examples of GO and IMPC gene set co-enrichment. Each table lists the instances of significant co-enrichment between a GO term (labelled top) and

IMPC phenotypes (left column), along with Fisher exact test p-values quantifying evidence for co-enrichment (right column). GO, Gene Ontology; IMPC,

International Mouse Phenotyping Consortium.

https://doi.org/10.1371/journal.pbio.3001723.g009
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(−).” Factor labels are shown on the axes of Fig 10B. The suffix (+) or (−) denotes the direction-

ality of effect implied by the sign of the loadings in Fig 10A, e.g., “Body size (−)” denotes

“Reduced Body size” and “Deafness (+)” denotes “Increased deafness.” We test for perturba-

tions in the scores corresponding to each factor (Methods–Factor model); Fig 10C plots the

proportion of KO lines with significantly perturbed factor scores, separated according to

whether the perturbation is positive or negative (along the axis defined by the corresponding

loadings vector in Fig 10A). The factors are ordered according to the proportion of lines with

significant perturbations; the commonest perturbation is identified in 27.5% of lines while the

least common is identified in 3.7%. The signs of the loadings vectors are defined so that the

majority of perturbations are positive, resulting in an average of 69.1% in the positive

direction.

We characterise the statistical co-perturbation of factors by analysing a 2×2 contingency

table of perturbation significance counts for each pair of factors, where here factor perturba-

tions are stratified in the binary form {0� factor is not significantly perturbed, 1� factor is

significantly perturbed}. There is significant evidence of co-perturbation in almost every case;

specifically, the null hypothesis of independence of perturbation across pairs of factors is

rejected in 187 out of 190 cases (Fisher exact test on 2×2 tables with Fdr controlled at 5%). Fig

10B displays odds ratios (ORs) quantifying the statistical co-perturbation of each pair of fac-

tors. Here, the interpretation of the OR between a particular pair of factors is that observing a

perturbation in one factor multiplies the odds of observing a perturbation in the other factor

by OR. In Fig 10B, there are some groups of factors that tend to be relatively strongly co-per-

turbed, for example, (Body size, Cardiac dysfunction); (Activity/exploration factors, Coordina-

tion/balance, Sleep bout length, Sleep daily percent). Some factors, such as Activity/

exploration 3, Sleep daily percent, Neutrophil:lymphocyte ratio are strongly co-perturbed with

a number of other factors. Others, such as Deafness are less strongly co-perturbed with other

factors (indicated by ORs relatively close to 1 in the Deafness (+) row of Fig 10B).

Discussion

The IMPC has revealed a clear dependence structure in KO-induced phenotypic perturba-

tions. Here, we have demonstrated that some of the correlation is attributable to multiple mea-

surements of a single underlying phenotype (mainly within-procedure correlation in Fig 3A)

and some of it is attributable to pleiotropic gene effects (particularly some of the between-pro-

cedure correlation in Fig 3A). Given this structure, it is to be expected that sharing information

across phenotypes can greatly aid annotation. Performing MV analysis in this context is chal-

lenging, not least because of the size of the data set and the complex intersample correlation

structures induced by the experimental design. We have developed a composable 2-stage MV

modelling approach that addresses these issues.

The increase in hit rate from 1.4% for the UV model to 10.5% for the MV in the measured

data setting is noteworthy. The MV model’s hit rate of 1.3% in the case of missing measure-

ment data is practically useful when compared to the UV model’s 1.4% on observed data. To

verify the validity and coherence of our results, we implemented several separate measures and

checks. An essential element of our approach is the generation of realistic synthetic null lines

through in silico relabelling of contemporaneously measured WT animals. These synthetic

nulls underpin several analyses, including enhancing the estimation of the experimental corre-

lation R, but their most vital role is the calibration of false positive rates in hypothesis testing

for phenotype annotation. This particular application underscores the importance of blinded

phenotyping of control animals in phenotyping pipelines, and the utility of WT animals
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Fig 10. Characterisation of sparse factors underlying bΣ. (a) Sparse loadings for 20 factors; each loadings vector is signed and scaled so that the magnitude

of the largest loading is 1 and>50% of significant factor score perturbations are positive, as can be seen in panel (c). (b) Odds ratio as a measure of

dependence in perturbations between pairs of factors (Results–Factor analysis of MV perturbations). (c) The hit percentages (i.e., percentage significantly

perturbed) at each factor, with red/blue, respectively, indicating the percentage of lines perturbed in the same/opposite direction to the loadings. For example,
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following the same experimental design as KO animals, for example, in the sharing of litters,

days, and other experimental covariates.

There have been historical concerns over the replicability of animal phenotyping annota-

tions across different laboratories, particularly with behavioural phenotypes [39,40]. Here, we

have focused on replicability through the lens of signed annotations in {−1,0,1}, with ±1 corre-

sponding to statistically significant perturbations in a particular direction, and 0 representing

no significant effect. Signed annotations are vital for the effective scientific impact of the

IMPC, and their replicability is therefore a fundamental downstream requirement of any sta-

tistical method. In the context of phenotypic screening in model species, sample size, and

hence power, is strictly limited. We therefore expect in our replicability study to observe many

reference line phenotype hits called in one laboratory but not in another. However, when 2

laboratories both call hits, the proportion of hit pairs that are concordant is a useful measure of

replicability. Here, we have shown that the level of concordance, and hence replicability, in the

IMPC reference lines is high, in particular showing compatibility with a low Fsr of cFsrreplicate =

1.2% (95% CI: 0.6% to 2.4%). Notably, pair-wise concordant hits across laboratories were

observed in all procedures in Fig 6 and S5 Fig, including behavioural ones such as Open Field

and Light–Dark test. This check on coherence was only feasible because of the inclusion of ref-

erence lines and demonstrates the value of experimental design that incorporates technical

replication across potentially heterogeneous measurement contexts.

As a further coherence check, we quantified directional concordance in phenotype hits

between heterozygotes and homozygotes of the same KO line. Here, the agreement observed

in the results of the MV model was compatible with an Fsr estimate cFsrreplicate of 3.7% (95% CI:

2.8% to 5.0%), even though the observed level of discordance here is potentially inflated by any

heterozygote/homozygote KOs having truly opposing effects.

We have demonstrated under the MV model that it is possible to call hits with relatively

high power for gene–phenotype pairs at which measurements were not taken. This has the

potential to enhance the scientific impact of the IMPC database, as a complete gene-by-pheno-

type annotation matrix offers a more encyclopaedic and versatile tool to end users, compared

to a matrix with blocks of missing data (Fig 2). We have assessed the accuracy of inference in

the presence of missing data in a number of ways. For the reference lines, the replicability of

results on missing data is comparable to that of results on measured data (Fig 6). Separately,

we have demonstrated high power (Fig 5 and S4 Fig) and accuracy (S9 Fig) of inference for

whole missing procedures via a leave-one-procedure-out (LOO-MV) cross-validation tech-

nique. These results suggest a degree of redundancy in the data, including across procedures,

in the sense that most of the information in some phenotypes is captured in others. The miss-

ing data methods developed here have the potential to replace some animal experiments with

statistical analysis, in line with the NC3Rs [24]. It would be particularly effective if costlier

experiments could be rendered redundant by less costly ones, where cost encompasses the eth-

ical cost of animal suffering as well as considerations of finance and other resources.

We have focused on 148 quantitative phenotypes, yet the IMPC additionally includes many

categorical phenotypes. Usefully, our MV model is straightforward to extend to multiple phe-

notypes of mixed response type. This is because it accepts as input the UV-estimated effect

sizes and standard errors, and these can just as easily take the form of estimated log ORs out-

putted by a logistic regression as they can estimates and standard errors from an ordinary

the large proportion of red in the bar labelled “Body size (−)” indicates that most perturbations are in the same direction as the factor loadings, i.e., they tend

to result in reduced Body size. The data and code used to generate this figure are available at [13,14].

https://doi.org/10.1371/journal.pbio.3001723.g010
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linear model. We anticipate extending and applying the methodology in this direction, begin-

ning with UV analyses using generalised linear multilevel models.

An MV model on estimated effect sizes and standard errors, as introduced in [22,23], has a

number of benefits that may render it useful in other areas of application. The initial UV analy-

ses may be made arbitrarily complex, allowing careful UV modelling of correlation structure

across samples; there is no need at the UV stage to simultaneously consider the correlation

structure across different response variables, which would be difficult both analytically and

computationally; UV model fits may be performed in parallel; and the size of the data set

inputted into MV analysis is reduced substantially, potentially by an order of magnitude or

more. There are certain dataset properties that are preferred for the fruitful application of this

method. We require a sufficient number of independent MV observations (in our case KO

lines) to estimate the covariance structure in Σ and R effectively. If there are insufficient data

to estimate full P×P covariance matrices, then Σ and R can be represented more parsimoni-

ously using reduced rank factor models, as we do here. Misspecification of either the UV

model correlation structure (in our case across animals) or of the independence assumption in

the MV model (in our case of i.i.d. effect vectors across KO lines) may lead to miscalibrated

output. We calibrated our model output using permutation-generated synthetic null lines, and

we expect this would be a useful if not essential element in other applications as well.

The empirical Bayes approach to inference has major advantages, in that it allows the com-

puter-intensive work, of estimating Σ and R and defining appropriate significance thresholds,

to be done in advance. Thereafter, it is computationally tractable and fast to update estimates

byMV
pg as data on new KO lines, or further measurements on existing lines, become available. An

alternative approach would be to perform full Bayesian inference targeting the posterior

pðΣ;R;ΘjbΘUVÞ. We did implement full Bayes by MCMC but found it to be less practicable

than MAP estimation followed by empirical Bayes inference; this was mainly due to concerns

about slow mixing of the MCMC sampler.

An even more ambitious goal would be to fit a full multilevel factor model directly to the

raw data [41,42,43,44,45], i.e., to target the posterior p(Σ, R, Θ|Y), where Y is the raw, animal-

level data. This is in principle extremely attractive, as it would potentially allow for more infor-

mation to flow the raw data to the parameters of interest and could deliver more power. Of

course, effective inference would rely upon the (more complex) model being a sufficiently

good representation of the data. With reference to the multilevel UV model at (1), a joint mul-

tilevel factor model would probably require an intermeasurement (P×P) covariance structure

underlying each of the different random effects; this would be nontrivial to implement, espe-

cially with nonidentifiability considerations. A more basic challenge is the size of the data set

increasing by an order of magnitude, which could have a considerable impact on the computa-

tional complexity, depending upon the implementation. While the scope of this paper is to

build on and extend the modular framework of [22,23], we do see joint multilevel factor

modelling as a promising area to explore in future, especially with the ongoing development of

scalable optimisation methods for complex models [46].

The development of a sparse factor model reduces the dimensionality of the space contain-

ing 75% of MV perturbations from 148 to 20. Even within that reduced 20-dimensional space,

we observed strong interfactor correlations in annotation, suggestive of a still smaller effective

dimensionality. In this latent space of factors, it is easier to place particular KO lines into a

broader context. For example, we can identify which factors are perturbed and examine their

particular properties, such as their biological interpretation, how rare the perturbation is in the

IMPC more generally, and whether a perturbation’s directionality is common or rare (positive

or negative effect in Fig 10C).
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In summary, we have developed a composable MV approach for analysis of high-dimen-

sional data sets from the IMPC, demonstrating 4 major improvements over existing UV meth-

ods. First, power to detect KO perturbations can be increased drastically by purely analytical

means, yielding 7.5 times as many gene–phenotype hits on observed data. Second, even when

KO lines are missing some measurements, we can call hits at missing measurements with good

power and output a full gene–phenotype map. Third, the greater power of the MV approach

enhances correspondence between IMPC phenotypes and existing GO databases, promising

ever stronger biological insights as the IMPC database progresses towards completion. Finally,

high-dimensional phenotype perturbations may be informatively viewed in a much smaller,

here 20-dimensional, subspace, thereby facilitating interpretation of gene KO effects and illu-

minating a rich structure in the phenotypic landscape of the mouse genome.

Methods

MV model when data are missing

Here, we generalise the MV model introduced at (2)–(4) to the case in which some subset of

measurements is not observed. The validity of the MV missing data model below relies on the

data set satisfying the MAR assumption [23,33,34] discussed in Results–Inference when data
are missing. If, at gene g, only Pg�P measurements are observed then, using the � subscript

bθUV
�g ; θ�g; R�� to denote restriction to the Pg indices of the measured data, the model with miss-

ing data is written

pðbθUV
�g jRÞ ¼ NðbθUV

�g jθ�g;bS
UV
g;��R��bS

UV
g;��Þ ð5Þ

pðθ:g jΣ1:S; πÞ ¼
XM

m¼1

XS

s¼1

pmsNðθ:gj0;omΣsÞ; ð6Þ

with Eq (6) unchanged from the fully observed model, i.e., still with θ�g denoting the full P-vec-

tor of latent perturbations for gene g. When data are MAR, the posterior for θ�g under model

(5)–(6) is a Gaussian mixture available in closed form:

pðθ:gjbΣ1:S; bπ ; bθ
UV
�g Þ ¼

XM

m¼1

XS

s¼1

rgmsNðθ:gjμgms;VgmsÞ ð7Þ

μgms≔om
bΣs;��ðom

bΣs;�� þ
bSUV
g;��
bR��bS

UV
g;��Þ

� 1bθUV
�g

Vgms≔om
bΣs;�� � om

bΣs;��ðom
bΣs;�� þ

bSUV
g;��
bR��bS

UV
g;��Þ

� 1
om
bΣs;��

rgms≔
bpmsNðbθUV

�g
j0;om

bΣs;��
þ bSUV

g;��
bR��bSUV

g;��
Þ

X

m;s

bpmsNðbθ
UV
�g
j0;om

bΣs;��
þ bSUV

g;��
bR��bS

UV
g;��
Þ
:

EM algorithm

A detailed derivation of the EM algorithm used to fit the MV model introduced at (2)–(4) is

given in S2 Note. Algorithm 1 outlines the computations required where, for notational brev-

ity, we use superscripted assignment notation in place of for loops; for example, � g;m;s per-

forms an assignment for each (g, m, s)2{g = 1. . .,G}×{m = 1. . .,M}×{s = 1. . .,S} .
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————————————————————————————————————————
Algorithm 1 EM algorithm targeting Σ1:S , π.
————————————————————————————————————————
Inputs:

UV model outputs bθUV
1:G;
bSUV

1:G

Estimated noise correlation bR
Known scale parameters ω1:M

Initialize:

pms �
m;s 1

MS
; Σs �

s
Σð0Þs

repeat

μgms �
g;m;s

omΣs;��ðomΣs;�� þ
bSUV
g;��
bR��bS

UV
g;��Þ

� 1bθUV
�g

Vgms �
g;m;s

omΣs;�� � omΣs;��ðomΣs;�� þ
bSUV
g;��
bR��bS

UV
g;��Þ

� 1
omΣs;��

rgms 
g;m;s bpmsNðbθUV

�g
j0;omΣs;��

þ bSUV
g;��
bR��bSUV

g;��
Þ

X

m;s

pmsNðbθ
UV
�g
j0;omΣs;��

þ bSUV
g;��
bR��bS

UV
g;��
Þ

pms 
m;s

X

g

rgms
X

m;s;g

rgms

Cs 
s

X

g;m

rgmsðVgms þ μgmsμ
T
gmsÞ=om

X

g;m

rgms

Σs �
s argmax

Σ2WK

logjΣj þ trðΣ� 1CsÞ

where WK≔fWWT þΨs : W 2 RP�K ;Ψs diagonal with ½Ψs�jj � 0 8jg
until convergence

Outputs: bΣ1:S; bπ
————————————————————————————————————————

Initialisation. The key parameters to initialise are the S covariance matrices Σ1:S. We initi-

alise Σs at the sample covariance matrix calculated using a specified subset of samples, denoted

J s:

Σð0Þs ≔dcovP�PðbY
UV
�J s
Þ ð8Þ

where bYUV is the P×G matrix of UV results; any missing data in bYUV are zero-filled just for the

purposes of the above calculation. Should this yield a positive semidefinite Σð0Þs , we add εI to

ensure positive definiteness at initialisation; for results shown here, we use ε = 0.05.
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Our main results are based upon the case of a single covariance matrix (S = 1) in which case

J 1 comprises all (nonsynthetic null) samples in the training set. When the model is specified

to have more than 1 covariance matrix (S>1), we choose the subsets J 1:S to partition the train-

ing set via model-based clustering of the zero-completed version of bYUV using the function

Mclust() in the R package mclust with default parameter settings.

The likelihood of the MV model (2)–(4) is multimodal, and, hence, convergence of the EM

algorithm is sensitive to initialisation. This sensitivity is investigated in a number of ways as

part of our model checking section in Methods–Model checking and sensitivity analyses. By

repeating our entire analysis for data subsets, e.g., of size 500, we capture variation in empirical

initialisation (since the Σð0Þs are based only on the training data) as well as variation in the likeli-

hood surface from data subsampling; we demonstrate that our results are robust to the combi-

nation of these 2 types of variation.

The initialisation at the empirical covariance matrix (8) is helpful for enabling the EM algo-

rithm to target the global optimum. To demonstrate this, we investigate random, vanilla initia-

lisation of Σ, setting

Σð0Þ � Inverse�WishartðI; 2000Þ: ð9Þ

We perform this random initialisation for 10 data subsets of size 2,000 in the single-covariance

matrix case S = 1 (these are the same data subsets used for the main cross-validated analysis).

Then, in each of these cases, we examine the value of the cross-validated likelihood fit and

compare it to the sample covariance initialised cross-validated likelihood fit (S10 Fig, Meth-

ods–Cross-validation and model averaging and Methods–Cross-validated likelihood for IMPC
data). Across 10 folds, the randomly initialised fits perform systematically worse in all cases in

terms of CV likelihood, illustrating the benefits of using a supervised initialisation in this con-

text to mitigate the nonconvexity of the optimisation.

There are potential enhancements to the EM algorithm to increase the probability of con-

vergence to the global maximum, such as the split and merge algorithm of [23]. While our

basic EM implementation appears to provide good performance for the datasets considered

here, particularly with reasonable initialisation, it could usefully be extended to incorporate

such enhancements in future.

Convergence. The EM algorithm is deemed to have converged when the change in objec-

tive function between consecutive iterations falls below a tolerance threshold. We choose the

tolerance threshold adaptively, with reference to variation in log likelihood contribution across

samples. Specifically, denoting the contribution of the gth sample to the log likelihood at the

tth iteration by lðtÞg , the tolerance is set to tol≔εtolNtraMADðflðtÞ1 ; . . . ; lðtÞNtragÞ, where MAD()

denotes the median absolute deviation, Ntra the number of training samples, and εtol a user-

specified constant (we used εtol = 10−4).

Control of error rates

Statistical measures of model fit, such as p-values and Bayes factors, are especially useful tools

when the true data generating mechanism lies within the space of statistical models hypothe-

sised. When the model space excludes the true mechanism, measures of statistical significance

can become miscalibrated [47]. This is particularly important in highly structured scientific

data, where incorrectly assuming conditional independence in a model can lead to artificially

tight confidence intervals and inflated testing false positive rates.

Our solution to this is to use a nonparametric approach to error rate control, known as the

Westfall–Young permutation method [32,48]. The essence of this approach is quite simple—
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we generate synthetic null data that mimic the structure of the actual data as precisely as possi-

ble but that by design do not deviate systematically from WT animals; in our approach, syn-

thetic null lines are drawn at random from WT samples. These null lines serve as the set of

true null hypotheses in our implementation of the Westfall–Young permutation approach to

error rate control [32,48].

We refer to a number of different error rates, so in Table 3, we present a glossary relating

notation to a brief description and where each error rate is defined. For the main analyses in

our paper, we controldFdrcomplete using the Westfall–Young permutation approach. We monitor
dFdrsingle and cFsrreplicate. Finally, we also control lfsr (using Westfall–Young, and also nominally)

in Methods–Comparison with existing methods for the purposes of benchmarking.

Synthetic null data. We define a synthetic null line to be a subsample of typically 10 to 20

WT animals chosen at random so as to reflect the experimental design properties of an actual

KO line. Synthetic nulls play important methodological roles in our inference: most impor-

tantly in permutation-based control of the Fdr when calling phenotype hits, but also in estima-

tion of the experimental correlation matrix R in the MV model at (2). Synthetic null lines are

generated by randomly selecting groups of WT animals from a single centre so as to match the

experimental design characteristics of a particular true KO line at that centre. Specifically, for

each litter of the true KO line, we sample from a computationally matched WT litter at the

same centre. For a KO litter with l animals that was first phenotyped on day d, we sample a

WT litter from all possible WT litters at the same phenotyping centre having at least l animals

and randomly select l animals from that litter. Litters that were measured closer in time to day

d are selected with higher probability [11].

Hypothesis testing and Fdr. A vital output of the IMPC is the data-driven compilation of a

list of (phenotype, KO gene) pairs at which there is evidence for the phenotype being perturbed

by the gene KO. This leads us to the analytical goal of testing the null hypothesisH0: θpg = 0 with

high statistical power under a controlled false positive rate. The IMPC data have many levels of

complex structure, resulting in potential for model misspecification and inflated false positive

rates for parametric tests. Further, the IMPC’s massive number of often strongly correlated tests

calls for an effective power-preserving multiple testing correction. We address these challenges by

controlling the Fdr using the Westfall–Young permutation approach, which provides robustness

to model misspecification in combination with high statistical power when tests are correlated

[32,48]; the synthetic null lines S serve as the set of true null hypotheses.

To test the null hypothesis of no perturbation of phenotype p in KO line g, we use a z-statis-

tic defined as the ratio of posterior mean to posterior SD, i.e.,

zMV
pg ≔

byMV
pg

bsMV
pg

ð10Þ

Table 3. Glossary of error rates referred to in this paper.

Definition Notation Description

(12) Fdr False discovery rate [30]

(14) Fdrsingle Fdr for rejecting single null, i.e., null at phenotype–gene pair

(15) dFdrsingle Estimator for Fdrsingle

(16) Fdrcomplete Fdr for rejecting complete null, i.e., “all phenotypes null” at a gene

(17) dFdrcomplete
Estimator for Fdrcomplete

(19) Fsr False sign rate [49]

(24) cFsrreplicate Estimator for Fsr based on replicated measurements

(33) lfsr Local false sign rate [27]

https://doi.org/10.1371/journal.pbio.3001723.t003
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with the corresponding definition for the UV model output. We choose a significance thresh-

old, denoted τ, so that if

jzpgj > t ð11Þ

then line g is called as significantly perturbed at phenotype p, with directionality determined

by the sign of zpg.
We choose τ so as to control the Fdr. We use the “Bayesian” Fdr definition [30]:

FdrðCÞ≔PðH0truejT 2 CÞ: ð12Þ

whereH0 is a null hypothesis, T a test statistic, and C a critical (rejection) region, which is cho-

sen to control the corresponding empirical form [30]

Fdr Cð Þ≔
PðH0trueÞPðT 2 CjH0trueÞ

1

N

PN

i¼1

I Ti 2 Cð Þ

: ð13Þ

The definition of Fdr in (13) is conservative in the sense that our control of FdrðCÞ implies

similar control of the Benjamini–Hochberg FDR [30,50]. Our choice of (13) is primarily moti-

vated by convenience: Synthetic null data allow the term PðT 2 CjH0 trueÞ in the numerator

of (13) to be estimated and controlled. The other terms in (13) can be dealt with straightfor-

wardly: The denominator is known, and the prior P(H0 true) can be specified, conservatively

at 1 as we do here, or informatively when prior information is available. We estimate Fdr at 2

levels of granularity: the phenotype–gene pair, and the gene. At the phenotype–gene pair level

(i.e., for a single test), Fdrsingle is the Fdr resulting from rejecting the null hypothesis,

H0
pg : ypg ¼ 0, at each phenotype p, gene g pair for which |zpg|�τ:

FdrsingleðtÞ≔Pðypg ¼ 0j jzpgj � tÞ: ð14Þ

We estimate Fdrsingle(τ) by

dFdrsingle tð Þ≔
PðH0

pg trueÞ
1

jSj

P
p

P
g2S I½jzpgj � t�

1

jKj

P
p

P
g2K I½jzpgj � t�

ð15Þ

where zpg from synthetic null lines are included in the numerator to estimate the second term

in the numerator of (13).

At the gene level, Fdrcomplete is the Fdr resulting from rejecting the complete null hypothesis

H0
�g : ypg � 0 8p across all phenotypes at each gene for which maxp{|zpg|}�τ,

FdrcompleteðtÞ≔Pðypg � 0 8pjmax
p
fjzpgjg � tÞ; ð16Þ

with its empirical form FdrcompleteðtÞ defined analogously to (13). We estimate FdrcompleteðtÞ by

dFdrcomplete tð Þ≔
PðH0

�g trueÞ
1

jSj

P
g2SI maxpfjzpgjg � t
h i

1

jKj

P
g2KI maxpfjzpgjg � t

h i ð17Þ

where again zpg from synthetic null lines are included in the numerator.

We monitor bothdFdrsingle anddFdrcomplete as related but distinct estimates of Fdr. However, it

isdFdrcomplete that we use to select τ to control FdrcompleteðtÞ � a while maximising power, via the
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optimization

tðaÞ ¼ argmintt satisfyingdFdrcompleteðtÞ � a: ð18Þ

Control of Fdrcomplete via the permutation based (i.e., synthetic null based)dFdrcomplete is an

implementation of the Westfall–Young permutation procedure [31,32,48].

Replicability and false sign rates. When a KO line is phenotyped in multiple laboratories,

calling hits (identifying significant perturbations) in the same direction in both laboratories is

supportive of a method’s replicability. In Fig 6, concordant hits correspond to points in the

blue shaded regions. In contrast, hits presenting an increasing phenotype in one laboratory

and a decreasing one in the other imply that at least one of the 2 hits is a false positive (indi-

cated by the red regions in Fig 6). In our analyses, we examine such concordance across pairs

of contexts (across laboratories as just introduced, and also to compare heterozygotes versus

homozygotes). It is useful to be able to relate the degree of observed replicability to an underly-

ing error rate, as this provides extra validation of effective error rate control. We therefore

develop a method for quantifying (dis)agreement: a replicability-based estimate of the Fsr,

which we denote cFsrreplicate and derive below. The method maps a contingency table of signed

annotations to a compatible Fsr.

The general situation of interest has pairs of signed significance calls outputted in 2 condi-

tionally independent contexts. We represent calls in this section by {−1,0,1} with 1 and −1

denoting significant positive or negative phenotypic perturbations, z>τ and z<−τ, respec-

tively, and zero denoting the nonsignificant result |z|<τ. The general set of concordance data

can be represented by counts as in Table 4 where the number of points in the blue and red

regions of Fig 6 are denoted by n−−+n++ and n+−+n−+, respectively.

We will show that, while Table 4 provides little information about Fdr, the probabilities

underlying Table 4 can be usefully related to the Fsr, defined as the probability of incorrectly

estimating the sign of an effect (making a “type S error”) given that the null hypothesis of zero

effect is rejected [49]:

Fsr≔PðsignðzÞ 6¼ signðyÞjjzj > tÞ: ð19Þ

We motivate our derivation of an estimator for Fsr by considering the following ratio, bq,

which increases with the level of discordance in Table 4:

bq≔
nþ� þ n� þ

nþ� þ n� þ þ n� � þ nþþ
: ð20Þ

We note that

E bq ¼ q≔PðA;B disagreejboth A and B signif icantÞ

where A,B2{−1,0,1}, and we express

q � PðA 6¼ BjAB 6¼ 0Þ

¼ PðA 6¼ BjAB 6¼ 0; y ¼ 0ÞPðy ¼ 0jAB 6¼ 0Þ

þPðA 6¼ BjAB 6¼ 0; y 6¼ 0ÞPðy 6¼ 0jAB 6¼ 0Þ ð21Þ

¼
1

2
cþ 2 Fsr 1 � Fsrð Þ 1 � cð Þ ð22Þ
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in which we have defined ψ≔P(θ = 0|AB6¼0), where ψ is interpretable as a “double false dis-

covery rate,” i.e., the probability of the null (θ = 0) being true given it has been rejected in 2

conditionally independent tests, e.g., on data sets gathered in 2 different laboratories (note that

ψ = O(Fdr2) is small under reasonable control of Fdr). Further, in the step from (21) to (22) we

have assumed

P A 6¼ BjAB 6¼ 0; y ¼ 0ð Þ ¼
1

2
;

i.e., that false positives are equally likely to be in the positive or negative direction. We also

used the following in the step from (21) to (22):

PðA 6¼ BjAB 6¼ 0; y 6¼ 0Þ ¼ Pð½A false sign and B true sign� _ ½B false sign and A true sign�Þ

¼ 2 Fsrð1 � FsrÞ:

Solving (22) for Fsr gives:

Fsr ¼
1

2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
2q � c
1 � c

s !

: ð23Þ

The right-hand side of (23) is a decreasing function of ψ, so we define a conservative (slightly

upwardly biased) estimator of Fsr by setting ψ = 0:

cFsrreplicate≔
1

2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2bq

p� �
ð24Þ

where q has been replaced by the estimator bq defined at (20). We obtain an approximate confi-

dence interval for Fsr by substituting (in place of bq in (24)) exact binomial confidence interval

bounds for q derived under a model where the number of disagreements follows a binomial

distribution with success probability q:

nþ� þ n� þ � Binomialðnþ� þ n� þ þ n� � þ nþþ; qÞ:

Cross-validation and model averaging. Highly parameterised statistical models can over-

fit data, resulting in poor out-of-sample performance. This overfitting concern applies to the

MV model here, as it has a flexible and high-dimensional covariance matrix parameterisation,

which is learned empirically, although it is somewhat mitigated by the structural regularisation

via a factor model representation at (4). To protect against overfitting, all MV results are

inferred within a cross-validation framework whereby we split the data set into “training” and

“test” sets C times, and then combine test set results across splits using Bayesian model

averaging.

Table 4. Replicability table between methods A and B.

B
−1 0 1

1 n+− n+0 n++

A 0 n0− n00 n0+

−1 n−− n−0 n−+

https://doi.org/10.1371/journal.pbio.3001723.t004
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We denote each line g as either being in the set K of true KO lines, or in the set S of syn-

thetic null lines; each of these 2 sets comprises Ntot = 4,548 lines (since each synthetic null line

matches the design of a true KO line).

For each cross-validation split c of 1,. . .,C, we randomly partition K into a training set KðcÞtra
of size Ntra and a test set KðcÞtes of size Ntot−Ntra. We randomly partition S similarly and indepen-

dently into SðcÞtra and SðcÞtes . We proceed to estimate ΣðcÞ
1:S; π

ðcÞ;RðcÞ using training genes, i.e.,

g 2 KðcÞtra [ SðcÞtra . We then estimate θðcÞ
�g conditional on bΣðcÞ1:S; bπ ðcÞ; bRðcÞ using test genes, i.e.,

g 2 KðcÞtes [ SðcÞtes . Test set estimates of θðcÞ
�g are combined across cross-validation splits using

Bayesian model averaging, i.e.,

pðθ:gjθ
UV
:g Þ ¼

X

c2fc:g2KðcÞtesg

pðθ:g jθ
UV
:g ;
bP ðcÞÞpðbθUV

:g j
bP ðcÞÞ

X

c2fc:g2KðcÞtesg

pðbθUV
:g j
bP ðcÞÞ

ð25Þ

bP ðcÞ≔fbRðcÞ; bΣðcÞ1:S; bπ
ðcÞg;

which represents the combined posterior pðθ�gjbθUV
�g Þ as a mixture of the split-specific posteri-

ors, pðθ�gjbθUV
�g ;
bP ðcÞÞ, each of which is a Gaussian mixture. We define posterior MV estimates

bθMV
�g ;bs

MV
�g as the mean and standard deviation of the combined posterior pðθ�gjbθUV

�g Þ in (25), and

these estimates are taken forward to phenotype calling under a controlled Fdr. Our framework

for cross-validated empirical Bayes inference is laid out in Table 5.

Additionally, we calculate a pooled covariance estimate bΣpooled by Bayesian model averaging

across the C split-specific models using test set data, i.e.,

bΣpooled ¼

XC

c¼1

bΣðcÞ
Y

g2KðcÞtes
pðbθUV

:g j
bP ðcÞÞ

XC

c¼1

Y

g2KðcÞtes
pðbθUV

:g j
bP ðcÞÞ

ð26Þ

bΣðcÞ≔
X

m;s

bpðcÞmsom
bΣðcÞs ;

taking forward bΣpooled from (26) to factor analysis (Methods–Factor model).

Model checking and sensitivity analyses

Sensitivity analysis. We verify that our downstream factor analysis of bΣ is robust by com-

paring results across different cross-validation folds. Specifically, we compare the varimax-

rotated factor loadings from our final estimate bΣpooled defined at (26) to those from each fold c

and select the bΣðcÞ showing highest discrepancy based on the symmetrized KL divergence

(eDKLðPjjQÞ≔DKLðPjjQÞ þ DKLðQjjPÞ),

c0 ¼ argmax
c

eDKLðNð0; bΣpooledÞjjNð0; bΣ
ðcÞÞÞ: ð27Þ

The loadings plots for bΣpooled and bΣðc0Þ are compared in S11 Fig and appear qualitatively similar
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with differences only at a small number of factors. These limited differences are due to merg-

ing or splitting of factors across the 2 decompositions. Our conclusion here is that the factor

analysis is relatively insensitive to data subsampling: Variation across factor decompositions

should occur at only a small number of factors in the worst case scenario.

Data subsampling. Here, we examine the stability of results to potential MV heterosce-

dasticity across KO lines that may not be captured by our MV mixture model. We perform a

sensitivity analysis in which we subsample 500 of the total 4,548 lines at random and use them

as the training set to refit the MV model. We perform this subsampling c = 1,. . .,10 times, each

time estimating bΣðcÞ from the training set and retaining the MV model phenotype calls from

the test set. We find the fold, c0, with the greatest symmetrized KL divergence between

Nð0; bΣðcÞÞ to Nð0; bΣpooledÞ as at (27).

In Table 6, we compare fold c0’s signed phenotype calls to the corresponding calls in the full

analysis (i.e., the cross-validated and model-combined analysis at (26)). The level of discor-

dance is low with a total of 37 disagreements across 8,316 instances where both models call a

hit. (Note that we cannot estimate Fsr effectively from Table 6, because of the conditional

dependence between test results from the full and subsampled analyses.) It is a reassuring qual-

ity control check that picking the most discrepant subsample of size 500 leads only to this

small level of discordance, suggesting that a reduced sample size, while reducing power, should

not lead to any qualitative disagreement with the conclusions of the full-data analysis.

Predicting masked data. It can be seen from Fig 2 that data are often missing across an

entire procedure for a KO line. To check missing data inference, we perform the following

“mask-predict-compare” algorithm: (i) for each KO line in the test set, artificially mask data

from each of its measured procedures in turn; (ii) predict the perturbations underlying the

masked data; and (iii) compare the predicted perturbations to those estimated by the UV

model on the unmasked data. We refer to the inference on masked data as leave-one-proce-

dure-out MV (LOO-MV). The level of discordance between the LOO-MV and UV results is

low (S9 Fig) and is compatible with cFsrreplicate = 0.4% (95% CI: 0.2% to 0.7%). This is consistent

with the false positive rate being well calibrated even when inference is performed in the pres-

ence of missing data.

Examining discordance between the MV model and the IMPC database. Referring

back to Results–Comparison with IMPC database and Table 1(B), here, we inspect these 3

cases of disagreement more closely by examining which directionality (our MV model or the

IMPC database) is more biologically sensible. We use empirical Bayes to quantify prior beliefs

about hit directionality at any particular phenotype p as a probability: Pprior(θpg>0|θpg6¼0).

This involves aggregating information on directionality from that phenotype’s hits across all

genes, which can be done via a simple average:

Pprior ypg > 0jypg 6¼ 0
� �

≔
P

gIðbypg > 0jcall ypg 6¼ 0Þ
P

gIðcall ypg 6¼ 0Þ
: ð28Þ

Since there is no disagreement between our UV model’s calls and those in the IMPC database,

we include hits from both these methods in (28), but we do not include calls from our MV

model. We use the prior defined in (28) to analyse the 3 signed phenotype hits showing dis-

agreement between our MV model and the IMPC database, yielding a Bayes factor of 1.45 sup-

portive of the MV model, but this is a weak Bayes factor that does not provide substantial

evidence either way on which model’s outputted directionality is most sensible on these

instances of disagreement; this negative result makes sense given the small sample size of 3

leading to low power.
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Methods for biological applications

Gene ontology analysis. We use the R package GOfuncR to test for co-enrichment

between GO terms and IMPC phenotypes. An important feature of this package is that it cor-

rects for multiple testing and interdependency of the tests, using random permutations of the

gene-associated variables to control family-wise error rates. We create IMPC–phenotype gene

sets comprising genes that are not only significantly perturbed, but also exhibit an effect size of

at least 2 times the SD of effect sizes across all genes; in the mathematical notation we have

introduced, our IMPC gene set for phenotype p is defined as:

IMPC phenotype p0s gene set ¼ fg : jzpgj > t ^ jbyMV
pg j > 2� SDpg ð29Þ

SDp≔Sample SD of fbyMV
pg : g ¼ 1; . . . ;Gg: ð30Þ

We apply an additional filter to focus only on homozygous KOs. We use a family-wise error

rate threshold of 5% (the probability of one or more false positives when testing a single IMPC

gene set for co-enrichment against all BP GO terms is constrained to be less than 5%).

We perform 1,000 permutations of the GO graph for each IMPC phenotype. The back-

ground gene set (also known as the gene universe) is defined for the MV model to be all homo-

zygote–KO genes at which some phenotype measurements are available (a total of 2,628

genes); for the UV model, the background gene set comprises all homozygote–KO genes at

which this particular phenotype is available. The basic inferential tool is a Fisher exact test for

independence of row and column classifications in a 2-by-2 contingency table, such as those

shown in Fig 7. Implementing this basic test within GOfuncR ensures that error rates, here

family-wise error rates, are controlled appropriately.

Table 5. Cross-validated empirical Bayes inference.

Stage Input Output Samples Method

UV model Raw data Y bθUV
�g ;bsUV�g K;S Hierarchical Bayes (MCMC)

Train (split c) bθUV
�g ;bsUV�g bRðcÞ SðcÞtra Weighted sample correlation

Train (split c) bθUV
�g ;bsUV�g ; bRðcÞ bΣðcÞ1:S; bπ ðcÞ KðcÞtra MAP estimation (EM)

Fit (split c) bθUV
�g ;bsUV�g ; bP ðcÞ bθ ðcÞ

�g ;bsðcÞ�g KðcÞtes ;S
ðcÞ
tes

Conjugate Bayesian inference

Combine splits bθ ð1:CÞ
�g ;bsð1:CÞ

�g ; bP ð1:CÞ bθMV
�g ;bsMV

�g
K;S Bayesian model averaging

Hit calling bθMV
�g ;bsMV

�g
bIðypg 6¼ 0Þ K;S Permutation-controlled Fdr

EM, expectation–maximisation; Fdr, false discovery rate; MAP, maximum a posteriori; MCMC, Markov chain Monte Carlo; UV, univariate.

https://doi.org/10.1371/journal.pbio.3001723.t005

Table 6. Comparison of signed phenotype hits for the MV model applied to the most KL-divergent subsampled

data set of training size N = 500 (left) compared to the full data set of training size N = 2000 (top). We represent

calls by a number in {−1,0,1}, with 1 and −1 denoting significant positive and negative phenotypic perturbations,

respectively, and 0 denoting a lack of statistical significance.

−1 0 1

−1 5,001 1,263 19

0 14,109 564,001 10,371

1 18 1,044 3,278

https://doi.org/10.1371/journal.pbio.3001723.t006
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Factor model. In order to facilitate interpretation of phenotypic perturbations, we calcu-

late the eigendecomposition of the correlation matrix underlying bΣpooled, i.e.,

D�
1
2

S
bΣpooledD

� 1
2

S ¼ QΔQT ð31Þ

in the varimax() function with default parameters in R [51].

Denoting the rotated sparse loadings P-vectors by λl, l = 1,. . .,20, the lth factor score for the

gth KO gene is ulg≔λT
l θ�g .

Hypothesis testing is performed to identify significant perturbations in factor scores.

Denoting buMV
lg ≔λT

l m�g andbsMV
lg ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λT
l Vgλl

q
, we form test statistics

zMV
lg ≔

buMV
lg

bsMV
lg

ð32Þ

and control Fdr analogously to Methods–Control of error rates, where instead of phenotypes

p = 1,. . .,P we now have factor scores l = 1,. . .,20.

Comparison with existing methods

Extreme deconvolution (XD). The model used in [23] and which underlies the accompa-

nying software package Extreme Deconvolution (XD) is similar to the likelihood we use (2)–

(3) but has a few differences. XD has the constraint M = 1, i.e., does not have the multiple scal-

ing parameters ω1:M introduced in [22]. XD generalises to underlying mixture components

with nonzero means μ1:S that are themselves estimated, i.e., N(θ�g|μs, Σs). For the purposes of

method comparison, XD is run with μs�0, as the zero-mean model is appropriate for the data

sets we analyse here.

XD uses a similar EM algorithm to ours to maximise the likelihood jointly with respect to

Σ1:S and π (and μ1:S more generally). Throughout the XD EM algorithm optimisation, the rank

of each Σs remains the same as the rank of its initialised value [22]. We initialise XD at the

same values Σ1:S and π as we initialise our own model (except when we are running XD to gen-

erate data-driven matrices for mash, in which case we follow the directions in [22]). In sum-

mary, any differences between the fit of our model and the fit of XD are driven primarily by

the absence of scaling parameters ω1:M in XD and our factor-model regularisation of Σ1:S.

Multivariate adaptive shrinkage (mash). Our method’s model likelihood (2)–(3) is the

same as was introduced in [22] and which is the basis for the software package mash. A partic-

ularly important insight in [22] is the introduction of a multiscale mixture across a ladder of

scales denoted by ω1:M. The authors note the utility of this approach in the context of multi-tis-

sue eQTLs, and we find it also to be useful for MV mouse phenotyping data. We believe the

multiscale covariance model form of [22] has the potential to enhance MV inference across a

broad range of scientific disciplines.

The key difference between our approach and mash is in how the covariance matrices Σ1:S

are defined and estimated. We parameterise our model with a small number of regularised

covariance matrices (we consider S = 1,2 here) and optimise Σ1:S and π collectively as part of

model fitting. In contrast, mash generates and fixes a larger number (S = P+10) of covariance

matrices Σ1:S, in advance of optimising (2)–(3) with respect to π.

In more detail, mash generates 2 distinct types of covariance matrices: 8 data-driven and P
+2 canonical. The 8 data-driven covariance matrices inputted into mash are a low-rank repre-

sentation of the empirical phenotypic covariance among those samples exhibiting largest phe-

notypic effects. Three of the data-driven covariance matrices are generated using the XD

PLOS BIOLOGY Multivariate phenotype analysis enables genome-wide inference of mammalian gene function

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001723 August 9, 2022 32 / 41

https://doi.org/10.1371/journal.pbio.3001723


software [23]. In addition, P+2 canonical P×P covariance matrices are generated, comprising

the identity matrix, a matrix of ones, and epeTp for p = 1,. . .,P where ep is a P-vector with zeros

everywhere except for the pth element which is set to 1.

While an elegant aspect of mash is that the optimisation with respect to π given Σ1:S is con-

vex, its generation of covariance matrices involves nonconvex optimisation within the XD

software, so there is potentially some sensitivity to initialisation [22]. Our EM algorithm’s

MAP optimisation with respect to Σ1:S and π is nonconvex, and we investigate sensitivity to

initialisation in Methods–Initialisation.

Hit rates, error rates, and model fit. We compare the power (hit rates) and error rate

(estimated Fdr or Fsr) of the different methods on the IMPC data. We consider a number of

hypothesis testing frameworks, determined by their test statistics and critical regions (rejection

criteria).

Test statistics for testing for a perturbation of phenotype p at gene g:

A. the z statistic zpg ¼ byMV
pg =bs

MV
pg

B. the local false sign rate [27]:

lfsrpg≔minfPðypg � 0jbθUV
�g Þ; Pðypg � 0jbθUV

�g Þg; ð33Þ

intuitively “the probability that we would incorrectly predict the sign of the effect if we were to

use our best guess of the sign (positive or negative)” [22].

Critical regions:

1. controlling Fdrcomplete<5% via a permutation-based test-statistic threshold τ, i.e., with criti-

cal region either |zpg|>τ or lfsrpg<τ (Methods–Control of error rates and [32,48]);

2. nominally controlling the local Fsr lfsrpg<5% [22].

Table 7 shows hit rates and error rates under 3 different methods of error rate control, with

the subtables corresponding to the test statistics and critical regions defined above: Table 7A

presents A1 (test statistic A with critical region 1); Table 7B presents B1; and Table 7C presents

B2. Hit rates are shown stratified according to whether the raw data are measured or missing

(with 95% nonparametric bootstrap CIs). We display error rate estimatesdFdrcomplete,
dFdrsingle,

and cFsrreplicate as defined in Methods–Hypothesis testing and Fdr.
Cross-validated likelihood for IMPC data. Within the inferential framework described

in Methods–Cross-validation and model averaging, we calculate the likelihood of the test set

data under a model fitted using only the training data. With reference to (2)–(3), the per-sam-

ple log cross-validated likelihood for fold c is

LðcÞCV≔
1

Ntes

X

g2KðcÞtes

log MVNormalðbθUV
:g j0;

bSUV
g
bRbSUV

g þ
X

m;s

om
bΣsÞ ð34Þ

where KðcÞtes is the set of KO genes in the test set of fold c (Methods–Cross-validation and model
averaging). Table 8 shows benchmarking results where we present the mean of LðcÞCV (±2×SEM)

taken across 10 cross-validation folds.

Cross-validated likelihood on additional data set. We compare the various MV methods

on an additional data set to examine if the same qualitative performance of the various meth-

ods persists. A natural data set to use is the multi-tissue eQTL study of Urbut and colleagues

[22] on which mash was first developed. The data set comprises 16,069 samples, each of which
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Table 7. Hit rates and error rates compared across models. The row showing the model and error rate control used in the main analyses in the paper, Mmain, is

highlighted in bold. The highest hit rates are underlined.

(a) Controlling Fdrcomplete�5% using z statistic

Hit rate in % when data are Estimated error rate in % (95% CI)

Method S K measured missing dFdrcomplete
dFdrsingle cFsrreplicate

UV 1.4 (1.3, 1.5) 5.0 (3.8, 6.5) 2.3 (1.6, 2.9) 0.0 (0.0, 3.6)

XD 1 2.0 (1.8, 2.1) 0.2 (0.2, 0.3) 5.1 (3.9, 6.4) 1.7 (1.4, 2.2) 0.0 (0.0, 2.2)

XD 2 2.4 (2.2, 2.6) 0.4 (0.3, 0.4) 5.0 (3.9, 6.3) 1.6 (1.2, 2.0) 0.0 (0.0, 1.8)

mash 158 0.4 (0.3, 0.4) 0.0 (0.0, 0.1) 5.1 (2.9, 8.2) 1.3 (0.8, 1.8) 0.0 (0.0, 8.1)

ComposeMV 1 15 10.1 (9.8, 10.5) 1.9 (1.8, 2.0) 4.9 (4.1, 5.8) 1.4 (1.2, 1.7) 2.6 (1.6, 4.1)

ComposeMV 1 20 10.5 (10.2, 10.9) 1.3 (1.2, 1.4) 5.0 (4.2, 5.8) 1.5 (1.3, 1.8) 1.2 (0.6, 2.4)

ComposeMV 1 30 9.7 (9.4, 10.0) 1.1 (1.1, 1.2) 5.0 (4.2, 5.9) 1.6 (1.3, 1.9) 1.0 (0.4, 2.4)

ComposeMV 1 40 9.4 (9.1, 9.7) 1.0 (1.0, 1.1) 5.0 (4.2, 5.9) 1.6 (1.3, 1.9) 1.3 (0.6, 2.7)

ComposeMV 2 15 9.4 (9.0, 9.7) 2.0 (1.8, 2.1) 5.0 (4.2, 5.9) 2.2 (1.7, 2.8) 2.4 (1.4, 4.2)

ComposeMV 2 20 8.6 (8.2, 8.9) 1.6 (1.5, 1.8) 5.0 (4.1, 5.9) 2.1 (1.6, 2.5) 1.6 (0.8, 3.1)

ComposeMV 2 30 8.9 (8.6, 9.2) 1.4 (1.3, 1.5) 4.9 (4.1, 5.9) 2.0 (1.5, 2.5) 1.1 (0.5, 2.5)

ComposeMV 2 40 9.3 (9.0, 9.6) 1.3 (1.2, 1.4) 5.0 (4.2, 5.9) 2.1 (1.6, 2.6) 1.1 (0.5, 2.6)

(b) Controlling Fdrcomplete�5% using lfsr statistic

Hit rate in % when data are Estimated error rate in % (95% CI)

Method S K measured missing dFdrcomplete
dFdrsingle cFsrreplicate

XD 1 2.0 (1.9, 2.1) 0.2 (0.2, 0.3) 4.9 (3.8, 6.2) 1.7 (1.3, 2.2) 0.0 (0.0, 2.1)

XD 2 2.4 (2.3, 2.6) 0.3 (0.3, 0.4) 4.9 (3.8, 6.2) 1.6 (1.3, 2.1) 0.0 (0.0, 1.9)

mash 158 2.5 (2.4, 2.7) 0.2 (0.2, 0.2) 4.9 (3.8, 6.3) 1.2 (0.8, 1.5) 0.0 (0.0, 2.1)

ComposeMV 1 15 8.9 (8.6, 9.2) 1.6 (1.5, 1.7) 5.0 (4.2, 5.9) 1.5 (1.2, 1.8) 1.7 (0.9, 3.2)

ComposeMV 1 20 9.3 (8.9, 9.6) 1.1 (1.0, 1.2) 5.0 (4.2, 5.9) 1.6 (1.3, 1.9) 1.2 (0.5, 2.6)

ComposeMV 1 30 8.4 (8.1, 8.7) 0.9 (0.8, 0.9) 5.0 (4.2, 5.9) 1.7 (1.4, 2.0) 1.0 (0.4, 2.5)

ComposeMV 1 40 8.0 (7.8, 8.3) 0.8 (0.7, 0.8) 5.0 (4.2, 5.9) 1.7 (1.4, 2.0) 0.7 (0.2, 2.0)

ComposeMV 2 15 8.2 (7.9, 8.5) 1.6 (1.5, 1.8) 5.0 (4.2, 6.0) 2.3 (1.7, 2.8) 1.2 (0.5, 2.7)

ComposeMV 2 20 8.2 (7.9, 8.5) 1.5 (1.4, 1.7) 5.0 (4.2, 6.0) 2.2 (1.7, 2.7) 1.3 (0.6, 2.7)

ComposeMV 2 30 7.8 (7.5, 8.1) 1.1 (1.0, 1.2) 5.0 (4.2, 5.9) 2.1 (1.6, 2.5) 1.0 (0.4, 2.6)

ComposeMV 2 40 8.0 (7.7, 8.3) 1.0 (1.0, 1.1) 5.0 (4.2, 5.9) 2.1 (1.6, 2.6) 0.5 (0.1, 1.8)

(c) Controlling lfsr�5% using lfsr statistic

Hit rate in % when data are Estimated error rate in % (95% CI)

Method S K measured missing dFdrcomplete
dFdrsingle cFsrreplicate

XD 1 8.4 (8.2, 8.5) 1.1 (1.1, 1.2) 50.9 (49.2, 52.5) 18.6 (18.0, 19.4) 1.7 (1.0, 2.9)

XD 2 7.9 (7.8, 8.1) 1.4 (1.3, 1.5) 44.8 (43.2, 46.5) 15.5 (14.8, 16.2) 1.9 (1.1, 3.1)

mash 158 5.4 (5.2, 5.6) 1.1 (1.0, 1.2) 6.7 (5.7, 7.8) 2.7 (2.1, 3.4) 1.5 (0.8, 2.8)

ComposeMV 1 15 5.8 (5.7, 6.0) 1.5 (1.5, 1.6) 6.2 (5.3, 7.1) 2.4 (2.1, 2.8) 4.5 (3.3, 6.2)

ComposeMV 1 20 5.5 (5.4, 5.7) 0.9 (0.8, 0.9) 5.8 (4.9, 6.7) 2.5 (2.1, 2.9) 2.3 (1.4, 3.7)

ComposeMV 1 30 5.9 (5.7, 6.0) 0.9 (0.8, 1.0) 6.8 (5.9, 7.8) 2.9 (2.5, 3.4) 2.1 (1.3, 3.6)

ComposeMV 1 40 5.8 (5.7, 6.0) 0.8 (0.8, 0.9) 6.6 (5.7, 7.6) 2.9 (2.5, 3.4) 3.0 (1.9, 4.6)

ComposeMV 2 15 6.2 (6.0, 6.4) 1.9 (1.8, 2.0) 6.9 (6.0, 7.9) 3.2 (2.6, 3.9) 7.3 (5.6, 9.5)

ComposeMV 2 20 6.2 (6.0, 6.4) 1.8 (1.7, 1.9) 7.2 (6.2, 8.2) 3.7 (3.1, 4.4) 3.5 (2.4, 5.0)

ComposeMV 2 30 6.2 (6.0, 6.4) 1.3 (1.2, 1.4) 7.2 (6.2, 8.2) 3.5 (2.9, 4.2) 2.9 (1.9, 4.4)

ComposeMV 2 40 6.1 (5.9, 6.3) 1.2 (1.1, 1.2) 6.9 (6.0, 7.9) 3.5 (2.9, 4.1) 3.5 (2.3, 5.3)

lfsr, local false sign rate; mash, multivariate adaptive shrinkage; UV, univariate; XD, Extreme Deconvolution.

https://doi.org/10.1371/journal.pbio.3001723.t007
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corresponds to a (gene, single nucleotide polymorphism) pair. These expression quantitative

trait loci (eQTLs) are measured in 44 tissues. So, Ntot = 16,069 and P = 44, in contrast to Ntot =

4,584 and P = 148 for the IMPC data.

We analyse the eQTL data using the empirical Bayes cross-validation framework laid out in

Methods–Cross-validation and model averaging. We follow the methods of [22] for data pre-

processing and estimation of R. The size of our training folds on the eQTL data are 5,000 (in

contrast to 2,000 for the IMPC data), but otherwise, parameter settings are the same. One

important difference is that there are no missing data in the eQTL study. Table 9 shows the

CV log likelihood comparison on the eQTL data set.

Discussion of benchmarking results. The main results we have presented our based

upon the MV model (ComposeMV) with S = 1 and K = 20 (notation introduced in Results–

Table 8. Comparison of cross-validated log likelihood across MV models on the IMPC data. The row showing the

model used in the main analyses in the paper, Mmain, is highlighted in bold. The largest CV log likelihood is under-

lined. The results shown are the per-sample log likelihood LðcÞCV of (34) averaged across folds c = 1,. . .,10, along with ±2

SEM intervals.

Method S K CV Log Likelihood

XD 1 −62.1 (−62.5, −61.7)

XD 2 −60.0 (−60.7, −59.3)

mash 158 −54.2 (−54.4, −53.9)

ComposeMV 1 15 −53.7 (−53.9, −53.5)

ComposeMV 1 20 −53.4 (−53.6, −53.1)

ComposeMV 1 30 −53.1 (−53.3, −52.8)

ComposeMV 1 40 −53.0 (−53.2, −52.7)

ComposeMV 2 15 −53.7 (−54.0, −53.4)

ComposeMV 2 20 −53.5 (−53.9, −53.2)

ComposeMV 2 30 −53.3 (−53.6, −53.0)

ComposeMV 2 40 −53.1 (−53.4, −52.9)

CV, cross-validated; mash, multivariate adaptive shrinkage; SEM, standard error of the mean; XD, Extreme

Deconvolution.

https://doi.org/10.1371/journal.pbio.3001723.t008

Table 9. Comparison of cross-validated log likelihood across MV models on the eQTL data from Urbut and col-

leagues [22]. The largest CV log likelihood is underlined. The results shown are the per-sample log likelihood LðcÞCV of

(34) averaged across folds c = 1,. . .,10, along with ±2 SEM intervals.

Method S K CV Log Likelihood

XD 1 25.75 (25.63, 25.87)

XD 2 28.21 (28.19, 28.23)

mash 54 35.44 (35.41, 35.48)

ComposeMV 1 15 35.67 (35.60, 35.74)

ComposeMV 1 20 35.68 (35.61, 35.74)

ComposeMV 1 30 35.68 (35.62, 35.74)

ComposeMV 1 40 35.68 (35.62, 35.74)

ComposeMV 2 15 36.21 (36.17, 36.26)

ComposeMV 2 20 36.20 (36.16, 36.25)

ComposeMV 2 30 36.21 (36.16, 36.25)

ComposeMV 2 40 36.21 (36.16, 36.25)

CV, cross-validated; eQTL, expression quantitative trait loci; mash, multivariate adaptive shrinkage; MV,

multivariate; SEM, standard error of the mean; XD, Extreme Deconvolution.

https://doi.org/10.1371/journal.pbio.3001723.t009
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Multivariate model) while controllingdFdrcomplete < 5% as described in Methods–Control of
error rates. We refer to this model as Mmain in this section. We now briefly discuss the results

of benchmarking across 12 models under various means of error rate control (Tables 7 and 8).

Focusing on Table 7A, where we controldFdrcomplete < 5%, the hit rate on measured data for

Mmain is the largest across all benchmarked models at 10.5% (10.2, 10.9). This hit rate is also

optimal when compared to the other 2 considered methods of error rate control (Table 7B and

7C). It’s worth noting, when comparing hit rates to Table 7C, that the monitored error rates in

Table 7C are generally higher than in Table 7A and 7B, attributable to using a different method

for error rate control, nominally controlling lfsr<5%.

In terms of optimal hit rates when data are missing, we see that other models (e.g., Compo-

seMV with S = 2 and K = 15) performed slightly better with 2.0% (1.8, 2.1) compared to 1.3%

(1.2, 1.4) for Mmain, but this comes with a higher estimated error rate cFsrreplicate compared to

Mmain.

Turning to the cross-validated likelihood comparison in Table 8, we see that the mean per-

sample cross-validated log likelihood for Mmain is bLCV = −53.4 (−53.6, −53.1). This is margin-

ally improved upon by ComposeMV with S = 2 and K = 15 having bLCV = −53.0 (−53.2, −52.7).

Mmain, and ComposeMV generally, compare favourably with existing methods, performing

somewhat better than mash which has bLCV = −54.2 (−54.4, −53.9) and considerably better

than XD with S = 2, which has bLCV = −60.0 (−60.7, −59.3).

For the benchmarking on an additional eQTL data set, shown in Table 9, a similar pattern

emerges—the current paper’s MV model, labelled ComposeMV, performs somewhat better in

terms of CV likelihood compared to mash, while performing substantially better than XD.

Interestingly, for the eQTL data benchmarking, the ComposeMV models with S = 2 perform

best of those in the table, which suggests that having a mixture of multiple learned covariance

matrices (in addition to the multiscale ladder of the ωm) may be particularly useful in certain

contexts.

Supporting information

S1 Note. Univariate model details. This note details the technical aspects of the UV model

introduced in Results–Univariate model.
(PDF)

S2 Note. 2. EM algorithm. This note contains technical details of the EM algorithm intro-

duced in Methods–EM algorithm.

(PDF)

S1 Fig. The IMPC adult and embryonic phenotype pipeline. Scientific purpose, experimen-

tal design, and detailed description for each procedure are available at www.mousephenotype.

org/impress/pipelines. Each phenotype within each procedure is also described in detail. Note

that the terminology parameters is used there to refer to what we call phenotypes in this paper.

We prefer to use phenotypes to avoid any terminological ambiguity with the use of parameters

in statistical inference.

(TIF)

S2 Fig. Heatmap of scaled z-statistics illustrating the quality control filter applied to UV

results. KO lines are ordered horizontally by time within centre. Longitudinal trends within a

phenotyping centre can be indicative of experimental artefacts not captured by the UV model.

In such cases, outlined with red rectangles, the data from centre–procedure pairs are omitted
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from downstream MV analysis. The data and code used to generate this figure are available at

[13,14]. KO, knockout; MV, multivariate; UV, univariate.

(TIF)

S3 Fig. Scatterplot of ezpg for MV against UV models for gene-phenotype pairs at which

data are available. The axes extend to [−3, 3] while the counts apply to all data, including

those beyond the scale of the plot. The data and code used to generate this figure are available

at [13,14]. MV, multivariate; UV, univariate.

(TIF)

S4 Fig. Power and % missing data by phenotype. The top panel shows the % missing data for

each phenotype. The lower panel displays the phenotype-specific hit rate (i.e., proportion of

lines that are significantly perturbed), for the UV method, and for the MV method stratified

according to whether data are missing or observed. The data and code used to generate this fig-

ure are available at [13,14]. MV, multivariate; UV, univariate.

(TIF)

S5 Fig. Replicability heatmap comparing results across phenotyping centres. The heatmap

shows scaled z-statistics, ez , for reference lines under the UV and MV models. Significant per-

turbations (jezj > 1) are marked with a cross. White squares represent missing data under the

UV model. Seven KO lines are shown (labelled top) measured independently in several labora-

tories (labelled bottom) and analysed using the UV and MV models (labelled third row from

top). Each row corresponds to a phenotype (labelled right), grouped by procedure (labelled

left). The data and code used to generate this figure are available at [13,14]. KO, knockout;

MV, multivariate; UV, univariate.

(TIF)

S6 Fig. Heterozygote/homozygote concordance scatterplot of scaled z−statistics, ezpg . Each

point corresponds to the ezpg of the heterozygote and homozygote KO lines of a particular gene.

Counts (%) for each significance combination are superimposed; while the axes extend to [−3,

3], the counts apply to all data, including those beyond the plot’s scale. An Fsr estimate

cFsrreplicate (95% CI) based on the level of discordance is shown at the top of the panel. The data

and code used to generate this figure are available at [13,14]. Fsr, false sign rate; KO, knockout.

(TIF)

S7 Fig. Co-enrichment of GO terms (left) with IMPC phenotypes (bottom) for hits called

by UV model. Statistically significant co-enrichment between GO terms and IMPC pheno-

types is denoted by bold outlined squares (controlling family-wise error rate<5% for each

phenotype). The colour of the square indicates the percentage of significantly perturbing KO

genes at the GO term that change the phenotype in the positive direction (see scale bar at top).

IMPC phenotypes are clustered by GO term pattern along the horizontal axis, while BP GO

terms are clustered vertically by phenotype pattern. Phenotype labels are coloured according

to procedure as per legend at bottom left. A subset of GO terms, labelled by row (a-h) at right,

are examined in more detail in Fig 7. For legibility, we only plot IMPC phenotypes and GO

terms that have at least 3 instances of significant co-enrichment. The data and code used to

generate this figure are available at [13,14]. BP, Biological Process; GO, Gene Ontology; IMPC,

International Mouse Phenotyping Consortium; KO, knockout.

(TIF)

S8 Fig. Cumulative proportion of correlation structure in bΣ explained by eigenvectors Q in

(31). The dotted line indicates that over 75% of the correlation is explained by 20 eigenvectors.
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The data and code used to generate this figure are available at [13,14].

(TIF)

S9 Fig. Scatterplots of ezpg≔zpg=τpc examining concordance of MV analysis on masked data

(LOO-MV) with the UV model. We plot LOO-MV results (inferring perturbations on

masked data) against results for the UV model applied to the unmasked data; see Methods–

Predicting masked data. An Fsr estimate cFsrreplicate (95% CI) based on the level of discordance is

shown at the top of the panel. The data and code used to generate this figure are available at

[13,14]. Fsr, false sign rate; LOO-MV, leave-one-procedure-out MV; MV, multivariate; UV,

univariate.

(TIF)

S10 Fig. Comparison of cross-validated (CV) log likelihood between randomly initialised

and sample-covariance initialised fits for 10 CV folds. The randomly initialised fits perform

systematically worse in terms of CV likelihood, supportive of using a supervised initialisation

to mitigate the non-convexity of the optimisation. The data and code used to generate this fig-

ure are available at [13,14].

(TIF)

S11 Fig. Sensitivity analysis of factor loadings. (a) The varimax-rotated loadings for bΣpooled,

the Bayesian model averaged covariance matrix across all cross-validation folds. (b) The vari-

max-rotated loadings for the fold c0 covariance matrix bΣðc0Þ, which is chosen to maximise the

symmetrized KL divergence between Nð0; bΣpooledÞ and Nð0; bΣðcÞÞ across folds c. The 2 loadings

plots are qualitatively similar, though there are some small discrepancies. The data and code

used to generate this figure are available at [13,14].

(TIF)
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