
entropy

Article

Adapted or Adaptable: How to Manage
Entropy Production?

Christophe Goupil *,† and Eric Herbert †

Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236 CNRS,
F-75013 Paris, France; eric.herbert@univ-paris-diderot.fr
* Correspondence: christophe.goupil@univ-paris-diderot.fr; Tel.: +33-6-0-03-03-50
† These authors contributed equally to this work.

Received: 3 December 2019; Accepted: 20 December 2019; Published: 24 December 2019 ����������
�������

Abstract: Adaptable or adapted? Whether it is a question of physical, biological, or even economic
systems, this problem arises when all these systems are the location of matter and energy conversion.
To this interdisciplinary question, we propose a theoretical framework based on the two principles
of thermodynamics. Considering a finite time linear thermodynamic approach, we show that
non-equilibrium systems operating in a quasi-static regime are quite deterministic as long as
boundary conditions are correctly defined. The Novikov–Curzon–Ahlborn derivation applied
to non-endoreversible systems then makes it possible to precisely determine the conditions for
obtaining characteristic operating points. As a result, power maximization principle (MPP), entropy
minimization principle (mEP), efficiency maximization, or waste minimization states are only specific
modalities of system operation. We show that boundary conditions play a major role in defining
operating points because they define the intensity of the feedback that ultimately characterizes the
operation. Armed with these thermodynamic foundations, we show that the intrinsically most
efficient systems are also the most constrained in terms of controlling the entropy and dissipation
production. In particular, we show that the best figure of merit necessarily leads to a vanishing
production of power. On the other hand, a class of systems emerges, which, although they do not offer
extreme efficiency or power, have a wide range of use and therefore marked robustness. It therefore
appears that the number of degrees of freedom of the system leads to an optimization of the allocation
of entropy production.

Keywords: out of equilibrium thermodynamics; finite time thermodynamics; living systems

1. Introduction

The issue of energy conversion is the subject of historical debate. Without going back to its
roots, let us mention the work initiated by Glansdorf and Prigogine, which placed at the center the
question of entropy production in out-of-equilibrium systems, an issue that is still largely relevant [1,2].
This debate is itself part of an even broader debate that questions the operating points of the systems,
considering mainly the maximization of entropy production (MEP), its minimization (mEP), or power
maximization (MPP) [3,4]. One of the reasons why these questions do not find a general consensus
today is that they are most often considered on very different systems, in particular in the definition
of the boundary conditions of the device with its environment, considered immutable. The case of
idealized mechanical systems is, from this point of view, much simpler, since, broadly speaking,
the absence of any friction process means that the system interacts with its environment via a very
limited number of degrees of freedom, which makes variational approaches relevant. On the contrary,
it has long been accepted that there is no variational principle that governs the out-of-equilibrium
steady state of a thermodynamic system [5]. This can be understood as an impossibility to establish
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a variational principle when the number of degrees of freedom diverges, which is obviously the case
when the system is connected to a thermostat, and when dissipative processes occur. However, it is
equally obvious that many out-of-equilibrium systems are perfectly deterministic in their evolution,
and have a perfectly defined stationary state, as is the case, for example, for Kirchoff’s networks in
electronics. As a result, these systems, although not governed by a Lagrangian form and an associated
variational principle, have a completely established stationary operating point, without any possible
affirmation of an underlying minimization or maximization of the production of the entropy or
the power.

These questions of power and finite time performance have been the subject of much work [6]
particularly in thermoelectricity [7–11]. Without entering into these debates again, we propose an
approach that provides a fairly generic framework for describing a complete thermodynamic system
with perfectly established boundary conditions. In this article, we will limit ourselves to the case of
locally linear machines, subscribing to Onsager’s formalism. This formalism, based on the concept
of local equilibrium, makes it possible to consider the thermodynamic potentials of the system,
which are the intensive parameters. As a result, it becomes possible to derive a thermodynamics close
to equilibrium, with, in particular, a rigorous choice of potentials that allow for obtaining the symmetry
of the out-of-diagonal coefficients of the Onsager matrix. The stationary nature also requires that
kinetic coefficients and boundary conditions of the system be constant or slowly variable compared to
the characteristic relaxation time of entropy production and dissipation diffusion, thus guaranteeing
both stationary processes and local equilibrium.

In this article, we consider the transport of energy and matter within a system, where the
thermodynamic conversion is produced by coupling the energy and matter currents. By applying
the first law of thermodynamics, both of these currents are conservative. By applying the second law,
the energy, and sometimes the matter, used during the conversion process is subject to dispersion
in the degrees of freedom accessible to the system. As a result, thermodynamics is based on both
quantity and quality principles. Since the loss of quality is directly related to dispersion in the degrees
of freedom, the search for processes to reduce their number has always been a guideline. It should be
noted that, in the case of non-spontaneous processes, it is possible to consider a reduction in the degrees
of freedom, but this operation requires the implementation of external processes. These processes
offer other opportunities for energy dispersion, in greater proportions than those gained within the
system. As a result, any physical process taking place over a finite period of time is the location of
a compromise between the total energy used to carry out a process, and the energy actually converted
for the needs to be covered. The process efficiency is therefore written as the ratio between the actually
converted energy and the total energy supplied. We propose to consider energy conversion processes
in a very generic form, in order to establish their main characteristics and constraints. In particular,
we address the question of power and entropy production, insisting on the compromises they impose.

The question of adapting a device to the uses assigned to it then arises. In the case of single
working point, the system may be designed to be as much adapted as is it possible. However, this single
operating working point is a rare configuration, and realistic systems are asked to work in a given
range of working points. Then, the concept of adaptability, or flexibility, arises, which enters into
competition with the previous adapted concept. This problem of adaptation or adaptability concerns
all thermodynamic systems, including, of course, living systems. Indeed, as soon as we define an
envelope, we delimit the boundaries of a space occupied by a given device and the interactions
of this device with the outside world. Considering the energy and matter budget at the borders of
the device, we then characterize the relationship between the device and its environment. Since the
processes take place over a finite period of time, it is important to consider an out-of-equilibrium
description. In this paper, we consider an out-of-equilibrium thermodynamic description, driven by
locally linear equations. We show that the intrinsic characteristics of the device, on the one hand,
and the boundary conditions, on the other hand, totally determine the behavior of the system. It appears
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that the allocation of dissipation largely determines the possible ranges of use of an out-of-equilibrium
thermodynamic system.

In terms of boundary conditions, we show that the real coupling conditions of a system with
its environment are always located between the Dirichlet and Neumann boundaries, also called
“stock” and “flow” boundary conditions. It should be noted that both pure stock and flow are
extreme boundary conditions which can never being strictly reached. Between adaptable and adapted,
the performances of thermodynamic systems are therefore the result of a compromise between intrinsic
performance of a device and the coupling to the environment. This question of coupling to the
environment is the subject of the first section of this article. In the following section, we describe the
envisaged system in its most general form. The third section concerns the descriptions of the device
at the heart of the system, while the fourth section describes its insertion into the complete system.
The fifth section considers the different configurations that such a global system may encounter, and the
consequences on the production of power, dissipation, and more generally, entropy. The article ends
with concluding remarks.

2. System Description

2.1. Boundary Conditions

As indicated above, the system is composed of two sub-parts: a central zone, which we will call
the device, and which is the place of thermodynamic conversion, on the one hand, and the boundary
conditions, consisting of the source, and, on the other hand, the sink and the elements connecting it to
the device. These elements allow for modifying at will the boundary conditions that condition the
coupling of the device with the source and the sink, which is a central question for the optimization.
Among the latter, we can distinguish systems whose intrinsic parameters are constant, as is the case
for most machines, and systems, whose intrinsic parameters are subject to modification, as is the
case for living or societal systems. These latter are subject to potential developments and evolution,
which are not possible for the above-mentioned machines. By potential development, we consider
the case of living systems, societies or organisms, which can, under conditions of energy and matter
supply, develop, maintain, or regress.

In the case of systems under Neumann boundary conditions, the system is somehow fed by
a constant current of energy and/or matter, which guarantees the maintenance of the system as much
as it constrains its development. Under such conditions, the possible development of the system is
limited by the value of the current of matter and/or energy. In the case of Dirichlet systems, there
are no restrictions on access to the resource, except for the intrinsic limitations of the conversion
device. As a result, the currents of energy and matter may diverge completely, if the characteristics
of the device lend themselves to it. The same reasoning applies to the production and rejection of
waste to the sink. Access to the resource and waste production are therefore both dependent on these
boundary conditions. Let us consider, as an historical illustration, the situation of the industrial
revolution, which saw the rise of the use of fossil energy [12]. The latter are by definition stock
resources that lead the human societies to find themselves in Dirichlet conditions, as far as access
to the resource is concerned. Concerning the waste rejected to the sink, the Dirichlet’s condition
has been the norm, as long as the planet has been considered a bottomless sink. On the other hand,
if we consider the situation before the industrial revolution, it can be noted that the main resource for
development, which is the food resource, was dependent on Neumann-type boundary conditions,
due to the subjection to solar flux. Without going further into this illustration, which is beyond the
scope of this article, we can nevertheless observe the importance of boundary conditions, both on
the functioning of systems, but also for their possible evolutions. Indeed, in the case of boundary
conditions of the Neumann type, there is no possibility of development, in the sense of increasing the
current of energy and matter that feed the conversion device. Consequently, there is no possibility
of any increase of the quantities. On the other hand, there are possibilities of increase of the quality
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because the conditions of coupling between energy and matter may change, as the history of life
proved it.

On the other hand, in the case of Dirichlet boundary conditions, there is no limit to the increase
in energy and matter currents, which could lead to their possible divergence. It should be noted
that the actual Dirichlet conditions for the access to the energy for the human species are quite
singular in the history of the living systems. In order to remain explicit and relatively simple to
address, these questions need to be modeled in the most compact form possible. This why we
propose to describe a generic thermodynamic machine in order to guarantee a general character to the
developments of this article. Many extensions and refinements can be added, as for previous systems
in the literature [6,10].

2.2. Thermodynamic Device

The proposed thermodynamic system is described in Figure 1. It consists of a reservoir providing
the resource and a sink receiving the waste, with the respective potentials ΠR

1 and ΠS
1 fixed at constant

values. Between these two reservoirs is the energy conversion device which is the place of coupling
between a current of matter I2, and a current of energy IE. The energy current entering the system
is associated with an incoming entropy current, I1, with Π1 its conjugated potential. In the case of
a thermal system of heat current IQ, temperature T and entropy current IS, we would simply have
Π1 I1 = IQ = TIS so I1 would be the classical entropy current. The current of matter is defined by I2 and
its conjugated potential Π2. The energy currents budget finally writes IE = Π1 I1 + Π2 I2. We recognize
the fractions of dispersed energy, Π1 I1, and concentrated energy, Π2 I2, which are a generalization of
the notions of heat and work extended to the case of non-thermal systems [13,14]. The coupling term
between energy and matter is defined, under I2 = 0 condition, as α = −(δΠ2/δΠ1)I2 . The geometry
of the system is given by its length L and its cross-section A. The two currents of energy and matter
are then associated with two conductivities σ1 and σ2, which, at the integrated scale, behave like two
resistive dipoles R1/2 = 1

σ1/2
L
A . The connection of the conversion zone with the two reservoirs is

defined by the coupling resistors R+ and R−, which allow the boundary conditions to be set, at will,
between Dirichlet conditions (R+ = R− = 0), or Neumann conditions, where R+ and R− diverge.
This type of configuration is not in itself new, and has already been used in specific systems [14,15].
In particular, it has been shown that, under these conditions, the way the system operates is partially
governed by the feedback effects induced by boundary conditions. Some of this feedback can lead to
the presence of oscillations. It should be noted that these processes do not violate the first principle in
that they are not self-sustained oscillations, at least from an energy point of view. They do not violate
the second principle either, since these structures are highly dissipative and are only maintained by
a continuous supply of energy. It can also be noted that the incoming current of energy is used to
produce a potential difference, which, if maintained, allows the circulation of the matter under the
action of the thermodynamic force, which is defined from the gradient of the potential. This type of
analysis of thermodynamic conversion has been used with success by Alicki in various systems [16,17].
This description of two coupled currents can, of course, be extended to a larger number of coupled
currents without changing the spirit of the study.

As it is represented, the system is therefore quite generic. The main determinants of functioning
are thus summarized by three terms, the capture of the resource, its conversion into a usable form,
and the rejection of waste. It is clear that ideally the target is the one where the output power would be
maximum and the amount of energy released would be minimal. The study of the limits to achieving
this target is one of the objectives of this article. As the coupling parameter for the conversion, the α

parameter is therefore central since it determines the system’s ability to convert energy into a usable
form. A naive picture may suggest that the largest possible α value necessarily leads to the most
efficient system, but this is not correct, as we will see now.
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Figure 1. Schematic view of the generic system, with a resource and a sink, whose potential ΠR
1 and

ΠS
1 are constant. The coupling of the conversion zone (circle) with the two reservoirs is ensured by

the elements R+ and R−. As a result, the difference potential Π+
1 −Π−1 is less than that between

reservoir and sink. Power produced in the conversion zone (circle) is P = −α∆Π1 = ∆Π2. The internal
resistance R2 = L

Aσ2
gives rise to a dissipative contribution R2 I2

2 . The RL resistance is the output load,
and the output power is Pout = RL I2

2 .

3. Local Energy Conversion

3.1. Presentation

At the local level, energy conversion is produced by coupling the energy and matter currents
flowing through the device. These currents are generated by the presence of differences between
the two thermodynamic potentials Π1 and Π2. This local modeling is therefore based on the three
parameters of conductivity associated with energy transport, σ1, conductivity associated with matter
transport, σ2, and the coupling coefficient between the gradients of the two potentials, α. We deduce
from this the formulation of local Onsager matrix, where ∇ = d

dx is the spatial gradient, here reduced
to 1D in order to simplify the description.(

J2

JE

)
=

(
L11 L12

L21 L22

)(
−∇

(
Π2
Π1

)
∇( 1

Π1
)

)
. (1)

JE and J2 are the densities of the two currents, and are extensive and conservative quantities. Given the
differential form JE = Π1 J1 + Π2 J2, the equality of non-diagonal terms L12 = L21 is insured according
to the choice of the correct potentials −Π2

Π1
and 1

Π1
[18,19]. The four terms of the matrix are therefore

reduced to three, σ1, σ2and α, whose correspondences with the coefficients Lij are

σ1 =
1

Π2
1

[
L11L22 − L21L12

L11

]
, (2)

σ2 =
L11

Π2
, (3)

α = −∆Π2

∆Π1
=

1
Π1

L12

L11
. (4)

In the absence of a matter gradient, the energy conductivity can be defined as σΠ2 = σ1
[
1+ α2σ2/σ1Π2

]
.

The figure of merit is then defined as

Fm =
α2R1

R2
Π2 =

L2
12

L11L22 − L21L12
. (5)

It is known that the ratio σ2/σ1, therefore Fm, is a direct measure of the intrinsic capacity of
energy conversion. Fm can be related to the ratio of the equivalent specific heats by the expression
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γ =
CΠ2
CI2

= Fm + 1. In their seminal paper, Kedem and Caplan derived the following expression of the
coupling parameter between the two fluxes involved in the conversion process [13]:

q =
L12√

L11L22
=

√
Fm

1 + Fm
(6)

an expression that explicitly includes the kinetic coefficients Lij. The figure of merit and the coupling
factor q are equivalent in terms of measure of the system performance: the larger their (absolute)
values, the better the energy conversion system. This can be evidenced by the derivation of the local
maximal efficiency of the conversion process in generator mode, ηmax:

ηmax =

(
1 +

√
1− q2

q

)2

=

√
γ− 1
√

γ + 1
. (7)

3.2. Entropy Production and Efficiency

The volumetric entropy production rate is given by the summation of the force-flow products,

.
S = J2∇

(
−Π2

Π1

)
+ JE∇

(
1

Π1

)
= − 1

Π1
[J2∇Π2 + J1∇Π1] . (8)

In the case of a reversible process
.
S = 0 so does J2∇Π2 + J1∇Π1. We get − J2∇Π2

Π1 J1
= ∇Π1

Π1
= ηC,

where ηC is the Carnot efficiency. This leads to the general expression of the local efficiency,

η = − J2∇Π2

J1Π1
< ηC. (9)

Let us define the reduced current as
j =

αJ2

J1
, (10)

which is the ratio between the entropy carried by the transport of the matter, divided by the
total entropy transported. In the case of a reversible process, both terms are equal so j = 1 [20].
This expression shows three regions for the η(j) meaning. For 0 < j < 1, the device works as a generator.
For j < 0 and j > 1, the device works as a receptor. For reasons of brevity, we will mainly deal with
the generator configuration in this article.

Rewriting the Onsager matrix in more suitable form [21], we get(
J2

Π1 J1

)
=

(
σ2 ασ2

αΠ1σ2 γσ1

)(
−∇Π2

−∇Π1

)
. (11)

Then,

j =
ηαΠ1σ2 − jασ2∇Π1

ηαΠ1σ2 − jγσ1
α
∇Π1
Π1

. (12)

Thus,

η = ηC j
jγ− α2σ2

σ1
Π1

j α2σ2
σ1

Π1 − α2σ2
σ1

Π1

, (13)

where γ = α2σ2
σ1

Π1 + 1. After a few algebra, we get

η =
ηC

(γ− 1)
γj2 − (γ− 1) j

j− 1
(14)
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η presents a maximum for jopt = 1 +
√

1
γ for a receptor mode, and jopt = 1−

√
1
γ for a generator

mode. Both optima reduce to j = 1 in the ideal case, when γ diverges, where we recover the Carnot
efficiency. In this diverging case, the system do not present anymore dissipation production, and the
equivalence between the receptor and generator modes is a proof of the absence of causality of the
Carnot configuration. This absence of causality is another name for reversibility. We then recover
the Kedem–Caplan expression of the maximal efficiency, ηmax = ηC

√
γ−1√
γ+1 for the generator mode,

and ηmax = ηC

√
γ+1√
γ−1 for the receptor mode. Let us now plot the efficiency versus the reduced current,

as reported in Figure 2.
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η
/η

C
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1.0
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Figure 2. Normalized efficiency η
ηC

according to reduced current j = αJ2/J1 with γ = 2 (red,

dot dashed), 4 (green, dots), 8 (blue, loosely dashed), 20 (cyan, dashed), 2× 102 (magenta, loosely dot
dashed) in main figure, and γ = 2× 102 (magenta, loosely dot dashed), 2× 103 (black, dot dashed),
2× 104 (red, dot dot dashed) in inset. The grey area corresponds to the receptor mode (resp. generator
mode). Note that the figure is symmetrical with respect to the Carnot point (blue star), which is never
reached. This singular point defines the reversible configuration, where causality is broken.

As expected for the maximum performance achieved, ηmax is an increasing function of the figure
of merit. On the other hand, it also appears that the sensitivity to fluctuations in j becomes all the more
important as ηmax is important. This is confirmed by estimating the value of the slope in the vicinity
of the maximum yield, which is ∂η/∂(j) ≈ −2ηmaxFm. The larger the figure of merit, the steeper the
slope. This local description allows us to conclude that the performance of the device is obtained at
the cost of a constraint of stability of the operating points, directly driven by the value of the figure of
merit. As an intrinsic quantity, the figure of merit defines the performance ceiling beyond which it
cannot be exceeded. It is clear from the figure that the system defined by a high figure of merit exceeds
in performance all the systems of lower figure of merit value. However, this result is strongly weighted
by the fact that, for excursions of j around the optimal value, the efficiency falls rapidly. Then, it is
not necessarily relevant to look for a device with a large figure of merit, without first inventorying the
operating range that will be brought to run this device. For simplicity’s sake, we have only dealt here
with the case where the system works as a generator, which is obtained by 0 < j < 1. It is clear that the
same study can be carried out for the case where the system operates as a receptor, instead of working
as a generator. This situation, well known for thermal machines, corresponds to heat pump operation.
More broadly, and in the case of non-thermal machines, this case actually corresponds to the operation
in recycling mode where the treated quantity undergoes regeneration. It should be noted that the
expression of performance refers only to γ, and therefore to the figure of merit, without specifying any
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contribution from σ1, σ2 and α, respectively. The local level is totally blind to these issues so we now
consider the situation of the entire system to see the relative contributions.

4. Global Conversion System

4.1. Presentation

In accordance with the diagram in Figure 1, the device of the conversion zone is connected to its
reservoirs via the two resistors R+ and R−, which makes it possible to explore all boundary conditions.
The presence of R+ and R− may lead to the pinching of the potential difference Π+

1 −Π−1 according
to the system operating point. More precisely, R+ governs the limitation of access to the resource
while R− reflects possible saturation effects of waste disposal. This global model, although limited,
makes it possible to approach the behavior of many systems, including living systems, depending on
whether the resource is abundant or scarce, and whether waste disposal, including thermal waste,
is easy or not. Living system and non-living systems differ from the fact that the energy current is
never zero in living systems, so R1 is always finite, and there is a non-zero resting point. On the
contrary, a non-living system may have a zero resting point, with zero energy current, so R1 may be
infinite in these systems. Let us consider the set of the four equations that governs the functioning of
the system (see Appendix A):

IE− = αΠ−1 I2 + (1− ϕ) R2 I2
2 +

(
Π+

1 −Π−1
)

R1
, (15)

IE− =
(Π−1 −ΠS

1 )

R−
, (16)

IE+ = αΠ+
1 I2 − ϕR2 I2

2 +

(
Π+

1 −Π−1
)

R1
, (17)

IE+ =
(ΠR

1 −Π+
1 )

R+
. (18)

These equations have their origin in the integration of the local form described in the previous
paragraph. These developments have been the subject of previous articles [14,22] , and will not be
re-described here. ϕ controls the dissipation fraction that returned to the source or to the sink. In the
following, we will choose ϕ = 0. This choice is not critical here since the effect of ϕ = 0 is driven by
R2, which is equal to zero.

4.2. Devices with Zero Resting Point

First of all, we consider that R2 = 0 and R1 diverge, in order to separate the contributions of
entropy production and internal dissipation. R2 governs the current of matter, so we therefore consider
that this current may not be limited, so there is no intrinsic dissipation within the device. The figure of
merit of the device is then infinite and we may expect to reach the ideal conditions and the Carnot
efficiency. However, the classical discussion around the Carnot efficiency is based on pure Dirichlet
boundary conditions, which is clearly not the case here, so we have to consider the new conditions
introduced by the modification of the boundary conditions. In the present configuration of zero resting
point systems, the general equations (see Appendix A) can be summarized as

IE− =
ΠS

1 I2
1
α − R− I2

, (19)

IE+ =
ΠR

1 I2

R+ I2 +
1
α

, (20)

with the output power given by P = IE+ − IE−.
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The plots in Figure 3 summarize the behavior of the global system. The output power presents
a maximum and two zero values. The first value corresponds to the case where the efficiency reaches
its maximum. This situation is obtained for I2 = 0, so IE− = IE+ = P = 0. This means that no
matter or energy can flow through the system, which is a totally useless situation for a physical system.
The second zero power value is reached for a current of matter I2sc , named the short-circuit current,
by analogy with electronics. In this situation, the produced power is completely re-dissipated inside
the system. I2sc is therefore an ultimate operating point for the system, working as an energy generator.
For a truly efficient operation, it is therefore necessary to try to push I2sc to large values, which are
obtained by getting as close as possible to Dirichlet conditions. In the general case, the approximate
expression of this current is

I2sc ≈
1
α

∆Π1

R−ΠS
1 + R+ΠR

1
, (21)

which confirms that Dirichlet’s conditions where R− = R+ ≈ 0 are to be sought, if accessible. Since the
resting point here is zero, the power curve necessarily intercepts that of IE−. Beyond this interception
point, the system is in a situation where it releases more waste than it produces output power. We call
critical point the point where P = IE−, reached for I2cp. The fact that power is not a monotonous
function of I2 is actually quite unexpected because, to the extent that R2 = 0, the total absence of
intrinsic viscosity should not lead to any limit to I2. However, if we carry out a development at the
first order of the expression of power we find

P ≈
[
α∆Π1 −

(
ΠR

1 R+ + ΠS
1 R−

)
α2 I2

]
I2 (22)

which clearly indicates the presence of a viscous friction term R f b,

R f b ≈ α2(ΠR
1 R+ + ΠS

1 R−) (23)

which reduces the transport of the matter, even though the intrinsic viscosity, i.e., 1
σ2

, associated with
the transport of the matter, is zero. This additional dissipation is a pure feedback effect that is due to
the presence of boundary conditions at the general limits where R+et R− are non-zero. This additional
dissipation can only be rendered null if R+ = R− = 0, i.e., a strict Dirichlet condition, which is,
in reality, only very rarely observed. Note that the condition α = 0 leads to the same result but it is
useless because in this case the transport of energy and matter are fully decoupled, and the device
does not convert the energy anymore. The conditions R2 = 0 and R1 → ∞ determine the performance
envelope for a system with an ideal conversion zone. In particular, it is noted that, although IE+ and
IE− are increasing functions of the current of matter I2, the growth rate of the energy waste current IE−
always ends up reaching that of the energy current IE+ supplied to the system. In addition, even in
the case of a system whose core is composed of an ideal device, (R2 = 0, R1 → ∞), the increase in
the current of matter inexorably leads to an increase in the current of waste in larger proportions to
the rate of supply of resources. The only way out is to limit the current of matter to values below
a threshold, which may be that of maximum power, maximum efficiency, minimum waste generation,
or below the critical point. In the Figure 3, the response is given for two different values of the coupling
parameter α. The influence of α is quite surprising. At first we observe that the lower is α and the
lower are the output power and efficiencies, as expected for a lower conversion level of the energy.
However, in the same time, the short-circuit current is strongly enhanced, opening the way to a large
range of I2 working points for the transport of the matter. This is due to the α−2 dependency of I2sc.
This leads to the conclusion that the search for a very efficient system is in contradiction with the search for
a very adaptable system.
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Figure 3. Representations of the powers IE+, IE−, with R−1
1 = 0, R2 = 0 (and P = Pout), R+ = R− = 2,

ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = Pout/I2+/− in function of I2,
the current of matter. (b) is the efficiency in function of the power produced Pout. (c) show the power
(resp. in red, green and black) IE+, IE− and Pout in function of I2. (d) shows (resp. in red, green and
black) COE+/− = IE+/−/I2 and COEPout = Pout/I2 in function of I2. Dotted lines are α = 0.9, solid
lines are α = 1, dashed lines are α = 1.1. In (c) and (d) cyan stars show short circuit situations I2sc,
yellow circles are critical points I2cp. In (b) vertical and horizontal red lines are respectively maximal
efficiency and maximal power.

Let us now focus on the issue of the trade-off between power efficiency and waste generation.
The Figure 3a represents the curves of the production efficiency ηprod = P/IE+ and the waste efficiency
ηwaste = P/IE−. Note that ηprod , which is the traditional efficiency, is limited by the Carnot efficiency
but ηwaste is not, since it does not refer to the traditional expression of efficiency but is just an extension
of the notations. ηprod is bounded by a zero value, which corresponds to zero power, and a maximum
efficiency point, reported in Figure 3b. Between these two values, the system presents a maximum
of the power, which absolutely does not coincide with the maximum efficiency. In this configuration
the MPP or mEP operations are clearly disjointed as already mentioned [23,24]. Let us now consider
the cost of carrying out a unitary process. By unitary process we consider a process standardized
by the value of the associated transport of matter, i.e., the ratio between the energy currents and the
matter current. We call this quantity Cost Of Energy, i.e., COE. This makes it possible to consider
energy expenditures with regard to the associated matter transformation along a unitary displacements.
In other words, COE can measure the amount of energy needed to be rejected as a waste, for displacing
the matter from a unit length. This quantity is already known in biology as Cost Of Oxygen Transport
(COT), where it has made it possible to qualify a unit displacement with regard to the energy released
in the form of waste [25,26]. Here, we extend the notion in a more general form where COE is defined
by COE+ which is the cost of energy needed to feed the system, and COE− which is the cost of waste
energy that is rejected, so,

COE+/− =
IE+/−

I2
(24)

Note that the COE+ is a strictly decreasing function of I2 and COE− is a strictly increasing function
of I2. This means that the cost of energy needed for a unitary process decrease when I2 increases but,



Entropy 2020, 22, 29 11 of 20

in the same time the amount of waste always increases. There is therefore no optimum to consider
any minimization of the waste. In addition, it is important to note that the R−1

1 = 0 configuration is
the only one that provides the strong coupling conditions, for which the energy and matter currents
are roughly proportional [10]. In this case, the Onsager matrix has a zero determinant. This situation
is an idealization of the transport of energy entirely achieved by the transport of matter. In other
words, it is a question of considering that the behavior of out-of-equilibrium thermodynamics may
be equivalently described by pure mechanics. This is obviously never fully encountered unless it is
considered that a ∆Π1 difference can persist without an associated current of matter existing. This is
the purpose of the following paragraph.

4.3. Devices with Non Zero Resting Point

The study of devices with non zero resting points concern the case of all systems for which
a shutdown means death. Indeed, unlike a machine, all living systems are never totally shut down,
and always keep a minimum operating point value , which we call basal, also known as a resting point.
This situation corresponds to the case where R1 has a finite value. While remaining, for the moment in
the case where R2 = 0, we can develop the main results from this configuration. The general equations
of the system are given in Appendix B. In this situation, the efficiency, nor the power, can reach the
previous values, as reported in the Figure 4. At the resting point I2 = 0, the system is in its basal
configuration where P = 0, so IE+ = IE− = B with,

B =
∆Π1

R+ + R1 + R−
(25)

The typical response of systems with non zero resting points is given in the Figure 4. One can
notice that the general shape is not strongly modified from the case of zero resting point configurations,
except the presence of a non zero current of energy even at zero I2 and a slight modification of
the short-circuit point. Regardless of the reduction in efficiency introduced by the presence of R1,
the search for a system with a very low basal point requires to be located in a configuration close to
Neumann conditions where R+ and R− have very large values. This is not problematic except that
it requires the system to operate at low values of I2, in order to limit the dissipation due to the term
R f b. There is therefore a fundamental contradiction between having a system with low resting power
consumption and a system that can provide significant power. It is clear that a sober system, in the
sense of its consumption at rest, is unsuited to the production of significant power, without leading to
significant dissipation at high speed, or equivalently, high I2. If such a power is sought, then it implies
that the boundary conditions should be of Dirichlet like with R+ ≈ R− ≈ 0. However, in this case the
system will have a necessarily high rest consumption. Compared to systems with a zero resting point,
it can be seen that the maximum power operating point and maximum efficiency operating point tend
to approach each other as R1 increases. In this configuration, as can be derivated in [27], the feedback
resistance is approximately given by

R f b ≈
α2〈Π1〉
1

R++R− + 1
R1

= R∗α2〈Π1〉 (26)

where R∗ = (R++R−)R1
R1+R++R− and 〈Π1〉 = ΠR

1 /2 + ΠS
1 /2.

Compared to the previous configuration the dissipation introduced by the presence of R f b can now
be modified whatever are the boundary conditions because R∗ < Min(R+ + R−, R1). More precisely,
in the case of Neumann-like boundary conditions, there is a restriction to the value of R1 where
R1 � R+ + R− is expected. Under Dirichlet-like boundary conditions R+ and R− are small so there
is no condition on R1. Consequently, a system with a very low basal point, with large values of both
(R+, R−) (Neumann like) and R1 will suffer from a large R f b and is then limited to very low I2 currents.
If the boundary conditions are more like Dirichlet conditions, then R f b keeps low but the low basal
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level now imposes that R1 strongly increases, which reduced both the available power P and the
efficiency. Thus, we can see that there is no room for a powerful and efficient system working in all
conditions. The main trade-off is between power and efficiency, but it ultimately extends beyond that.
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Figure 4. Representations of the powers IE+, IE− and P, with R−1
1 = 0.05, R2 = 0 (and P = Pout),

R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = Pout/I2+/−

in function of I2 the current of matter; (b) is the efficiency in function of the power produced Pout;
(c) shows the power (resp. in red, green and black) IE+, IE− and Pout in function of I2; (d) shows
(resp. in red, green and black) COE+/− = IE+/−/I2 and COEPout = P/I2 in a function of I2. Dotted
lines are α = 0.9, solid lines are α = 1, dashed lines are α = 1.1. In (c) and (d), cyan stars show short
circuit situations I2sc, and yellow circles are critical points I2cp. In (b), vertical and horizontal red lines
are respectively maximal efficiency and maximal power.

From a rather general point of view, the incoming energy current IE+ makes it possible to establish
and maintain, thanks to the presence of R1, a potential difference that permits the production of output
work. On this point, we join the work of Alicki [16], who considers that the incoming energy current
makes it possible to maintain a difference in potential, exactly as a pump would do. This situation
is particularly described in the case of photovoltaic structures, with a difference in electrochemical
potential [16], or in the case of muscles where the attachment and release cycles of actin and myosin
structures lead to the maintenance of a force [28]. It should be noted that, depending on the position of
the resting point, the power curve can intercept between zero and twice the IE+ curve. It can therefore
be seen that, in the case of systems with a relatively low resting point, there may be an area for which
the power produced is greater than the power released as a waste. More intriguing, this area can
start with a non-zero value of I2. In other words, there may be systems for which the situation I2 6= 0
leads to a proportionally smaller waste production than at rest. Systems with a non-zero resting point
therefore present very different optima than non-living systems, whose zero resting point leads to
minimizing power by stopping the machine. By using the definition COE− = IE−/I2, we can plot
its response according to I2. It should be noted that the COE− has a minimum value, which does
not coincide with the maximum power point. This defines a new operating point for the system,
which characterizes the situation where the system minimizes its production of waste.
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An illustration of this can be given if we consider the motion of living systems. Let us consider
that the task to be accomplished consists in moving the body over a unit distance, the question arises
as to how fast this operation will lead to a minimum of waste, essentially in the form of heat and
metabolic degradation products. It is clear that displacement here corresponds to the transport of
matter, and is therefore assimilated to I2 proportional to the speed of travel as previously said. There is
an abundant amount of literature showing that there exists a minimum of the so-called COT ≡ COE−
point for all animals for which movement appears to be favored when the COT is minimal [25,26].
As expected, see Figure 4, COE− and COE+ curves have a common point at the short circuit point.
We previously saw that Dirichlet’s conditions, R+ = R− = 0, were those that minimized the feedback
resistance R f b and allowed for considering potentially a divergence of the current of matter and the
output power. This simple observation shows that strict Dirichlet’s conditions are simply nonphysical.
Nevertheless, one can consider that this condition can be approached. However, the presence of R+,R−
and R1 in series shows that Dirichlet’s condition is asymptotically obtained only if the ratios R+/R1

and R−/R1 are negligible, which imposes an important value for R1, and therefore a high value of the
basal power. We therefore see the emergence of a paradox, which, seeking to minimize the dissipation due to
R f b leads to the constraint of high consumption at rest. The same system cannot therefore be both very powerful
and very energy-efficient at its resting point. We find here the generalization of a well-known situation,
for example for the thermal engines of vehicles, in which the engine’s displacement determines its
ability to produce power, as well as its efficiency.

4.4. Internal Dissipation Devices

Let us now consider the introduction of the dissipative term R2. The output power of the system
is now represented by Figure 5. As a thermodynamic engine, the system provides a power P =

α
(
Π+

1 −Π−1
)

I2 as already defined. The efficiency of this part of the system is given by η2 =
P−R2 I2

2
P .

Thus, the total efficiency of the system is

ηsys = η1η2, (27)

with η1 = P
IE+

. Compared to the previous configurations, both the power, the short-circuit current Isc,
and the efficiency are now reduced. The influence of R2 appears to be always detrimental, which was
not the case for R1. It is clear that one should look for minimal R2 if possible. In other words,
in the expression of the figure of merit, there is a constraint on R2. At first, both α and R1 seem to be
non-constrained, and the same figure of merit can be obtained for various values of the couple (α, R1).
Nevertheless, as we have mentioned, the present description shows that R2 is linked in series with
R f b. Consequently, the constraint on R2 can be relaxed to the condition R2 � R f b. According to the

expression R f b ≈
α2〈Π1〉
1

R++R−
+ 1

R1

, this leads to the condition 1 + R1
RΣ

< α2R1
R2
〈Π1〉 where we recognize the

figure of merit, so the condition becomes

1 +
R1

RΣ
< Fm, (28)

where RΣ = R+ + R−. According to the previous observation, the minimization of the dissipation
occurring from the R f b term imposes that R1

RΣ
should be large enough. Thus, we now get

a supplementary condition for Fm. In this expression, the boundary conditions and the intrinsic
performances of the device are considered together. Under Dirichlet conditions, 1 + R1

RΣ
diverges so the

system keeps its level of dissipation low only in the case of a very large figure of merit, and is forced
to work at very low I2 values. Under Neumann conditions, RΣ diverges and then the condition on
the figure of merit is then relaxed. Ideally, even when achieved asymptotically, one might want to
achieve maximum power, as well as minimal waste production, combined with maximum efficiency.
We conclude that looking for maximum efficiency always leads to approaching the Carnot point, which is, even in
an out-of-equilibrium description, the point where power production is canceled out.
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Figure 5. Different representations of the powers IE+, IE− and P, with R−1
1 = 0.05, R2 = 4,

R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = P/I2+/−

as a function of I2 the current of matter. (b) is the efficiency in function of the power produced P.
(c) shows the power (resp. in red, green and black) IE+, IE− and Pout in function of I2. (d) shows
(resp. in red, green and black) COE+/− = IE+/−/I2 and COEPout = Pout/I2 as a function of I2. Dotted
lines are α = 0.9, solid lines are α = 1, dashed lines are α = 1.1. In (c) and (d), cyan stars show short
circuit situations I2sc and yellow circles are critical points I2cp. In (b), vertical and horizontal red lines
are respectively maximal efficiency and maximal power.

5. Entropic Point of View

The previous power budget analysis highlighted three classes of systems: systems with a zero
resting point, systems with a non-zero resting point, and, finally, systems with an additional internal
dissipation term R2. Let us consider these three classes again from the entropic point of view.

5.1. Devices with Zero Resting Point

The production of entropy from the presence of R− and R+ is given respectively on both sides of
the device by

.
SE+ =IE+

(
1

Π+
1
− 1

ΠR
1

)
=

α2 I2
2 R+

1 + αI2R+
, (29)

.
SE− =IE−

(
1

ΠS
1
− 1

Π−1

)
=

α2 I2
2 R−

1− αI2R−
. (30)

The results are given in Figure 6.
There is clearly an asymmetry in the two entropy productions. Indeed, if the two contributions

initially increase in a quadratic form with the current of matter, the contribution of the resource side,
.
SE+, tends to a linear progression independent of the coupling condition R+, while the contribution
on the waste rejection side

.
SE− tends to diverge as soon as I2 ≈ 1/αR−. It is surprising to see that,

in addition, this divergence is more marked as the coupling factor α between energy and matter is
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important. There is therefore no other solution than to make R− as small as possible, and therefore reject all the
waste easily. This is an additional constraint for the design of efficient systems.
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Figure 6. Evaluation of the entropy production with the same configuration as in Figure 3, R−1
1 = 0,

R2 = 0, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in function of I2 the
current of matter—the same color and line-style code as in Figure 3.

5.2. Devices with Non-Zero Resting Points

Let us now look at the configuration of non-zero resting point systems, while keeping R2 ≈ 0.
In this case, the general expressions become

.
SE+ =IE+

(
1

Π+
1
− 1

ΠR
1

)
=

R+ I2
E+(

ΠR
1 − R+ IE+

)
ΠR

1
, (31)

.
SE− =IE−

(
1

ΠS
1
− 1

Π−1

)
=

R− I2
E−(

R− IE− + ΠS
1
)

ΠS
1

. (32)

The results are given in Figure 7 where IE+ and IE− are defined according to the Appendix B.
We can see that the presence of R1 reintroduces a significant symmetry between the two contributions
to the entropy production. Moreover, the question of the importance of the quality of the coupling
on the resource side, by minimizing R+, or to the rejection side, by minimizing R−, is now of
equal importance.

5.3. Internal Dissipation Devices

For internally dissipated devices, the term R2 produces a quadratic dissipation R2 I2
2 . We have

seen before that the presence of R2 never brings any advantage in terms of energy conversion since
it only contributes to lowering the power available at the output of the system. As this dissipation
diffuses into the system, it is itself a source of entropy, as shown in Figure 8. At this stage, it is important
to know how this dissipation occurs. In the case of some thermal systems, an analytical calculation
can be carried out that leads to an equal distribution of this dissipation between the resource and
the sink, i.e., ϕ = 0.5, see Appendix B in accordance with [22]. In other systems, such as muscles
subjected to moderate stress, this dissipation is considered to be completely rejected into the sink
(ϕ = 0) [14]. For some living systems, including homeothermic species, it is likely that a fraction of
this dissipation is partially released, and partially used to maintain the central temperature of the body,
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leading to a value ϕ ≈ 1, depending on outdoor conditions. One example is the case of vaso-dilatation
and vasoconstriction of peripheral vessels, which is a solution for modulating the value of R− and
consequently reject less, or more, heat outside of the body.
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Figure 7. Evaluation of the entropy production with the same configuration as in Figure 4 with
R−1

1 = 0.05, R2 = 0, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in
function of I2 the current of matter—the same color and line-style code as in Figure 3.
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Figure 8. Plot of the entropy production with the same configuration as in Figure 5 with R−1
1 = 0.05,

R2 = 4, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in function of I2 the
current of matter—the same color and linestyle code as in Figure 3.

6. Adaptable or Adapted?

The study of the behavior of a generic system composed of a conversion device, and the boundary
conditions to the reservoirs, now allows us to establish several observations. First, the search for the
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best device, in terms of power and efficiency, can be summarized by the search for the largest figure
of merit Fm. However, this result must be modulated by the fact that the value of Fm is determined
by the set of the three parameters R1, R2, and α which, at this stage, do not present any constraints.
In addition, few thermodynamic devices have a single operating point, but are generally expected to
operate over a wide range of uses that principally means large range of I2. In the precedent paragraph,
we concluded that the greater the figure of merit, the smaller the effective operating range becomes.
Indeed, for such a narrow range, the users must then conform quite strictly to that imposed by the
value of the figure of merit of the device. This observation explains quite simply why the consumption
observed by vehicle drivers is always larger than that reported by vehicle manufacturers, since the
actual conditions of use never coincide with the test conditions. Similarly, the measured performance
of equipment in dwellings, as well as the performance of the dwellings themselves, is below the
expected performance during construction. This observation leads to the recommendation that devices
intended to operate over a wide range of uses should not be designed solely on the basis of their
maximum performance in terms of efficiency and power. Beyond this observation, the question arises
of determining, within a system, which of the three parameters R1, R2, and α should be optimized as
a priority. We can first conclude that, unless there are situations where dissipation is explicitly sought,
R2 must be systematically minimized. With regard to R1, we have seen that its choice determines
two categories of systems, depending on whether R1 is zero or not. It must be noticed that R1 = 0
is not possible for living systems because a resting point does exist until the death. In the category
where R1 = 0, the operating range of the system is limited by the feedback effects that introduce
an excess dissipation term R f b. Note that this term can be minimized if the boundary conditions are
as close as possible to Dirichlet conditions. In this situation, the currents of matter I2 and energy
IE may diverge. This situation has been that of our societies since the beginning of the industrial
revolution [12], with coal, followed by an acceleration after the Second World War, due to the rise in
oil consumption. The divergence of matter and energy currents is directly linked to an increase in the
figure of merit, through an increased facilitation of the circulation of matters and energies, which is
produced by a minimization of R2, as well as an increase of α, i.e., technological progress that allows
thermodynamic potentials to be more strongly coupled. A basic illustration of this increase is the
performance of steam machines, which have gradually increased the ratio between outlet pressures and
inlet temperatures [29]. The second category of system concerns the case where R1 6= 0. These systems
are particular in that they consume energy, even in a resting situation. We can include living organisms
and societies, but also machines, when the latter operate in the idle position, with no other power
production than the maintenance of this idle. We have seen that, in this case, there are two categories
of systems depending on whether we favor power production or low consumption at rest. These two
categories are resolutely distinct and it is illusory to think of a system capable of producing a very high
power, while maintaining a very low basic consumption. The choice of R1, i.e., the dissipation at rest,
is also decisive in the dissipation produced by feedback. The issues of minimization or maximization
of efficiency and power are therefore part of a much broader framework than initially thought.

7. Discussion

We proposed a generic thermodynamic system model that allows for considering several
situations of coupling of the energy and matter currents, as well as their conversions. At the local level,
the intrinsic performance of the device that constitutes the core of the system was studied. It appears
that the best intrinsic performance in terms of power and efficiency is obtained for the devices with the
largest figure of merit, without specifying the respective contributions of the conductivities associated
with the transport of energy or matter. However, the sensitivity of these devices to changes in the
reduced current j shows that the intrinsically most efficient devices are also the most constraining
because they require precise control of this reduced current, and therefore of energy and matter currents.
At the scale of a complete system, the coupling to the external environment very strongly modifies the
conclusions compared to the observations made at the local level. It is observed that behavior is mainly



Entropy 2020, 22, 29 18 of 20

governed by the boundary conditions that connect the local system to the resource and the waste.
The presence of boundary conditions such as Dirichlet or Neumann leads to a wide variety of behaviors.
The ideal Dirichlet conditions are the only ones that do not lead to any feedback, and consequently
conduct in the absence of limitations for the energy and matter currents. When the boundary conditions
are between Dirichlet and Neumann, many possibilities then arise. The presence or absence of a resting
point for the system strongly influences these possibilities in terms of power, but also in terms of
waste production associated with the completion of a task. The concept of coefficient of energy cost,
COE, is introduced, generalizing the classical COT already established for biological systems. Finally,
it is observed that the internal dissipation produced by the presence of R2 is always detrimental for
both the efficiency and the power. Its only positive contribution is limited to cases where dissipation
and entropy production are explicitly sought, as in the case of homeothermic animals.

Author Contributions: Conceptualization, C.G.; methodology, C.G. and E.H.; software, E.H.; validation, C.G. and
E.H.; formal analysis, C.G.; writing—original draft preparation, C.G.; writing—review and editing, C.G. and E.H.;
visualization, E.H.; supervision, C.G.; project administration, C.G.; funding acquisition, C.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the CNRS grant METABOLOCOT Défi Modélisation du vivant.

Acknowledgments: The authors would like to thank Henni Ouerdane for enlightening discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We consider the set of the four equations of the generic model:

IE− = αΠ−1 I2 + (1− ϕ) R2 I2
2 +

(
Π+

1 −Π−1
)

R1
, (A1)

IE− =
(Π−1 −ΠS

1 )

R−
, (A2)

IE+ = αΠ+
1 I2 − ϕR2 I2

2 +

(
Π+

1 −Π−1
)

R1
, (A3)

IE+ =
(ΠR

1 −Π+
1 )

R+
. (A4)

The ϕ term defines the fraction of the waste which is respectively rejected to the source and to
the sink. This is a well known parameter in some thermal engines [22]. In the case of a living system,
ϕ may define the ratio of heat rejected outside of the body and kept inside.

The resolution of the four equations gives(
Π−1
Π+

1

)
=

1
AD− BC

(
D −B
−C A

)(
ΠS

1 + (1− ϕ) R−R2 I2

ΠR
1 + ϕR+R2 I2

)
, (A5)

with

A = 1− αR− I +
R−
R1

,

B = −R−
R1

,

C = −R+

R1
,

D = αR+ I +
R+

R1
+ 1.
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Appendix B

In the case of a system without dissipation, R2=0, the general equations become

IE− = αΠ−1 I2 +
Π+

1 −Π−1
R1

, (A6)

Π−1 = R− IE− + ΠS
1 , (A7)

IE+ = αΠ+
1 I2 +

Π+
1 −Π−1

R1
, (A8)

Π+
1 = ΠR

1 − R+ IE+, (A9)

which leads to

IE+ =
αI2

R1
R+

ΠS
1 +

∆Π1
R+

+ αAI2
R1
R−ΠR

1 + A ∆Π1
R−

1 + AB
, (A10)

IE− =
αI2

R1
R−ΠR

1 + ∆Π1
R− − αBI2

R1
R+

ΠS
1 − B ∆Π1

R+

1 + AB
, (A11)

with

A =

(
αI2R1

R−
R+
− R1

R+
− R−

R+

)
,

B =

(
αI2R1

R+

R−
+

R+

R−
+

R1

R−

)
.
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