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ABSTRACT
NumbL, or Numb-like, is a close homologue of Numb, and is part of an evolutionary 

conserved protein family implicated in some important cellular processes. Numb is a 
protein involved in cell development, in cell adhesion and migration, in asymmetric cell 
division, and in targeting proteins for endocytosis and ubiquitination. NumbL exhibits 
some overlapping functions with Numb, but its role in tumorigenesis is not fully known. 
Here we showed that the downregulation of NumbL alone is sufficient to increase 
NICD nuclear translocation and induce Notch pathway activation. Furthermore, NumbL 
downregulation increases epithelial-mesenchymal transition (EMT) and cancer stem 
cell (CSC)-related gene transcripts and CSC-like phenotypes, including an increase in 
the CSC-like pool. These data suggest that NumbL can act independently as a tumor 
suppressor gene. Furthermore, an absence of NumbL induces chemoresistance in 
tumor cells. An analysis of human tumors indicates that NumbL is downregulated 
in a variable percentage of human tumors, with lower levels of this gene correlated 
with worse prognosis in colon, breast and lung tumors. Therefore, NumbL can act as 
an independent tumor suppressor inhibiting the Notch pathway and regulating the 
cancer stem cell pool.

INTRODUCTION

NumbL, or Numb-like, is a close homologue of 
Numb and is part of an evolutionary conserved protein 
family implicated in some important cellular processes, 
including cell adhesion and migration, asymmetric cell 
division, and targeting proteins for endocytosis and 
ubiquitination [1–7]. Numb was originally identified as 
a membrane-associated protein (dNumb) in Drosophila 
mutants with severe defects in neuron development [8]. 
This protein is asymmetrically segregated during telophase 
to only one daughter cell, acting as a cell fate determinant. 
The daughter cell with dNumb will differentiate while the 
cell without dNumb will remain in an undifferentiated 
state [6]. dNumb is evolutionarily conserved, with its 
mammalian homologues encoded by two genes, Numb 
and NumbL [9]. Although vertebrate Numb also shows 
asymmetric distribution in cells, NumbL has been shown 
to be symmetrically distributed in cytoplasm, which 

differentiates it from its close homologue Numb [10]. 
In addition, Numb is ubiquitously expressed during 
development, while NumbL is more restricted to the 
developing central nervous system [7, 10–12]. These and 
other studies suggest that Numb and NumbL, despite 
their similarities, maintain at least some independent 
functions. This is more obvious during development in 
mice. NumbL removal does not have any apparent effects 
in mice lacking the gene, with the exception of a reduction 
in female fertility [7]. However, Numb knock-out or 
double Numb/NumbL knockouts lead to demise in mice 
during development; the phenotype with double knock-
out is more severe in terms of early embryonic lethality, 
showing that Numb/NumbL partially overlap but have 
some important differences [7, 13, 14].

Accumulating evidence suggests a potential role 
of Numb as a tumor suppressor [15, 16], including 
inhibition of the Notch signaling pathway [17] and 
the stabilization of p53 [18, 19]. Loss of Numb 
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was associated with poor prognosis in malignant 
pleural mesothelioma [20]. Overexpression of Numb 
significantly inhibits proliferation, enhances apoptosis 
and increases sensitivity to cisplatin [20]. In Numb-
negative breast and clear cell renal carcinoma cells, 
ectopic overexpression of Numb suppresses proliferation 
[21, 22]. In vivo, RNA interference of Numb in a model 
of mouse lymphomagenesis accelerates the onset of 
lymphomas [23]. Loss of Numb expression has also 
been reported in some types of human cancer, including 
breast, NSCLC, and salivary gland carcinomas and 
medulloblastoma [21, 24–26].

However, there is a trend toward higher Numb 
expression in more malignant tumors in human 
astrocytomas [27]. Overexpression of Numb has also 
been observed in cervical squamous carcinoma cells [28], 
suggesting that Numb may act as an oncogene in certain 
tissues. 

In mammals, six differentially spliced isoforms 
of Numb, each with different expression patterns, have 
been described to date, while only one NumbL protein 
has been identified [29, 30]. This suggests that certain 
Numb isoforms (isoforms 2, 4, 5 and 6) promote tumor 
growth [31–33], while the Numb-1 isoform behaves 
as a tumor suppressor [34] and Numb-3 behaves as an 
oncogene or tumor suppressor depending on the tissue 
[35]. This raises the possibility that the role of Numb is 
isoform-specific. 

Considerably less is known about mammalian 
NumbL and its role in tumorigenesis. NumbL was 
reported to be downregulated in lung cancer cell lines; 
its ectopic expression suppresses proliferation and 
invasion, increasing apoptosis [36]. Similarly, in human 
glioblastoma cells, the overexpression of NumbL 
suppressed, while the elimination of NumbL promoted 
the migration and invasion of glioma cells [37]. However, 
another report found that increased deregulated expression 
of NumbL in lung tumor cell lines mediated cell migration 
and in human tumors correlates with shorter patient 
survival [38]. Therefore, there are contradictory data 
about the role of NumbL in cancer progression. 

Our aim in this study was to investigate the role of 
NumbL in tumorigenesis, specifically the control of the 
CSC phenotype, which has emerged as a preferred target 
in cancer therapy because of its role in cancer recurrence.

Here we show that NumbL knockdown increases 
tumorigenic properties in three different cancer cell lines 
of different origins, cervix HeLa, breast T47D and sarcoma 
AX, due to Notch pathway activation by stabilizing 
NICD. NumbL knockdown is sufficient to induce cancer 
stem cell-like transcription and phenotypic properties, 
suggesting an important role as a tumor suppressor gene 
by maintaining the CSC-like phenotype through Notch 
pathway activation. Furthermore, low levels of NumbL 
decrease sensitivity to chemotherapy and correlate to a 
worse prognosis in breast, lung and colorectal tumors.

RESULTS

shRNA against NumbL induces protein 
downregulation and a higher number of  
colonies in clonogenic assays

Human cell lines HeLa and T47D transfected with 
shRNA against NumbL (shNbL2) showed a decrease in the 
expression of this protein, both at mRNA and protein levels 
(Figure 1A). Despite the high degree of similarity between 
Numb and NumbL, cell lines expressing shNbL2 show no 
significant changes in Numb expression (Figure 1B).

Clonogenic assays performed at low cell densities 
showed that NumbL downregulation induces a significant 
increment in colony numbers, both from HeLa and T47D 
cells (Figure 1C). Colony numbers from HeLa cells 
were increased to 140%, while for T47D cells, NumbL 
downregulation induced a further significant increase up to 
values close to 230% compared to the control expressing a 
scrambled shRNA cell line. This increment in colony number 
has been associated with increased cell survival. Further 
experiments growing these cells in soft agar also showed 
a clear increase in the number of colonies growing in cells 
with downregulated NumbL (Figure 1D). To further confirm 
the role of NumbL as a tumor suppressor, we overexpressed 
NumbL cDNA into these cells. The experiment showed 
a marked reduction in the number of cells able to form 
colonies (Figure 1E). These data confirm the potential of 
NumbL to act independently as a tumor suppressor.

NumbL downregulation activates  
the Notch pathway

Due to its close relationship to Numb and the known 
connection between Numb and Notch, we decided to 
analyze the effect of NumbL downregulation on the Notch 
pathway. We detected an increment in nuclear NICD in 
HeLa and T47D cells with low levels of NumbL compared 
to the control cells (Figure 2A). This increase is similar 
to the increase observed upon Numb downregulation 
by shRNA (Figure 2A). As a consequence of NICD 
nuclear translocation, the Notch pathway is activated. 
We found Hes1/Hes5 activation and Gli1 inhibition, as 
well as Klf7 and Id2 inhibition (Figure 2B), all well-
known downstream genes regulated by NICD and Notch 
pathways [39–42]. Taken together, these data suggest that 
NumbL downregulation induces Notch pathway activation 
by protecting NICD from degradation. 

Acquisition of stem cell-like properties  
due to NumbL downregulation

It has been previously established that activation of 
the Notch pathway induces EMT and cancer stem cell-
like properties [43]. Using RT-qPCR, we analyzed the 
expression of some genes that have been connected with 
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the acquisition of EMT and stem cell-like properties. 
NumbL downregulation induced a clear increment in 
EMT-dependent transcript Snai1 and Twist1 in Hela and 
T47D cells (Supplementary Figure S1A). In both HeLa 
and T47D cells, we also observed a significant induction 
of Klf4, Sox2, Nanog, Oct4 and Bmi1 genes (Figure 3A). 
These genes have been previously related to stem cell 
properties [44–46]. The higher expression of these genes 
showed that downregulation of NumbL and, consequently, 
Notch pathway activation, turn cells into a certain  
de-differentiated state typical of stem-like cells. 

In addition, FACS analysis of HeLa and T47D 
cells with downregulated NumbL showed a higher 
expression of phenotypic markers associated with stem 
cells (Figure 3B and Supplementary Figure S2). For 
T47D cells, a breast tumor cell line, we used double 
CD44+/CD24− staining, which has been extensively used 
to identify cancer stem cells [47]. In this case, NumbL 
downregulation increased the percentage of CD44+/
CD24− from 13.6% of scrambled cells to 36.6% of cells 
expressing NumbL shRNA (Figure 3B). In addition, CD44 
has been characterized as a target gene activated by the 

Notch signaling pathway [48]. In the case of HeLa cells, 
we used the CD133 stem cell marker to differentiate the 
CSC subpopulation [49]. CD133+ HeLa cells increased 
from 0.8% in control cells to 2.7% in cells expressing 
NumbL shRNA, indicating that NumbL downregulation  
in HeLa cells also induces the phenotypic markers of CSC-
like cells. 

Analysis of cancer stem cell-like properties of 
cells with downregulated NumbL

To this end, we cultured cells at low density to form 
independent colonies from individual clones. These clones 
have been previously classified as holoclones, meroclones and 
paraclones based on their ability to reconstitute a tumor from 
a single cell [50, 51]. Basically, holoclones are considered to 
be derived from stem cells, while paraclones are differentiated 
cells that are incapable of reconstituting a culture (Figure 4A). 
Meroclones are intermediate phenotypes between holo- and 
paraclones. The percentage of holoclones in shNbL cells was 
increased from 30% to 60% in HeLa cells, while in T47D this 
increment was from 30% to 50% (Figure 4A).

Figure 1: (A) Transfection of HeLa or T47D cells with NumbL-shRNA plasmids induce a decrease in NumbL expression, detected both by 
RT-qPCR and WB assays. (B) This shRNA has no effect on Numb expression as determined by RT-qPCR assays. (C) Clonogenicity assays 
for HeLa and T47D pBABE cells transfected with scrambled or shNbL shRNA2, (D) soft agar, (E) growth clonability by overexpression 
of NumbL cDNA. All experiments were repeated a minimum of three independent times in triplicate. All figures include Student’s t-test for 
statistical analysis of the data. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.



Oncotarget63614www.impactjournals.com/oncotarget

Figure 2: NumbL downregulation activates Notch signaling. (A) NICD localization in nuclei and total extracts in HeLa and 
T47D cells. (B) Expression of Notch pathway-related genes. Two different shRNAs (shNbL2 and shNbL4) were used to eliminate possible 
off-target effects. The sequence of both shRNAs is shown in M&M. All experiments were repeated a minimum of three independent times 
in triplicate. All figures include Student’s T test for statistical analysis of the data. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.



Oncotarget63615www.impactjournals.com/oncotarget

Next, we tested the ability of cells with reduced levels 
of NumbL to form tumorspheres, another surrogated assay 
for the cancer stem-like phenotype. The cells were seeded 
and visualized five days after seeding. T47D tumor cells 
formed spheres at this stage, considered as 1st generation 
tumorspheres. There were morphological differences 
between tumorspheres from scrambled or shNbL cells 
carrying NumbL shRNA2 (Figure 4B). The number of 
tumorspheres derived from cells with reduced NumbL was 
significantly higher compared to the control scrambled 
shRNA. The analysis of the 2nd generation tumorspheres 
derived from HeLa cells showed even more evident 
differences between control and NumbL downregulated 
cells (Figure 4B). At this stage, only shNbL2 cells showed 
real tumorspheres (Figure 4B). In this case, the spheres 
were also larger when NumbL was downregulated.

Finally, we decided to downregulate NumbL in a 
low passaged sarcoma cell line, AX. This cell line is close 
to the primary sarcoma tumor (liposarcoma) because it 

has been passaged less than 20 times from the original 
explant. This cell line behaves in a similar fashion to Hela 
and T47D regarding the increase of the stem cell-like pool 
upon NumbL downregulation (Figure 4).

Overexpression of NumbL cDNA reduced  
Notch and stem cell gene transcription and  
stem cell-like properties

To fully confirm the role of NumbL as a tumor 
suppressor acting on the Notch pathway and stem cell 
gene transcription, we decided to overexpress NumbL 
cDNA into these three cell lines and assess transcription 
and behavior. The overexpression of NumbL triggers a 
decrease in the stem cell genes and the inactivation of the 
Notch pathway (Figure 5A). As a consequence, NumbL 
overexpression decreases the number of holoclones 
(Figure 5B) and tumorspheres (Figure 5C), finally leading 
to a decrease in colony growth (Figure 1E).

Figure 3: NumbL downregulation activates Notch stem-cell like properties in tumor cells. (A) Quantitative PCR results with 
genes related to stem-cell like properties. Two different shRNAs (shNbL2 and shNbL4) were used to eliminate possible off-target effects. 
Sequence of both shRNAs is shown in M&M. (B) CD44+/CD24− and CD133+ FACS of T47D and HeLa cells, respectively. All experiments 
were repeated a minimum of three independent times in triplicate. All figures include Student’s T test for statistical analysis of the data.  
* = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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Figure 4: (A) Type and percentage of each of the different clones observed for HeLa, T47D and AX cells. Figure shows typical colonies 
(left) and the percentage of each type in all cases (right). (B) Tumorsphere assay for HeLa cells (2nd generation), T47D cells (1st generation), 
and AX low passaged sarcoma cells (1st generation) showing typical colonies (left) and both total number and size of tumorspheres (right). 
All experiments were repeated a minimum of three independent times in triplicate. All figures include Student’s T test for statistical analysis 
of the data. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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Figure 5: Overexpression of NumbL cDNA in HeLa, T47D and AX cells. (A) Overexpression of NumbL cDNA downregulates 
stem- and Notch-pathway related genes. (B) Type and percentage of each of the different clones observed for HeLa, T47D and AX 
cells upon overexpression of NumbL cDNA. Figure shows typical colonies (left) and the percentage of each type in all cases (right).  
(C) Tumorsphere assay for HeLa cells (2nd generation), T47D cells (1st generation), and AX low passaged sarcoma cells (1st generation) 
showing total number of tumorspheres. All experiments were repeated a minimum of three independent times in triplicate. All figures 
include Student’s T test for statistical analysis of the data. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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Finally, to explore the role of Notch activation, we 
separated the stem cell-like subpopulation from T47D, the 
CD44+/CD24− cells from the CD44- cells, and analyzed 
whether there was differential activation of the Notch 
pathway in these cells regarding the levels of NumbL. 
In the T47D control cells, we observed that stem cell 
gene transcription was increased in CD44+/CD24− cells; 
however, Notch-dependent transcription was inhibited, as 
denoted by the normal levels of Hes5 and the activation 
of Klf7 and Gli1 (Figure 6, upper panel). In the T47D 
with downregulated levels of NumbL, we found a marked 
activation of the Notch pathway in CD44+/CD24− cells, 
as denoted by the activation of Hes5 and the repression of 
Klf7 and Gli1 (Figure 6, bottom panel). We also observed 
differences in the levels of Snai1, suggesting that the EMT 
was dependent on Notch pathway activation.

NumbL downregulation increases 
chemoresistance

It has been proposed that the extent of 
chemoresistance is related to the percentage of CSCs in 
the tumor. Since downregulation of NumbL increases the 
CSC-like phenotype in culture, we tested whether this 

phenotype is also associated to chemoresistance. To this 
end, we treated Hela and T47D cells carrying NumbL 
shRNA (shNbL2 cells) or scramble (scr) to different 
doses of several chemotherapeutic drugs used in clinical 
regimens: doxorubicin, irinotecan, 5-FU and gemcitabine. 
After IC50 calculations, we observed that Hela cells with 
NumbL downregulated showed on average a two-fold 
increase in IC50 (Table 1), confirming the increase of 
resistance of these cells to the drug tested. In T47D, we did 
not observe an increase in IC50 throughout the different 
experiments performed (Table 1); however, we detected in 
most cases an increase in the percentage of cells resistant 
to the treatment (Figure 7). To explore this in more depth, 
we subjected T47D to new drugs most commonly used 
in breast tumors, including vincristine, capecitabine and 
paclitaxel. In all cases NumbL-downregulated T47D were 
more resistant to treatment (Table 1). This is especially 
relevant in the case of vincristine and paclitaxel, in which 
a large percentage of cells remained resistant to the 
treatment (Figure 7A). This resistance is not a general 
characteristic of the newly generated cell line with low 
NumbL because the sensitivity remained identical to 
control cells with other treatments such as sunitinib 
(Figure 7A). Because mammary tumor cells showed the 

Figure 6: T47D control cells or T47D cells expressing the shNbl2 were selected for CD44+/CD24− (solid black bars) 
or CD44- (open bars) subpopulations. Transcriptional analysis of stem- or Notch-related genes was performed by qRT-PCR. All 
experiments were repeated a minimum of three independent times in triplicate. All figures include Student’s T test for statistical analysis of 
the data. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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highest ratio of resistance to vincristine treatment, we 
treated T47D cells with vincristine and subjected them to 
flow cytometry analysis to detect the population of CD44+/
CD24− cells. The results indicated that resistant cells have 
an increased proportion of CD44+/CD24− cells being 
enriched in cancer stem-like cells, mainly when NumbL 
is downregulated (Figure 7B).

NumbL downregulation in human tumors

Our previous data strongly suggest that NumbL 
may behave as a tumor suppressor in human tissue. To 
explore this possibility, we searched public array databases 
(through Oncomine) for the possible downregulation of 
this gene expression in tumors. We found transcriptomic 
analysis showing that when comparing normal colon tissue 
to colorectal tumors, the tumors showed consistently lower 
expression of this gene (Supplementary Figure S3). Breast 
and lung tumor databases also exhibited a variable number 
of tumor samples with downregulated NumbL mRNA 
levels, which does not account for a significant decrease of 
the total tumor population (data not shown). This decrease 
in NumbL transcription may be a consequence of promoter 
methylation. To explore this point, we analyzed our own 
cohort of lung tumors (Supplementary Table S2).

To evaluate the potential role of NumbL promoter 
methylation in lung cancer, we analyzed the methylation 
status of the cluster in human lung tissue. The methylation 
profile of NumbL was evaluated in human tumor 
samples and compared to non-tumor tissue using the 
Illumina Infinium Human Methylation 450 BeadChip. 
The methylation levels in lung cancer versus non-
tumor tissue are shown in Table 2. Our data show a 
significant methylation of the NumbL promoter in lung 
adenocarcinoma tumors compared to non-tumor lung 
samples. The same significant NumbL methylation profiles 
were observed in squamous cell lung cancer. Interestingly, 
the methylation of the NumbL promoter was more 

significant in smoker patient samples, while it was non-
significant in samples from non-smoker patients. These 
data reinforce the role of NumbL as a tumor suppressor in 
human tumors, being downregulated in a variable subset 
of tumors depending on the tissue.

Furthermore, in colon tumors, low levels of this 
gene are associated with worse prognosis (Figure 8A–8C 
and Supplementary Table S2). In breast and lung tumors, 
the small percentage of tumors with low NumbL mRNA 
levels also showed worse prognosis (Figure 8D–8H and 
Supplementary Table S2). However, the overall statistics 
were not significant values, likely due to the very different 
number of cases in both arms; yet, a clear tendency can 
be observed. 

A plausible explanation is that the tumors with 
downregulated NumbL have a larger number of cancer 
stem cells that avoid the action of the chemotherapy, 
thus providing an advantage for tumor relapse. When we 
specifically selected the relapsed tumors, those with low 
levels of NumbL had a worse prognosis, at least in breast 
tumors (Figure 9A and 9B); the relapses were both local 
and at distant sites (Figure 9C).

DISCUSSION

NumbL, a closely related homologue to Numb, 
has been recently linked to cancer. Our results 
strongly support a tumor suppressor role for NumbL. 
Downregulating NumbL without changing Numb 
allows cells to acquire a higher tumorigenic potential 
due to Notch pathway activation. Therefore, inhibition 
of only one of the Numb family proteins is sufficient 
to modify cancer cell properties. Importantly, we found 
that NumbL downregulation triggers the activation of 
the Notch pathway, further increasing the EMT and 
CSC transcriptional markers and CSC-like phenotypes. 
In human tumors, a number of tumors have a lower 
NumbL expression than normal tissue. This lower NumbL 

Table 1: IC50 (µM) values for Hela and T47D expressing shRNA scramble (scr) or shRNA against 
NumbL (shNbl) of different drugs commonly used in cancer chemotherapy

HeLa T47D

scr shNbL scr shNbL

Doxorubicin 0.4 ± 1.12 0.8 ± 1.24 0.11 ± 1.09 0.12 ± 1.21

Irinotecan 27.6 ± 1.06 43.65 ± 1.09 2.21 ± 1.1 2.32 ± 1.34

5-FU 46 ± 1.11 94.4 ± 1.12 2.46 ± 2.31 3.54 ± 2.18

Gemcitabine 3.84 ± 1.46 10.23 ± 1.58 0.0091 ± 1.24 0.0067 ± 1.1

Vincristine 1.26 ± 0.35 2.71 ± 0.56 0.001 ± 0.001 Not reached

Sunitinib NT NT 2.46 ± 2.31 3.54 ± 2.18

Capecitabine NT NT 466,96 ± 45.26 683,26 ± 70,36

Paclitaxel 0.125 ± 0.05 0.142 ± 0.03 0.0169 ± 0.001 0.9 ± 0.1
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Figure 7: (A) NumbL downregulation induces resistance to different chemotherapeutic drugs. Hela and T47D cells carrying scrambled 
(blue circles) or NumbL shRNA2 (red squares) were treated with 11 different doses of the indicated drug for 96 hrs. A minimum of 
three independent experiments in triplicate were performed to obtain the average values (Table 1). The figure shows one representative 
experiment. Bars indicate SD of the triplicate samples. (B) T47D cells were treated with vincristine and were subjected to flow cytometry 
analysis to detect the population of CD44+/CD24− cells. The percentage of CD44+/CD24− cells is shown. All experiments were repeated 
a minimum of three independent times in triplicate. All figures include Student’s T test for statistical analysis of the data. * = p < 0.05; 
** = p < 0.01; *** = p < 0.001.
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expression is associated with a poor prognosis and lower 
patient survival. Our data are consistent with previous 
work indicating that NumbL downregulation is associated 
with a higher tumorigenic potential in lung and glioma 
cancer cell lines [52, 53] and its role as a tumor suppressor. 

Furthermore, a partial decrease in NumbL is 
sufficient to increase Notch pathway activation and the 
cancer stem-like properties. This suggests that NumbL and 

its close relative Numb are essential regulators of these 
properties, acting in a dose-dependent manner. As in the 
case of Numb, NumbL seems to regulate Notch pathway 
activity [54, 55]. It is interesting to note that despite 
the presence of both Numb and NumbL proteins in the 
cells, the downregulation of one of them is sufficient to 
launch Notch pathway activation and increase the pool of 
CSC-like cells. This suggests an important dose effect of 

Table 2: Relative levels of methylation in patients with lung cancer relative to the control group
Adenocarcinoma tumor (mean) No tumor control (mean) Adjusted p value
0,437028882 0,494097649 3,29371E-05
SCC tumor (mean) No tumor control (mean) Adjusted p value
0,425303511 0,511479311 4,48278E-06
Lung tumor Smoker (mean) No tumor control (mean) Adjusted p value
0,431166197 0,50021538 4,65556E-11
Lung tumor non-Smoker (mean) No tumor control (mean) Adjusted p value
0,494918598 0,480170627 0,640782137

Observed methylation changes (log2 ratio). Statistically significant differences (adjusted p-value < 0.05) of methylation levels 
with respect to the control non-tumor group were considered.

Figure 8: NumbL downregulation results in worse survival in cancer patients. Kaplan-Mayer according to NumbL expression 
in three different tumor types, obtained from three different arrays for each tumor type. Data were obtained from PrognoScan (http://www.
abren.net/PrognoScan/). See Supplementary Table S2 for more information.
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combined Numb/NumbL that may have a linear response 
on the acquisition of the CSC phenotype. This also 
suggests that downregulation of both proteins may coexist 
in some very aggressive tumors. This additive effect 
still needs to be explored, perhaps in vivo, to determine 
whether the accumulative effects are linear or once 
reaching a certain threshold, there is no further increase 
in tumorigenicity.

In vertebrates, Numb and NumbL were identified 
as Notch1 interactor proteins during mouse cortical 
neurogenesis [10]. Notch and Numb/NumbL proteins have 
antagonistic roles in cells because while Numb allows cell 
differentiation, Notch pathway activation mediates the 
activation of hundreds of genes, some of them associated 
with stem cell properties [56, 57]. In addition, there 
is clear evidence that the Notch pathway is activated 
in cancer cells, allowing them to acquire stem cell-like 
properties [58, 59]. Numb has been associated with cancer 
and the acquisition of cancer stem cell properties. dNumb 
knock-out mutants in Drosophila induce stem cell-like 
proliferation and tumor development, demonstrating the 
role of Numb as a tumor suppressor gene [60]. In fact, 
a hyperactive Notch pathway has been associated with 
several tumors [61]. However, it has been suggested that 
Numb may act as an oncogene in human astrocytomas and 
cervical squamous carcinoma cells [27, 28].

Numb protein promotes Notch1 receptor 
ubiquitination and NICD degradation through the 
interaction with the E3 ligase Itch. However, Numb also 
interacts with members of other RING-type E3 ligases, 
including LNX, Siah1 and MDM2 [19, 62, 63]. By 
inducing Numb degradation, these E3 ligases potentiate 
Notch signaling [62]. It has been demonstrated that 
enhanced ubiquitination and consequent increased 
proteosome-mediated degradation account for the loss 
of Numb in a proportion of breast tumors [21]. Similar 

mechanisms may exist for NumbL, as its downregulation 
also triggers nuclear NICD accumulation. Furthermore, 
we described an increased methylation pattern of a NumbL 
promoter in lung tumors (Table 2), suggesting another 
possible mechanism for its downregulation. However, 
other mechanisms for NumbL inactivation may be relevant 
for tumorigenesis. For example, the study of cells without 
both Numb/NumbL exhibited incorrect apical membrane 
localization for cadherins, causing the loss of adherent 
junctions [5]. Both proteins can interact through the PTB 
domain with Lnx2, which acts as a molecular scaffold 
that may drive Numb/NumbL proteins to a particular 
subcellular site [64], inactivating its function. 

Accumulating evidence suggests a potential role of 
Numb as a tumor suppressor [15, 16], including inhibition 
of the Notch signaling pathway [17] and stabilization of 
p53 [18–23]. On the other hand, Numb and NumbL play 
different roles in cells, with p53 and sonic hedgehog being 
differentially affected by Numb and NumbL [65]. NumbL 
has been described to repress NF-kB induced antitumor 
activity [52, 53]. Only NumbL interacts through its PTB 
domain and C-terminal region with Tab2. This NumbL-
Tab2 interaction negatively regulates the NF-kB pathway 
[66]. It has also been shown that NumbL promotes 
polyubiquitination and degradation of TRAF-6, negatively 
regulating the NF-kB pathway [67]. Although we found 
that the increase in this tumorigenic phenotype related to 
CSCs is related to Notch pathway activation, it is possible 
that other pathways may also contribute to the activity of 
NumbL as a tumor suppressor.

The Notch signaling pathway, a critical pathway 
governing embryonic development, is involved in the 
maintenance of tumor stem-ness and cancer metastasis. 
Increased activity of the Notch pathway has been 
reported in a variety of tumor cell lines and in tumors of 
different origin, including, lung, colon, breast and prostate 

Figure 9: Kaplan-Mayer according to NumbL expression in three different tumor databases, from relapsed only 
samples. Data were obtained from R2: Genomic analysis databases. (http://hgserver1.amc.nl/cgi-bin/r2/main.cgi).
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tumors, as well as sarcomas, melanomas, leukemias and 
lymphomas [68–73]. In these studies, Notch activity 
also appeared to be involved in cancer metastasis by 
modulating the epithelial-mesenchymal transition (EMT), 
the tumor angiogenesis processes, and the anoikis 
resistance of tumor cells [74–76].

Furthermore, we reported that, perhaps as a 
consequence of the activation of a CSC-like phenotype, 
low levels of NumbL decrease sensitivity to chemotherapy 
and are correlated with a worse prognosis in breast, lung 
and colorectal tumors. We found that decreased levels of 
NumbL increased resistance to chemotherapy with several 
drugs, increasing the percentage of stem cell-like cells 
among the resistant subpopulation. This may explain the 
low levels of this protein among relapsed tumors, at least 
in breast cancer. 

Our data support the idea of NumbL as a tumor 
suppressor, sharing this phenotype with its related Numb. 
In human tumors, loss of Numb expression has also been 
reported to correlate with worse prognosis in some types 
of human cancer, including breast, NSCLC, salivary 
gland carcinomas and medulloblastomas [21, 24–26]. 
In addition, other tumor suppressor functions of Notch 
pathway activation have been described [35, 77–79]. It 
will be interesting to learn whether Numb/NumbL are 
involved in these apparently contradictory effects on the 
Notch pathway or are due to NumbL dosage in different 
tissues or to different functions in other pathways.

In summary, our data help to clarify the role of 
NumbL in tumorigenesis, suggesting that NumbL acts as a 
tumor suppressor regulating the Notch pathway, EMT and 
CSC-like phenotype, and thus contributing to resistance to 
chemotherapy and worse prognosis.

MATERIALS AND METHODS

Cell lines, plasmids and antibodies

T47D and Hela cells were obtained from the 
European Collection of Authenticated Cell Cultures 
(ECACC) commercial repository at the beginning of this 
work. No further authentication was performed in these 
cell lines. Cells were cultured following the experimental 

procedure indicated in the ECACC cell line data sheet. 

Cells were maintained in Dulbecco modified Eagle medium 
(Sigma) containing 10% fetal bovine serum (Sigma), 
penicillin, streptomycin and Fungizone. AX cells, derived 
from liposarcoma explants grown in mice, were maintained 
in F10 medium (Sigma) containing 10% fetal bovine 
serum (Sigma), penicillin, streptomycin and Fungizone 
[80]. To downregulate NumbL expression, short hairpins 
RNA (shRNA) against NumbL, Numb or scrambled 
sequence control in pB-RS vectors were obtained from 
Origene (Rockville, MD). We used TR311063 for the 
NumbL gene and TR311064 for the Numb gene. Both cell 
lines were transfected with shRNA plasmids and selected 

with 2 μg mL-1 of hygromycin. After selection, two of 
the four shRNA against NumbL were selected, shNbL2 
(GGACAGCCAATAAAGGAAGAATATAATGG) and 
shNbL4 (AGATTTGTATTATACAAGGACAGCCAATA), 
while for Numb, we selected the following sequence: 
ATCATTCCGTGTCACAACAGCCACTGAAC after 
WB and qPCR analysis. NumbL was obtained by PCR 
and cloned in pBabe-puro using EcoRI and BamHI sites. 
A total of 106 cells of HeLa and T47D cells were seeded 
in 10 cm2 plates, transfected with pBabe (EV or NumbL) 
24 hours after seeding and selected with 1 μg mL−1 of 
puromycin. 

For Western blotting detection, we used NumbL 
(Abcam, ab37500), Notch (Santa Cruz Biotechnologies, 
sc-6014-R, 1:200 dilution) and hnRNP C1/C2 (4F4) 
(Santa Cruz Biotechnologies, sc-32308, 1:400 dilution) 
antibodies. a-Tubulin (T9026, Sigma) was used as a 
loading control guide at 1:10000 dilution. Horseradish 
peroxidase-labeled rabbit anti-mouse (ab97046, Abcam, 
diluted 1:5000) and goat anti-rabbit (ab97051, Abcam, 
diluted 1:5000) secondary antibodies were used.

Clonogenicity assays

For clonogenicity assays, 1000 cells were counted 
and seeded by triplicate in 10 cm2 plates for 12 days for 
HeLa and AX cells and 20 days for T47D cells. At least 
50 colonies were counted by plate using light microscopy 
to distinguish between holoclones, meroclones and 
paraclones. For crystal violet staining, cells were fixed 
using PBS + 4% glutaraldehyde for 20´, washed twice 
with PBS and analyzed by microscope (Olympus CKX41 
with integrated camera Olympus SC30, U-CMAD3) to 
detect holoclones, meroclones and paraclones. After that, 
the plates were dyed with a 1% crystal violet solution. 
Colony number was determined using ImageJ software. 
Both assays were performed in triplicate. To detect 
significant differences, Student’s t-test was applied to each 
pair of samples, with a threshold of p < 0.05.

To obtain tumorspheres, cells were detached 
from the plate using a scraper and homogenized by 
pipetting. A total of 5000 cells of each line were counted 
and cultured by triplicate in Ultra-Low attachment 
multiwell plates (Corning) for 5 days in 1.5 mL complete 
MammoCultTM medium (contains the MammoCult Basal 
medium, MammoCult Proliferation Supplement, fresh 
Hydrocortisone and Heparin; Stemcell technologies) 
at 37°C, 5% CO2. After that, cells were recovered and 
centrifuged, discarding the supernatant. Cells were 
trypsinized and counted again, being seeded again in 
Ultra-Low attachment conditions in a density of 5000 
cells/well and cultured in 1.5 mL complete MammoCult 
media for other 5 days. Tumorspheres or aggregates were 
then visualized by microscope (Olympus CKX41 with an 
integrated camera Olympus SC30, U-CMAD3). To detect 
significant differences, this experiment was performed 
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in triplicate, with Student’s t-test applied to each pair of 
samples, with a threshold of p < 0.05.

HeLa and T47D cells were trypsinized and 
homogenized to obtain colonies using soft agar. A total of 
5 × 104 cells were suspended in 1.4% agarose D-1 Low 
EEO (Pronadisa, Alcobendas, Madrid, Spain) growth 
medium containing 10% FBS, disposed onto 1 mL of a 
solidified base of growth medium containing 2.8% agar 
prepared in 6-well plates. After 24 h, a medium containing 
10% FBS was added to each 35-mm dish and replaced 
twice weekly. Colonies were scored after 15 days, and 
all values were measured in triplicate. Photographs were 
taken with a phase-contrast microscope (Olympus CKX41) 
with an integrated camera (Olympus SC30, U-CMAD3). 

Protein isolation and nuclei purification

HeLa and T47D cells were washed twice with PBS 
and lysed by sonication in RIPA lysis buffer (50 mM Tris-
HCl, pH 7.5; 1% NP-40, 2 mM Na3VO4, 150 mM NaCl, 
20 mM Na4P2O7, 100 mM NaF), supplemented with a 
complete protease inhibitor cocktail (P8340, Sigma) and 
phosphatase inhibitor cocktail (P5726, Sigma). 

To detect nuclear NICD by WB, HeLa and T47D 
cells were trypsinized, washed twice with cold PBS, and 
incubated for 30’ in hypotonic buffer (20 mM HEPES-KOH, 
pH 7.5, 10 mM KCl, 1 mM Na-EDTA, 1 mM Na-EGTA, 
1.5 mM MgCl2, 2 mM dithiothreitol (DTT)) supplemented 
with a complete protease inhibitor cocktail (P8340, Sigma) 
and a phosphatase inhibitor cocktail (P5726, Sigma). 
Afterward, cells were lysed by repeated passage through 
a 22G needle and centrifuged at 10000 g for 10’ at 4°C. 
The pellet was considered as a nuclei-enriched fraction and 
sonicated using complete RIPA buffer. This nuclei-enriched 
fraction was certified by WB due to the presence of hnRNP 
C1/C2 only in this fraction compared to the supernatant 
(cytoplasmic fraction, data not shown). 

Total protein quantification was performed with  
Bio-Rad Protein Assay Dye Reagent concentrate.

Analysis of gene transcription

Total RNA was purified using the ReliaPrepTM 
RNA Tissue Miniprep System (Promega, Fitchburg, 
WI, USA) according to the manufacturer’s instructions. 
Reverse transcription was performed with 3 µg of mRNA 
using the High-Capacity cDNA Reverse Transcription 
Kit (Life Technologies) according to the manufacturer’s 
recommendations. To detect changes in gene expression, 
we used the following probes, all from Life Technologies: 
Hes1 (Hs00172878_m1), Hes5 (Hs01387463_g1), 
Hey1 (Hs01114113_m1), Klf7 (Hs00748636_s1), 
Id2 (Hs04187239_m1), Gli1 (Hs01110766_m1), Klf4 
(Hs00358836_m1), Sox2 (Hs01053049_s1), Nanog 
(Hs04260366_g1), Oct4 (Hs00999632_g1), Bmi1 
(Hs00995536_m1), NumbL (Hs00191080_m1), Numb 
(Hs01105433_m1) and Gapdh (Hs03929097_g1). The 

PCR reaction mixture (10 μL) contained 2 μL of 1/10 
dilution reverse transcriptase reaction product, 5 μL 
TaqMan 2× Universal PCR Master Mix and 0.5 μL of 
the appropriate TaqMan Assay (20×) containing primers 
and a probe for the mRNA of interest. Polymerase 
chain reactions (PCR) were performed using the ABI 
Prism 7900HT sequence detection system (Applied 
Biosystems) to evaluate expression of the selected genes 
using the GoTaq® Probe qPCR Master Mix, following 
the manufacturer’s recommendations. The thermocycler 
parameters were 95°C for 10′ followed by 40 cycles of 
95°C for 15′′ and 60°C for 1′. Relative changes in gene 
expression levels were calculated using the comparative 
threshold cycle (ΔΔCt) method. This method first 
subtracts the Ct (threshold cycle number) of the gene-
average Ct of the housekeeping gene Gapdh to normalize 
the RNA amount. Finally, the ΔΔCt was calculated as the 
normalized average Ct of the test group vs the normalized 
average Ct of the Gapdh gene. This ΔΔCt value was raised 
to the power of 2 to calculate the degree of change. At 
least three independent experiments were conducted for 
each of the analyzed genes. The results are expressed as 
the percentage relative to EV, normalized as 100% for EV 
control. To detect significant differences, Student’s t-test 
was applied to each pair of samples, with a threshold of 
p < 0.05.

Fluorescence-activated cell sorting (FACS) 
analysis

HeLa and T47D cells were washed once with PBS 
and then harvested with 0.05% trypsin/0.025% EDTA. 
Detached cells were washed with PBS containing 2% FCS 
and 5 mM EDTA (wash buffer), resuspended in this buffer 
at 8000 cells μL-1 in a volume of 125 μL and then blocked 
for 10’ with 12.5 μL of FcR Blocking Reagent (MACS 
Miltenyi Biotec cat. #130-059-901). Combinations of 
fluorochrome-conjugated monoclonal antibodies obtained 
from MACS Miltenyi Biotec against human CD44 (APC; 
cat. #130-095-177), CD24 (PE: cat. #130-095-953) and 
CD133 (PE; cat. #130-098-826) or their respective isotype 
controls were added to the cell suspension at concentrations 
recommended by the manufacturer and incubated at 4°C in 
the dark for 30′. Labeled cells were washed in wash buffer, 
resuspended in 500 μL of wash buffer and analyzed on a 
FACS Canto II Analyzer cytometer.

IC50 analysis

To determine whether NumbL knockdown confers 
an advantage to tumorigenicity, 5x103 HeLa cells and 
7.5x103 T47D cells were seeded in 96-well plates and were 
treated 24 hours later. HeLa and T47D cells were treated 
with gemcitabine, doxorubicin, irinotecan, 5-flurouracil, 
vincristine and paclitaxel; T47D cells were specifically 
treated with capecitabine and sunitinib. Ninety-six hours 
later, cells were treated with MTS (MTS cell proliferation 
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Assay Kit, Biovision, USA) for 2 hours, and the optical 
absorbance was measured at 490 nm.

To detect the stem cell population in T47D cells after 
treatment with vincristine, both T47D scr and shNbL2 
were treated with a vincristine concentration of 1.5 nM, 
higher than the determined IC50 value for this drug. After 
96 hours, cells were treated as previously described for 
analysis in the FACS Canto II Analyzer cytometer.

Patients and clinical specimens

The present methylation study was performed in 
47 patients following surgical resection for clinical early 
stage NSCLC. During the surgical procedure, the tumor 
and matched non-tumor tissue samples were collected 
from all patients and then immediately snap-frozen to 
−80°C for future use. The clinical features of patients 
with NSCLC are summarized in Supplementary Table S1. 
The NumbL methylation profile was also evaluated in 
lung tissue of a control cohort of 23 patients. The control 
cohort without lung cancer was composed of COPD 
(chronic obstructive pulmonary disease) patients and non-
COPD subjects. A description of this cohort can be found 
on Supplementary Table S2. A written consent form was 
obtained from all participants. The study protocol and 
the use of human samples were approved by the Ethical 
Committee of the Virgen del Rocio University Hospital.

DNA samples

Genomic DNA was extracted from tumor and matched 
non-tumor tissue samples by the QIAamp DNA mini kit 
(QIAGEN, Valencia, CA, USA). DNA was quantified using 
the QuantiFluor dsDNA system (Promega, Madison, WI, 
USA) according to the manufacturers’ instructions.

Illumina 450 K methylation

The Illumina Infinium Human Methylation 450 
BeadChip (Illumina Inc., San Diego, CA) was used to 
interrogate 485,000 methylation sites across the genome 
per sample at single-nucleotide resolution. It covers 96% 
of the CpG islands, with additional coverage in island 
shores and the flanking regions. We treated 500 ng of DNA 
with sodium bisulfate using the EZ DNA Methylation™ 
Kit and cleaned the DNA with the ZR-96 DNA Clean-
up Kit™ (EZ DNA, Zymo Research, Irvine, CA) before 
standard Illumina amplification, hybridization, and 
imaging steps. The resulting intensity files were analyzed 
with Illumina’s GenomeStudio, which generated β-scores 
(i.e., the proportion of total signal from the methylation-
specific probe or color channel). 

Methylome data processing

Methylome data were processed using the RnBeads 
R package [81]. After a quality check, the probe median 

intensity was normalized with the SWAN method [82] 
and converted to beta values. The probes were tested 
for differential methylation with the limma method, a 
linear model followed by empirical Bayes methods for 
the comparisons of interest [83]. The CpG status (hypo- 
versus hyper-methylated) and CpG chromosomal location 
were realized using the Circos data visualization software 
[84]. DNA methylation data were visualized by the Wash 
U Epigenome Browser [85]. 
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