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The synthesis and characterization of a novel florescent chemosensor 1 with two different
types of cationic binding sites have been reported in this work, which is a calix[4]crown
derivative in 1,3-alternate conformation bearing two 2-phenyl-5-(4-dimethylaminopyenyl)-
1,3,4-oxadiazole units. The recognition behaviors of 1 in dichloromethane/acetonitrile
solution to alkali metal ions (Na+ and K+), alkaline earth metal ions (Mg2+ and Ca2+), and
transition metal ions (Co2+, Ni2+, Zn2+, Cd2+, Cu2+, Mn2+, and Ag+) have been investigated
by UV-Vis and fluorescence spectra. The fluorescence of 1might be quenched selectively
by Cu2+ due to the photo-induced electron transfer mechanism, and the quenched
emission from 1 could be partly revived by the addition of Ca2+ or Mg2+; thus, the
receptor 1might be worked as an on–off switchable fluorescent chemosensor triggered by
metal ion exchange.

Keywords: calix[4]crown, 1,3-alternate conformation, 1,3,4-oxadiazole, copper (II) detection, fluorescent
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INTRODUCTION

As the thirdmost abundant transitionmetal ion after zinc and iron in the human body, copper is required
by many living organisms for normal physiological processes (Turski and Thiele, 2009; Cotruvo Jr et al.,
2015). Maintaining optimal concentration of Cu2+ ion for living cells is an essential factor to keep the
normal functioning of enzymes and intracellular metabolic balance. Thus, the development of new
fluorescent chemosensors for Cu2+ ion has drawn continuous interest during the past decades. The main
progress in this area has been well reviewed (Cao et al., 2019; Sivaraman et al., 2018; Udhayakumari et al.,
2017; Liu et al., 2017), and many fluorescent chemosensors for Cu2+ ion based on various fluorophores
such as coumarin (Zhang et al., 2019), Bodipy (Ömeroğlu et al., 2021), rhodamine (Fernandes and
Raimundo, 2021), Schiff base (Singh et al., 2020), pyrene (Kowser et al., 2021), and 1,3,4-oxadiazole
(Wang, et al., 2018) have been reported by different research groups. Among these fluorescent
chemosensors, the 1,3,4-oxadiazoles have drawn special interest due to their electron-deficient
nature, high photoluminescence quantum yield, and excellent chemical stability, and have found
practical applications in the fields of organic light-emitting diodes (Meng et al., 2020) and liquid
crystals (Han et al., 2013; Han et al., 2015; Han et al., 2018). In addition, the nitrogen and oxygen atoms of
the 1,3,4-oxadiazole unit can provide potential coordination sites with metal ions, which makes it usable
as a signaling component in fluorescent chemosensors.

Calixarenes, as one kind of the most important super-molecules, have been widely used in
design of fluorescent chemosensors for ions and neutral molecules due to their outstanding
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features such as preorganized binding sites, easy derivatization,
and flexible three-dimensional structures (Kim et al., 2012; An
et al., 2019; Miranda et al., 2019; Noruzi et al., 2019; Chen et al.,
2020). Many calixarene-based fluorescent chemosensors for
transition metal ions have been reported in recent years (Ma
et al., 2015). However, the fluorescent switchable chemosensors
triggered by different ions are quite few (Chung et al., 2007),
which remains a challenge in the field of supramolecular
chemistry. Herein, as part of our continuous research in the
design and synthesis of new fluorescent chemosensors (Liu
et al., 2021; Xie et al., 2016; Han et al., 2012), we utilize the
1,3-alternate calix[4]crown scaffold to construct an on–off
switchable fluorescent chemosensor 1 in this work. The
synthetic route for 1 is shown in Scheme 1. There are quite
a number of chemosensors based on various macrocycles for
copper detection reported in literatures (Lvova, et al., 2018;
Doumani, et al., Kamei, et al., 2021), in which the macrocyles
often only worked as receptors for Cu2+ ions. In contrast, the
chemosensor 1 in this work is special in that it has two kinds of
macrocycles: one is from the 1,3-alternate calixarene, which
provides a three-dimensional scaffold with two appending 1,3,4-
oxadiazole units as both signaling component and fluorophore;
the other is from the calix[4]crown, which can bind the Mg2+ or
Ca2+ ions and has an allosteric effect on the 1,3,4-oxadiazole
units on opposite rings. The selective binding of 1,3,4-
oxadiazole with Cu2+ ions results in the fluorescence
quenching, while the binding of calix[4]crown with Mg2+ or
Ca2+ ions can partly revive the fluorescence consequently. Thus,
the compound 1 might work as a new type of switchable off–on
fluorescent chemosensor.

MATERIALS AND METHODS

25,27-Dihydroxy-26,28-dipropoxycalix[4]arene 2 and 5,17-
dibromo-25,27-dihydroxy-26,28-dipropoxycalix[4]arene 3 were
synthesized according to the literature procedures (Hobzova,
2010). Dichloromethane and acetonitrile used for
photophysical studies were of spectrometric grade. All the
other chemicals and solvents were of analytical grade and used
as received from commercial sources. The solutions of metal ions
were all prepared from their perchlorate salts. Column
chromatography was performed on silica gel (200–300 mesh).

Solution 1H NMR (Proton Nuclear Magnetic Resonance) and
13CNMR (Carbon-13 Nuclear Magnetic Resonance) spectra were
recorded on a Bruker AV400 spectrometer and the chemical
shifts are quoted in parts per million (ppm) relative to
tetramethylsilane (TMS) as an internal standard. ESI-HRMS
(Electrospray Ionization-High Resolution Mass Spectrometry)
data were obtained with a FTICR-MS mass spectrometer.
Melting points were determined with an X-4 melting point
apparatus, and the thermometer was uncorrected. Data for
single x-ray structure were collected on a SMART1000 CCD-X
diffractometer with graphite-monochromatized MoKα x-ray
radiation (λ � 0.71073 Å) and Saturn CCD area detector. The
x-ray crystal structure of 4 was solved by direct method and
expanded using Fourier synthesis technique. No absorption
correction was done. The non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were refined using riding
model. Structural refinement based on full-matrix least-squares
refinement on |F|2 was performed by using Crystal Structure or
SHELXL97 suite program (Sheldrick, 1997).

SCHEME 1 | Synthetic route for 1, reagents, and conditions: (i) 1-iodopropane, K2CO3, CH3CN, reflux, 24 h; (ii) Br2, 0°C, 3 h; (iii) tetraethylene glycol ditosylate,
Cs2CO3, CH3CN, reflux, 72 h; (iv) (1) CuCN, NMP, 180°C, 5 h; (2) FeCl3, 2 M HCl, 100°C, 1 h; (v) KOH, ethanol, reflux, 24 h; (vi) (1) SOCl2, toluene, reflux, 5 h; (2) 4-
(dimethylamino)benzohydrazide, pyridine, r. t., 12 h; (vii) POCl3, reflux, 12 h.
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Synthesis of 4
A mixture of 3 (9.23 g, 13.9 mmol) and Cs2CO3 (11.30 g,
34.7 mmol) in MeCN (700 ml) under nitrogen was stirred at
reflux for 30 min and then a solution of the tetraethylene glycol
ditosylate (7.85 g, 15.6 mmol) in MeCN (40 ml) was added
during an hour. The mixture was refluxed for 72 h and
allowed to cool to room temperature. After evaporation of
the solvent in vacuo, the residue was taken up in CH2Cl2
(30 ml × 3) and the resultant solution was washed with
1 mol/L HCl (30 ml) and brine (30 ml × 2). The organic layer
was dried over MgSO4 and evaporated in vacuo.
Recrystallization of the residue from CH2Cl2/MeOH gave 4 a
pale-yellow solid. Yield, 75%. Mp: 230–232 °C. 1H NMR
(400 MHz, CDCl3) δ 7.17 (s, 4H), 7.08 (d, J � 8.0 Hz, 4H),
6.87 (t, J � 8.0 Hz, 2H), 3.78 (d, J � 4.0 Hz, 8H), 3.54 (s,8H), 3.45
(t, J � 8.0 Hz, 4H), 3.25–3.20 (m, 4H), 3.15 (m, 4H), 1.31 (m,
4H), 0.78 (t, J � 7.5 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ
156.97, 155.14, 136.29, 133.81, 132.17, 129.70, 122.77, 115.15,
72.59, 72.09, 70.50, 70.13, 69.03, 37.89, 22.53, 10.23. HRMS-
MALDI calculated for C42H48Br2O7 [M + Na] + 847.1639, found
847.1652.

Synthesis of 5
Under nitrogen, a mixture of 4 (10.17 g, 12.3 mmol) and
cuprous cyanide (7.68 g, 86.4 mmol) in 20 ml of 1-methyl-
2-pyrrolidinone was stirred at 180°C for 4 h. Then, the
reaction mixture was cooled slowly to 100°C, and a solution
of 23.23 g (86.4 mmol) of FeCl3·6H2O in 5 ml of concentrated
hydrochloride and 25 ml of water was added to the reaction
mixture. The reaction mixture was further stirred at 100°C for
1 h and cooled to room temperature. The solid was filtered off
and recrystallized from chloroform/hexane yielding 5.5 g of
compound 5 as yellow solid. Yield 62%. 1H NMR (400 MHz,
CDCl3) δ 7.36 (s, 4H), 7.10 (d, J � 7.4 Hz, 4H), 6.90 (s, 2H),
3.82 (d, J � 5.5 Hz, 8H), 3.55 (s, 8H), 3.46 (t, J � 7.4 Hz, 4H),
3.30 (t, J � 6.1 Hz, 4H), 3.17 (t, J � 6.1 Hz, 4H), 1.24 (m, 4H),
0.74 (t, J � 7.5 Hz, 6H).13C NMR (101 MHz, CDCl3) δ 159.98,
156.80, 135.72, 133.54, 133.05, 129.94, 123.05, 119.17, 106.08,
77.36, 72.52, 72.17, 70.56, 69.85, 69.13, 37.75, 22.81, 10.05;
HRMS: calcd for C44H48N2O7 [M+NH4]

+ 734.3800, found
734.3796.

Synthesis of 6
A solution of 5.18 g (9.2 mmol) of KOH in 100 ml of water was
added to the suspension of 1.32 g (1.80 mmol) of 5 in 20 ml of
ethanol. The reaction mixture was heated under reflux for 24 h.
After cooling, the aqueous solution hydrogen chloride (10% w/w)
was added dropwise until the solution became slightly acidic. The
precipitate was filtered off, washed with water, and dried to yield a
yellow solid product 6 (1.33 g, 96%). Mp: 296–298°C. 1H NMR
(400 MHz, CDCl3) δ 12.52 (s, 2H), 7.81–7.77 (m, 8H), 6.98–6.94
(m, 2H), 3.93–3.80 (m, 12H), 3.62 (s, 16H), 1.42–1.31 (m, 4H),
0.69 (t, J � 7.5 Hz, 6H).13C NMR (101 MHz, DMSO-d6) δ 167.03,
158.48, 156.72, 135.62, 133.71, 132.13, 130.41, 125.24, 122.05,
71.17, 70.07, 69.72, 40.15, 39.94, 39.73, 39.52, 39.31, 39.10, 38.89,
35.98, 21.74, 9.52. HRMS: calcd for C44H50O11 [M-H]+ 753.3280,
found 753.3285.

Synthesis of 1
To a round-bottomed flask was added 6 (80 mg, 0.1 mmol), 10 ml
of toluene, and 1 ml of thionyl chloride, and the mixture was
refluxed for 5 h. After cooling, the solvent and the excess of
thionyl chloride were removed at reduced pressure to give the
benzoyl chloride, which was added to a solution of 4-
(dimethylamino)benzohydrazide (39 mg, 0.22 mmol) in 10 ml
of dichloromethane and 0.1 ml of pyridine. The reaction
mixture was stirred for 12 h at ambient temperature and
filtered. The precipitate was washed with ethanol to give the
bishydrazide 7 as white solid, which was used to the next step
reaction without further purification. The intermediate
compound 7 was added to POCl3 (5 ml), and the resultant
solution was refluxed overnight under a nitrogen atmosphere.
After the reaction mixture cooled to room temperature, it was
poured into ice water and extracted with dichloromethane (3 ×
10 ml). The combined organic layer was washed with water and
brine, respectively. Then, the solvent was removed under reduced
pressure, and the crude solid was purified by silica gel column
chromatography using petroleum ether/ethyl acetate (1:1) as
eluent affording the product 1 as white solids. Yield, 35%. Mp:
281–283°C. 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J � 8.0 Hz,
4H), 7.81 (s, 4H), 7.15 (d, J � 8.0 Hz, 4H), 6.93 (s, 2H), 6.72 (d, J �
8.0 Hz, 4H), 3.93 (m, 8H), 3.59–3.53 (m, 12H), 3.31 (d, J � 5.2 Hz,
4H), 3.26 (d, J � 5.2 Hz, 4H), 3.05 (m, 12H), 1.25–1.19 (m, 4H),
0.60 (t, J � 7.4 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 164.80,
163.55, 158.76, 157.10, 152.20, 135.07, 133.83, 129.79, 128.32,
128.13, 122.75, 121.14, 118.35, 111.59, 111.27, 72.43, 72.24, 70.42,
70.14, 69.22, 40.11, 38.05, 22.43, 9.95. HRMS-ESI calculated for
C62H69N6O9 [M + H] + 1,041.5120, found 1,041.5126.
(Supplementary Figure S5, ESI).

General Procedures for the UV/Vis and
Fluorescence Experiments
UV-vis spectra were recorded on a Cary 3,010
spectrophotometer, and the resolution was set at 1 nm. Steady-
state emission spectra were recorded on a Varian Cary Eclipse
spectrometer. For all measurements of fluorescence spectra,
excitation was set at 334 nm for complexation, and the
excitation and emission slit width was set to be 2.5 nm.
Fluorescence titration experiments were performed with
CH2Cl2 solutions of compound 1 and varying concentrations
of metal perchlorate in CH3CN solution. During all
measurements, the temperature of the quartz sample cell and
chamber was kept at 25°C.

RESULTS AND DISCUSSION

Synthesis and Structural Analysis
As shown in Scheme 1, calix[4]arene 3 was reacted with
tetraethylene glycol ditosylate in the presence of Cs2CO3 to
successfully afford the calix[4]crown 3 in 75% yield. The
substitution reaction of 4 with CuCN gave 5 in 62% yield,
which was refluxed with KOH in ethanol and treated with
hydrochloric acid solution, readily providing the carboxylic
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acid 6 in good yield. Then, the carboxylic acid 6 was reacted with
thionyl chloride, and treated with benzyol hydrazine or 4-N,N′-
dimethylaminobenzyol hydrazine to generate the intermediate
bishydrazide 7, which was used in the next step without
purification and refluxed with phosphorus oxychloride to
afford the target products 1. Except for the calix[4]arene 3, all
of the intermediate calix[4]crowns 3–6 and the chemosensor 1
are in 1,3-alternate conformation, which were well established by
1H NMR and 13C NMR data (Supplementary Figures S1–S4,

ESI). The 1,3-alternate conformation of 5 was further confirmed
unambiguously by x-ray single crystal diffraction as shown in
Figure 1. The x-ray crystallographic data are collected in
Supplementary Table S1.

UV-Vis Absorption and Fluorescence
Spectra Analysis
The selectivity of the receptor 1 toward different perchlorate salts,
including Na+, K+, Mg2+, Ca2+, Co2+, Ni2+, Zn2+, Cd2+, Mn2+, Ag+,
and Cu2+, was first investigated by UV-Vis spectroscopy. The UV-
Vis absorption spectra for free 1 in CH2Cl2 solution showed an
intense and structureless absorption band (ε � 4.94× 105 L/mol·cm)
peaking at 340 nm (Figure 2), which might have resulted from the
spin-allowed π-π* transitions involving the phenyloxadiazole
moiety (Han et al., 2006). The addition of Cu2+ ions in the
solution of 1 resulted in a significant decrease in the absorbance
with an appreciable hypochromic shift of 20 nm. In contrast, only a
slight decrease was observed upon addition of other metal ions
mentioned above, which suggested that the selectivity of 1 toward
Cu2+ is much higher than the other metal ions.

Ion recognition ability of 1 was further studied by the
fluorescence spectra. As shown in Figure 3, the receptor 1
exhibited a strong emission with λmax at 405 nm in solution of
CH2Cl2. Upon addition of Na+, K+, and Mg2+, respectively,
almost no changes were observed in the intensity and shape of
the emission spectra of 1. It is noted that the addition of Ca2+

might slightly increase the intensity with a bathochromic shift of
ca. 15 nm, perhaps because the complexation between the Ca2+

and the crown ether moiety changed the space distance of the two
phenyloxadiazole units and the fluorescence changed
consequently. Apparently, the fluorescence response of 1
toward transition metal ions was found to be more
pronounced, and the addition of Co2+, Ni2+, Zn2+, and Ag+

could quench the emission of 1 in a different extent,
accompanied by a concomitant red shift of ca. 14–17 nm. In
contrast, the addition of Cu2+ significantly quenched the

FIGURE 1 | X-ray molecular structure of 5.

FIGURE 2 | UV-vis spectra of 1 (1 × 10−6 mol/L) upon addition of metal
ions (10 equiv) in CH2Cl2/CH3CN (1,000:1, v/v).

FIGURE 3 | Fluorescence spectra (λexc � 334 nm, Slit � 2.5) of 1 (1 ×
10−6 mol/L) upon addition of metal ions (10 equiv) in CH2Cl2/CH3CN (1,000:1,
v/v).
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fluorescence of 1 under the same conditions as the
aforementioned metal ions, suggesting that there is a strong
interaction between 1,3,4-oxadiazole moieties of 1 and Cu2+

ion over the other metal ions.
The fluorescence emission properties of 1 in the presence of

Cu2+ and a competitive metal ion were measured to
investigate the selective recognition for Cu2+. As shown in
Figure 4, no apparent changes were observed in fluorescence
intensity when 10 equivalent amounts of transition metal ions
(Co2+, Ni2+, Zn2+, Cd2+, Mn2+, and Ag+) were added to the
solution of 1 and Cu2+ (10 equiv). This suggested that the
recognition for Cu2+ was not interrupted by the competitive

transition metal ions; thus, the receptor 1 might act as a
selective fluorescent chemosensor for Cu2+. The addition of
alkali metal ions (Na+ and K+) to the solution of 1 and Cu2+

could increase the fluorescence intensity slightly, while the
alkaline earth metal ions (Mg2+ and Ca2+) could revive the
emission significantly.

In order to elicit the binding property of the chemosensor 1
toward Cu2+ ion, fluorescence titration of 1 (1.0 × 10–5 mol/L)
with Cu2+ ion (0–2 equiv) was carried out (Supplementary
Figure S6). According to the fluorescence titration curves of 1
with Cu2+ ion at room temperatures, the association constant Ka

was calculated as 1.6 × 10–4 L·mol−1 (R � 0.97526) for the 1–Cu2+

complex by the Benesi–Hildebrand plot (Thordarson, 2011)
(Figure 5). Moreover, the emission intensity of 1 is linearly
proportional to the Cu2+ concentration in the range of 0–20 μM.

The fluorescence changes of 1 upon addition of Cu2+ and
Mg2+ ions are displayed in Figure 6. The nitrogen atoms of the
1,3,4-oxadiazle units can bind with Cu2+ to form the complex
1·Cu2+, and the paramagnetic nature of Cu2+ ion could strongly
quench the fluorescence of the 1,3,4-oxadiazole units through the
electron transfer mechanism, which is consistent to the results
reported in literature (Han et al., 2012). In contrast, the polyether
ring (crown-5 moiety) and the oxygens from the two propoxyl
groups could provide coordination sites with the alkaline earth
metal ions to form the complex 1·Mg2+, which will change the
molecular conformation as well as the space distance of the two
1,3,4-oxadiazole units. Consequently, the decomplexations
between the 1,3,4-oxadiazoles and Cu2+ ions took place and
resulted in the increase of the fluorescence. Thus, the receptor
1 might be acted as an on–off–on switchable fluorescent
chemosensor triggered by the exchange of Cu2+ and Mg2+.

FIGURE 4 | Fluorescence spectra (λexc � 334 nm, Slit � 2.5) of 1 (1 ×
10−6 mol/L) and Cu2+ (10 equiv) upon addition of other metal ions (10 equiv) in
CH2Cl2/CH3CN (1,000:1, v/v).

FIGURE 5 | Plot of emission intensity versus the concentrations of Cu2+ ion (λem � 405 nm, λex � 334 nm).
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To gain a better understanding about the switchable
fluorescence of the chemosensor 1, DFT calculations with
the GAUSSIAN 09 series of programs (Frisch et al., 2013)
were carried out to analyze the molecular structures of 1 and
1·Mg2+, and DFT method B3-LYP with 6-31G(d) basis set
was used for geometry optimizations (A. D. Becke, 1993). As
shown in Figure 7, the distance between N1 and N2 in the
free receptor 1 is 9.97 �Å, while the corresponding distance is
11.74 �Å in the complex 1·Mg2+, indicating that the
molecular conformation changed simultaneously due to
the allosteric effect (Kumar et al., 2012; Ni et al., 2013).
The conformational change as well as the increase in
distance makes it difficult for the chemosensor 1 to
coordinate with Cu2+ ion to form the stable complex,
which reasonably explains the fact that the addition of

Mg2+ ions to the solution of 1 and Cu2+ can trigger the
revival of fluorescence.

CONCLUSION

In summary, we have designed a new type of fluorescent
chemosensor based on a 1,3-alternate calix[4]crown with two
different cationic binding sites. The 1,3,4-oxadiazole units could
bind selectively with Cu2+ to form the complexation and resulted
in the fluorescence quenching of the chemosensor. The presence
of various transition metal ions does not interfere with the
quenching process, while the alkaline earth metal ions Mg2+

might be entrapped by the crown-5 moiety and revive the
fluorescence significantly due to the allosteric effect. As the

FIGURE 6 | The complexation of 1 with Cu2+ and Mg2+ ions.

FIGURE 7 | Computational optimized molecular structures of 1 and 1·Mg2+.
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chemosensor in this work is not soluble in water, it is difficult to
investigate the Cu2+ ions’ detection under physiological
conditions. Devising a water-soluble chemosensor for Cu2+

ions is in progress in our lab.
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