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Abstract

dadi is a popular but computationally intensive program for inferring models of demographic history and natural
selection from population genetic data. I show that running dadi on a Graphics Processing Unit can dramatically speed
computation compared with the CPU implementation, with minimal user burden. Motivated by this speed increase, I
also extended dadi to four- and five-population models. This functionality is available in dadi version 2.1.0, https://
bitbucket.org/gutenkunstlab/dadi/.
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Population genetic data contain information about the his-
tory of the sampled populations, but extracting that informa-
tion often demands computationally expensive modeling.
dadi is widely used for inferring models of demographic his-
tory (Gutenkunst et al. 2009) and natural selection (Kim et al.
2017) from data summarized by an allele frequency spectrum
(AFS). The user specifies a model with parameters for popu-
lation sizes, migration rates, divergence times, and/or selec-
tion coefficients. Given a set of parameters, dadi computes
the expected AFS and the composite likelihood of the data.
The parameters are optimized to maximize that likelihood,
and AFS computation dominates optimization run time.
Here, I show that Graphics Processing Units (GPUs) can mas-
sively speed AFS computation and thus overall inference.

GPUs have rarely been applied to population genetic sim-
ulation or inference. Lawrie (2017) developed a GPU imple-
mentation of the single-locus Wright–Fisher model, finding
speedups of over 250 times compared with a CPU implemen-
tation. Zhou et al. (2015) implemented a subset of the IM
program for inferring demographic models (Hey and Nielsen
2004) on a GPU, finding speedups of around 50 times.

For dadi, the core computations are solving a partial dif-
ferential equation (PDE) for the population distribution of
allele frequencies / and integrating over that distribution
to compute the AFS. Solving the PDE reduces to solving a
large number of tridiagonal linear systems (fig. 1A). To solve
these systems on the GPU, I used the Valero-Lara et al. (2018)
algorithm, as implemented in the Nvidia Compute Unified
Device Architecture (CUDA) library. dadi is primarily written
in Python; to interface with CUDA I used the PyCUDA
(Klöckner et al. 2012) and scikit-cuda (Givon et al. 2019)
libraries. Computing the AFS from / reduces to matrix mul-
tiplication, which did not consistently benefit from a GPU, so
this step remains on the CPU.

For the end user, dadi GPU usage requires only a single call
to dadi.cuda_enabled(True).

I evaluated performance by comparing times to compute
the AFS for models from stdpopsim (Adrion et al. 2020) on
several computing systems. To achieve reasonable accuracy, for
spectra with n chromosomes per population, I used extrapo-
lation grid points of (b1.1nc þ 2, b1.2nc þ 4, b1.3nc þ 6). The
benchmarking code is available in the dadi source distribution.

Historically, dadi is most often used with two- or three-
population models. I thus tested the two-population model of
Li and Stephan (2006) and the three-population model of
Gutenkunst et al. (2009). Using a GPU was beneficial if the sample
size was greater than 70 for two populations and 30 for three
populations (fig. 1B and supplementary fig. S1, Supplementary
Material online); such values are common in data analyses.

Given the GPU speedup, I extended dadi to four- and five-
population models. Tests with the four-population New
World model from Gutenkunst et al. (2009) and the five-
population archaic admixture model from Ragsdale and
Gravel (2019) again showed substantial GPU benefits
(fig. 1B and supplementary fig. S1, Supplementary Material
online). Models with more populations typically have more
free parameters, which increases the expected number of
optimization steps. So optimizing the parameters of four-
and five-population models may be challenging even with
GPU acceleration.

The ultimate benefit of GPU computing is high perfor-
mance at low cost. At time of writing, the consumer
GeForce GPU costs less than $200, but it substantially speeds
computation. The data center Tesla P100 costs roughly
$6,000, and it can be used to calculate larger spectra because
of its larger memory. The Valero-Lara et al. (2018) algorithm is
typically bound not by computation, but rather by memory
bandwidth within the GPU. Compared with consumer GPUs,
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data center GPUs typically have a large advantage in double-
precision computation but a more modest advantage in
memory bandwidth. So for dadi usage, consumer GPUs
may provide better performance versus cost.

The GPU speed improvements increase dadi’s competi-
tiveness with other methods for calculating the expected
AFS, such as moments (Jouganous et al. 2017). The speed
differences between the GPU and CPU implementations of
dadi are larger than the differences between the CPU imple-
mentations of dadi and moments, in both present (supple-
mentary fig. S2, Supplementary Material online) and previous
(Jouganous et al. 2017) benchmarks. Other factors may influ-
ence choice between these methods, including level of sup-
port and access to more advanced features, such linkage
disequilibrium statistics in moments (Ragsdale and Gravel
2019) or distributions of fitness effects in dadi (Kim et al.
2017).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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FIG. 1. (A) Illustration of dadi integration. During each timestep, the population allele density / is updated for each population axis. Each row and
column over which / is approximated yields a tridiagonal linear system. In the GPU implementation, these systems are solved in parallel. (B) Ratios
of CPU to GPU times to compute the AFS for several models on several computing systems, versus AFS size. Absolute computation times are
shown in supplementary figure S1, Supplementary Material online. The largest AFS size tested on each system was constrained by GPU memory.
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