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Abstract
Within the last 60 years, microbiological research has chal-
lenged many dogmas such as bacteria being unicellular mi-
croorganisms directed by nutrient sources; these investiga-
tions produced new dogmas such as cyclic diguanylate mo-
nophosphate (cyclic di-GMP) second messenger signaling as 
a ubiquitous regulator of the fundamental sessility/motility 
lifestyle switch on the single-cell level. Successive investiga-
tions have not yet challenged this view; however, the com-
plexity of cyclic di-GMP as an intracellular bacterial signal, 
and, less explored, as an extracellular signaling molecule in 
combination with the conformational flexibility of the mol-
ecule, provides endless opportunities for cross-kingdom in-
teractions. Cyclic di-GMP-directed microbial biofilms com-
monly stimulate the immune system on a lower level, where-
as host-sensed cyclic di-GMP broadly stimulates the innate 
and adaptive immune responses. Furthermore, while the in-
tracellular second messenger cyclic di-GMP signaling pro-
motes bacterial biofilm formation and chronic infections, 

oppositely, Salmonella Typhimurium cellulose biofilm inside 
immune cells is not endorsed. These observations only touch 
on the complexity of the interaction of biofilm microbial cells 
with its host. In this review, we describe the Yin and Yang 
interactive concepts of biofilm formation and cyclic di-GMP 
signaling using S. Typhimurium as an example.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Regulation of virulence properties of a microbial or-
ganism and its interaction with a potential host is highly 
dependent on environmental conditions. As has been ob-
served exemplarily by laboratory studies, plate-grown 
cells of the gastrointestinal pathogen Salmonella enterica 
serovar Typhimurium are hardly virulent, while liquid-
grown S. Τyphimurium cells readily invade host cells [1], 
a regulation occurring already at the transcriptional level 
[2]. Part of this delicate regulation between acute viru-
lence and commensalism/chronic infection is executed 
by a small molecule whose local or global concentration 
responds readily to environmental conditions, namely 
the ubiquitous second messenger cyclic diguanylate mo-
nophosphate (cyclic di-GMP) [3–6]. Cyclic di-GMP is 
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one, and perhaps, the most important member of a larger 
family of cyclic di- and oligonucleotide second messen-
gers that primarily include the predominantly Gram-pos-
itive cyclic di-AMP and the hybrid molecule 3′3′-cyclic 
AMP-GMP [7, 8]. Recently, the discovery of a broad pan-
el of additional cyclic di- and oligonucleotides has been 
substantialized including compounds previously only 
predictively chemically synthesized [9–14]. Cyclic oligo-
nucleotide second messengers possess a major role in the 
regulation of the activity of nucleases in CRISPR/Cas-
based innate immune response against bacteriophages 
[14–16]. On an evolutionary scale, the metazoan viral de-
fense cGAS-STING (cyclic GAMP synthase – stimulator 
of interferon genes) pathway with the 2′3′-cyclic GMP-
AMP analog as the second messenger has its foundation 
in microbial components [13, 17].

The spatial and temporal intracellular concentration 
of the second messenger cyclic di-GMP which occurs in 
over 75% of all bacterial species is adjusted on the single-
cell level by a multitude of turnover proteins and recep-
tors [18] and consequently delicately regulates a wide va-
riety of physiological and metabolic traits that channel 
into acute versus chronic virulence, and sessility versus 
motility, as well as concomitantly in the promotion of an-
timicrobial and detergent tolerance and tolerance against 
the immune response. In this context, cyclic di-GMP can 
direct fundamental processes such as carbon source ca-
tabolism, respiration, cell division, and cell shape by af-
fecting global molecular processes such as RNA turnover, 
proteolysis, protein acetylation, secretion, and the cata-
lytic activity of biofilm matrix biosynthesis enzymes. This 
physiological and behavioral consequences have a wide 
impact not only in the clinical, industrial, and agricul-
tural setting, but also shape the ecology in oceans and af-
fect geochemical relevant global compounds and cycles, 
such as the denitrification cycle [19–23]. The conforma-
tional flexibility and the ability to form various types of 
oligomers and few amino acids sufficient to define bind-
ing make it challenging to predict the binding sites of cy-
clic di-GMP [5, 24].

Environmental and intrinsic signals received by cyclic 
di-GMP turnover proteins determine not only the (acute) 
virulence properties of microorganisms, but can also pro-
voke the expression of different types of biofilms such as 
Pseudomonas aeruginosa biofilm formation in the uri-
nary tract versus laboratory-grown biofilms [25]. The 
multitude of signals that direct the turnover activity of the 
cyclic di-GMP second messenger signaling system (equal-
ly as those of other second messengers and phosphotrans-
fer signal transduction systems, chemotaxis systems, and 

other, which are discussed here in the context of relevant 
cross talk) on the transcriptional, post-transcriptional, 
and post-translational level integrates into a specific out-
put response which is equally dependent on the receptor 
and target proteome status combined with the rest of the 
proteome [6]. The predominant extracellular matrix 
components that cover the bacterial cells in a honey-
comb-like fashion include amyloid curli fimbriae and the 
exopolysaccharide cellulose. Curli and (phosphoethanol-
amine modified) cellulose possess clearly defined fea-
tures, which point to opposite functionality [27–29]. In 
this mini-review, we discuss the Yin and Yang functional-
ity of the extracellular matrix components, biofilm for-
mation, biofilm regulators, and cyclic di-GMP signaling 
in bacterial and bacterial-host interactions taking mainly 
the gastrointestinal pathogen S. Typhimurium as an ex-
ample (Fig. 1).

Amyloid Curli Fimbriae and the Exopolysaccharide 
Cellulose as Opposing Extracellular Matrix 
Components of S. Typhimurium Biofilms

A highly hydrophobic outer shell encloses cells of the 
plate-grown rdar (red, dry, and rough) morphotype of  
S. Typhimurium, Escherichia coli, and other enterobacte-
ria upon expression of two major extracellular matrix 
components: amyloid curli fimbriae and the exopolysac-
charide cellulose (Fig. 2; [30–32]). These two polymeric 
extracellular matrix components tightly interact to dis-
play a full biofilm phenotype (bacterial wood), but with 
each of these matrix components actually to possess a dis-
tinct and frequently opposite functionality (Fig. 2). The 
extracellularly polymerized amyloid curli with subunits 
characterized by 5 parallel pseudo-repetitive beta-strands 
converts the cell surface toward hydrophobicity with pro-
miscuous adhesive properties toward proteins and sur-
faces (Fig. 2a; [31, 33–37]). Consequently, biofilm cells 
expressing curli fimbriae interact tightly with abiotic and 
biotic surfaces [28, 30]. In contrast, expression of the exo-
polysaccharide cellulose leads to an overall hydrophilic 
cell surface as measured by the contact angle of bacterial 
macrocolonies [31]. Cellulose provides predominantly 
flexible cell-cell interactions in a static rich culture me-
dium, while under continuous flow in minimal medium 
cellulose contributes to surface adherence and cell-cell in-
teractions [31, 38–40]. Although the expression of these 
two matrix components is tightly coupled in plate-grown 
biofilms through direct and indirect regulation by the bi-
stably expressed transcriptional regulator CsgD, the con-
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comitant expression can be uncoupled under alternative 
environmental conditions or even subsequent genetic al-
teration [40, 41]. The distinct physicochemical character-
istics of the extracellular biofilm matrix components curli 
and cellulose extend into distinct host-pathogen interac-
tions as described below.

The Cyclic di-Nucleotide Second Messenger 
Signaling System

The universally conserved predominantly bacterial 
secondary messenger cyclic di-GMP was initially iden-
tified in the bacterium Komagataeibacter xylinus (orig-
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Fig. 1. The cyclic di-GMP signaling network of S. Typhimurium 
ATCC14028 and its effect on biofilm formation, motility, and vir-
ulence-related phenotypes. The genome of S. Typhimurium codes 
for 22 conserved and evolved cyclic di-GMP turnover proteins. 
The effect of a gene, as assessed upon deletion, on particular phe-
notypes (csgD = production of the biofilm activator CsgD; cellu-
lose = biosynthesis of the exopolysaccharide cellulose; m = appar-
ent motility; FlhDC = inhibition of the class I flagellar regulon 
activator FlhD4C2; IL-8 = secretion of the proinflammatory cyto-
kine IL-8 by the epithelial cell line HT-29; iv = invasion of the in-
testinal cell line HT-29; sm = survival in macrophages; co = colo-
nization of the gastrointestinal tract (as assessed by analysis of fe-
ces)) in the strain S. Typhimurium ATCC14028 is indicated; green 

= promotion of phenotype; red = suppressive effect on phenotype. 
In brackets, not consistently observed. The response regulator 
SsrB in its unphosphorylated form activates expression of the csgD 
biofilm regulator gene; FlhDC = class I flagellar regulon activator 
FlhD4C2. Cyclic di-GMP, cyclic diguanylate monophosphate; 
CHASE, cyclase/histidine kinase-associated sensing extracellular 
domain; CSS, redox-sensing domain with C(x)30-CSS motif; 
GAPES, gammaproteobacterial periplasmic sensor domain; 
HAMP, histidine kinases, adenylate cyclases, methyl-accepting 
proteins, phosphatases signal transduction domain; MASE, mem-
brane-associated sensor; MHYT, methionine, histidine, tyrosine, 
threonine containing integral membrane sensor domain; PAS-
PAC, Per-Arnt-Sim domain – C-terminal to PAS domain.
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inally Acetobacter [Gluconacetobacter] xylinum) to ac-
tivate the biosynthesis of the exopolysaccharide cellu-
lose [42]. Interactive with other nucleotide signaling 
systems and upon integration of still unknown signal-
ing pathways, cyclic di-GMP acts as a nearly ubiquitous 
signal currency to exponentially translate and integrate 
a multitude of environmental and intracellular signals 
into the opposite sessility/motility lifestyle behavior 
concomitant with the cell cycle, cell morphology, me-
tabolism, secondary metabolites, and physiology. The 
local and global elevation of the cyclic di-GMP signal 
thus results in the transition from a motile planktonic 
growth of single cells to an often sessile multicellular 
biofilm.

The turnover of cyclic di-GMP is controlled by ubiq-
uitous GGDEF and EAL or HD-GYP single or hybrid do-
main proteins encoded by numerous gene copies in vari-
able numbers and ratios grossly correlated with genome 
size within a phylum [4, 43–45]. Thereby, cyclic di-GMP 
is synthesized from two molecules of GTP by the digua-
nylate cyclase activity of GGDEF domains and hydro-
lyzed to linear pGpG or GMP through the phosphodies-
terase activity of EAL or HD-GYP domains [46]. Both the 
N-terminal signaling domains and the catalytic domains 
can receive regulatory signals which allosterically regu-
late the synthesis and hydrolysis of the messenger [47, 
48]. For example, in the plant pathogen Agrobacterium 
tumefaciens, the level of cyclic di-GMP is controlled by a 

a b

c d

Fig. 2. The extracellular matrix components of the rdar biofilm, the 
exopolysaccharide cellulose, and amyloid curli fimbriae possess 
distinct features and furnish S. Typhimurium cells with a distinct 
biological function. (a) While expression of the exopolysaccharide 
cellulose provides a hydrophilic cell surface, expression of the am-
yloid curli fimbriae leads to a more hydrophobic surface as exem-
plified by assessment of surface tension [31]. A larger contact angle 

Θ indicates a more hydrophobic surface. Expression of the exo-
polysaccharide cellulose prevents adhesion (b), invasion (c), and 
secretion of the proinflammatory cytokine IL-8 (d) of S. Ty-
phimurium to the gastrointestinal epithelial cell line HT-29, while 
expression of the amyloid curli fimbriae promotes adhesion, inva-
sion, and secretion [83, 101, 186]. However, this microbial behav-
ior is context dependent [41]. Rdar, red, dry, and rough.
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hybrid GGDEF-EAL protein, DcpA, that confers either 
diguanylate cyclase or phosphodiesterase activities de-
pending on the absence or presence of the pteridine re-
ductase PruA [49]. Similarly, in P. aeruginosa, the 
GGDEF-EAL protein MucR, confers diguanylate cyclase 
activity when the bacterium is planktonic while the EAL 
domain is active conferring a phosphodiesterase function 
when in a biofilm, with the activity growth responsive to 
nitric oxide [50]. In S. Typhimurium, the hybrid GGDEF-
EAL protein STM3388, the homolog of MucR, subse-
quently represses and activates production of the biofilm 
regulator CsgD during the growth phase [51].

In the signaling cascade downstream of synthesis, spe-
cific effector proteins directly or indirectly mediate the 
physiological output and phenotypes. Since the first cy-
clic di-GMP receptor was identified in 1987, namely the 
cellulose synthase of Gluconacetobacter xylinus [52, 53], 
with subsequent identification of C-terminal PilZ as the 
binding domain, numerous receptors with distinct cyclic 
di-GMP binding motifs including RNA aptamers have 
been elucidated [54–56].

Despite the wealth of experimental data that address 
various aspects of the cyclic di-GMP signaling system and 
its physiological consequences, one major question re-
mains unanswered: how are biofilm extracellular matrix 
components differentially regulated to promote the vari-
ous temporal and spatial restricted types of biofilms [57] 
and do these different types of biofilms display distinct 

tolerance profiles? For example, the phosphodiesterase 
BinA of Vibrio fischeri adjacent of the Spy exopolysaccha-
ride operon downregulates production of a cellulose-like 
exopolysaccharide [58]. In S. Typhimrurium, the evolved 
phosphodiesterase STM0551 within the type 1 fimbrial 
gene cluster represses the adjacent fimbrial genes [59].

Regulation of Motility versus Sessility by Cyclic  
di-GMP Signaling

Perhaps the most fundamental feature of cyclic di-
GMP is to confer the sessility versus motility lifestyle 
switch. First demonstrated with model signaling proteins 
including the diguanylate cyclase AdrA and the phospho-
diesterase YhjH, high cyclic di-GMP levels enhance bio-
film formation [46, 60], while low cyclic di-GMP levels 
result in promotion of bacterial motility which can result 
in a planktonic lifestyle [60–62]. Cyclic di-GMP ubiqui-
tously regulates sessility versus motility in all investigated 
bacteria with a multitude of physiological and metabolic 
adjustments, beyond the simple stimulation of biofilm 
transcription factors and biosynthesis enzymes that syn-
thesize extracellular matrix components and post-trans-
lational downregulation of flagellar-based motility [5, 20, 
63]. Such a concomitant adjustment occurs, for example, 
in Vibrio cholerae where high level of cyclic di-GMP pro-
motes DNA repair through the VpsT and VpsR cyclic di-

HT-29 epithelial cells
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Fig. 3. Yin and Yang role of cyclic di-GMP 
signaling in stimulation of secretion of the 
pro-inflammatory cytokine IL-8 by S. Ty-
phimurium. Left: high intracellular cyclic 
di-GMP levels stimulate csgD expression 
and production of the extracellular matrix 
component cellulose. Cells in such a bio-
film state do not stimulate production of 
the pro-inflammatory cytokine IL-8 [69, 
83]. Middle: low intracellular cyclic di-
GMP levels stimulate secretion of mono-
meric flagellin by S. Typhimurium and 
IL-8 secretion by HT-29 cells is stimulated 
[69, 83]. Right: cyclic di-GMP injected into 
cell lines and (upon the presence of recep-
tors) extracellular cyclic di-GMP stimu-
lates an innate immune response [110, 187, 
188]. Cyclic di-GMP, cyclic diguanylate 
monophosphate.
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GMP-dependent biofilm regulators. This regulation pos-
itively induces expression of the DNA repair gene 3-meth-
yladenine glycosylase (tag) offering higher tolerance to 
DNA damaging conditions [64].

In S. Typhimurium and E. coli, the csgD-mediated bio-
film has been shown to be a major hub of cyclic di-GMP 
regulation with the orphan response regulator CsgD to 
promote the transcription of genes encoding biofilm ma-
trix components. These include the csgBAC operon of mi-
nor and major curli fimbriae subunits and, indirectly, cel-
lulose production by activating the gene for the diguanyl-
ate cyclase AdrA [66–68]. CsgD-mediated biofilms 
contribute not only to the transmission of S. Typhimuri-
um, but also to biofilm formation and persistence in the 
context of the gastrointestinal tract, plants, and other en-
vironments (Fig. 3; [68–70]). The bistable expression of 

CsgD ensures different subpopulations of cells with dis-
tinct biofilm formation and virulence properties [40, 69], 
which provide the multicellular cell population with var-
ious immediate physiological possibilities.

With a cyclic di-GMP binding motif absent, csgD ex-
pression itself is a major target of cyclic di-GMP signaling 
on the transcriptional and post-transcriptional level 
(Fig. 1; [71, 72]). In contrast to the ubiquitous intracellu-
lar role of cyclic di-GMP, application of cyclic di-GMP 
extracellularly inhibits biofilm formation in bacteria such 
as Staphylococcus aureus (Fig. 4a; [73]). Indeed, extracel-
lular cyclic di-GMP has been proposed as a treatment op-
tion against biofilm diseases; however, the effective mech-
anisms have been poorly explored.

S. Typhimurium and E. coli possess an array of fim-
briae that can potentially promote biofilm formation 

ba

dc

Fig. 4. Cyclic di-GMP and biofilm components in different context 
and its effect on biofilm formation by S. Typhimurium. (a) Sessil-
ity (biofilm formation) is stimulated by local or global high levels 
of cyclic di-GMP, while motility is stimulated by low levels of cyclic 
di-GMP in bacteria such as S. Typhimurium, P. aeruginosa, and 
Clostridioides difficile. (b) High intracellular cyclic di-GMP levels 
trigger biofilm formation of S. Typhimurium [46], while extracel-
lularly applied cyclic di-GMP inhibits cell aggregation and biofilm 
formation by Staphylococcus aureus [73]. (c) Biofilm formation of 
S. Typhimurium is largely dependent on csgD in M9 minimal me-

dium [40], while csgD expression inhibits biofilm formation in 
urine medium on a silicone surface (Wang and Römling, unpub-
lished [78]). (d) Flagella promote swimming motility in liquid me-
dium and swarming motility on a surface at low cyclic di-GMP 
levels, but also can be part of the extracellular biofilm matrix with, 
in S. Typhimurium, cell-associated flagellin to be upregulated 
upon expression of the diguanylate cyclase AdrA suggesting that 
production of flagella is increased [46, 83]. Cyclic di-GMP, cyclic 
diguanylate monophosphate.
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[74–76] expressed under different, and often still unde-
fined, environmental conditions with distinct regulatory 
schemes. Biofilm development of S. Typhimurium in 
batch cultures demonstrated a type 1 fimbriae and csgD-
mediated biofilm after 24 h that transforms into a solely 
csgD-mediated biofilm after 48 h [77]. Surprisingly, when 
grown on a silicone surface mimicking a urinary catheter 
in the artificial urine medium, csgD expression repressed 
biofilm formation as a csgD mutant showed higher bio-
film formation as the wild type (Fig. 4b; Xiaoda Wang and 
Ute Römling, unpublished work; [78]). One explanation 
is possible repression of alternative biofilm matrix com-
ponents such as type 1 fimbriae by csgD. Another possi-
bility is that adhesive components are surface-selective 
with deletion of csgD to expose silicone-specific adhesins 
on the cell surface. In this context, the composition of the 
biofilm of P. aeruginosa formed on the surface of the sili-
cone catheter under urinary tract growth conditions has 
been shown to be fundamentally different from medium-
grown biofilms [79]. Motility is commonly negatively 
regulated by cyclic di-GMP in various bacteria [46, 80]. A 
wide variety of motility modes are repressed by cyclic di-
GMP signaling including flagella-mediated swimming 
and swarming motility and type IV pili surface motility 
[81]. In S. Typhimurium, post-translational regulation by 
cyclic di-GMP, which binds to the PilZ domain protein 
YcgR, leads to a conformational change in the protein 
[80, 82]. Consequently, cyclic di-GMP loaded YcgR can 
form a complex with FliG and FliM proteins that are part 
of the flagella rotor. Although cyclic di-GMP can also in-
hibit expression of the flagellar regulon cascade in E. coli, 
overexpression of diguanylate cyclases in S. Typhimuri-
um enhanced cell-associated flagellin most likely in the 
form of flagella [83]. This scenario is consistent with the 
idea that flagella have multiple roles as propellor of motil-
ity, as surface sensor and adherence factor, even consti-
tuting an extracellular matrix component of biofilms 
(Fig. 4c; [84, 85]).

Regulation of Acute versus Chronic Virulence by 
Cyclic di-GMP Signaling

Cyclic di-GMP signaling regulates virulence of hu-
man, animal, and plant pathogens from S. Typhimurium 
and Mycobacterium tuberculosis, to the obligate intracel-
lular pathogen Anaplasma phagocytophilum and the 
plant pathogen Xanthomonas campestris [5, 9, 26, 86, 87].

Being a major virulence factor in chronic and recur-
rent infections, acute infections also include temporal 

and spatial aspects of biofilm formation such as adher-
ence, surface colonization and tolerance against immune 
components, antimicrobial agents, and detergents [88, 
89]. Motility and chemotaxis are required for acute infec-
tion processes. Thus, cyclic di-GMP-mediated transition 
between acute and chronic infection properties is crucial 
for a successful infection [62, 90]. Remarkable is the in-
trinsic inconsequence of high bacterial intracellular cyclic 
di-GMP concentration to lead to a biofilm status, which 
triggers a low-level immune response, while a low bacte-
rial intracellular cyclic di-GMP level that leads to a viru-
lence status provokes a high immune response. In con-
trast, host tissue available cyclic di-GMP provokes a sub-
stantial innate and adaptive immune response.

Acute Virulence Phenotypes Regulated by Cyclic  
di-GMP Signaling

Acute infections are based on short-term expansion of 
microbes that mostly involve planktonic (and motile) 
bacterial cells to employ the repertoire of virulence fac-
tors to invade and severely damage the tissue and to cause 
a substantial immune response. During acute infection by  
S. Typhimurium, the microorganisms are hypothesized 
to predominantly form biofilms in the gastrointestinal lu-
men with a fraction of cells breaching the epithelial cell 
lining. Nine cyclic di-GMP turnover proteins contribute 
to cecum colonization in the microbiota-depleted strep-
tomycin-treated mouse model [91]. The contribution of 
(predicted) phosphodiesterases such as STM3615 (YhjK) 
and diguanylate cyclases such as STM2672 (YfiN) and 
Salmonella-specific STM4551 points to a complex role of 
cyclic di-GMP in persistent gut colonization (Fig. 1; [91]), 
with STM3615 also deficient in the colonization of mes-
enteric lymph nodes and the spleen (Lamprokostopou-
lou, Römling, and W.-D. Hardt, unpublished observa-
tions). Although the biofilm regulator csgD and curli are 
expressed in the gastrointestinal tract, the panel of regula-
tory cyclic di-GMP turnover proteins is distinct com-
pared to regulation of plate-grown biofilms [51, 71, 92]. 
The putative phosphodiesterase STM3615, though, has 
an unconventional role in regulation of rdar biofilm for-
mation in the background of deletion of dsbA dsbB genes 
involved in periplasmic disulfide bond formation, with 
the involvement of the catalytic activity to be tested [93].

Although S. Typhimurium causes acute gastroenteritis, 
the disease is self-limiting in most immune-competent in-
dividuals due to the massive immune response combined 
with neutrophil influx. A particularly invasive S. Ty-
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phimurium clone, ST313, with enhanced virulence resem-
bling typhoid fever and reduced biofilm formation, has 
emerged in Africa in HIV and malaria infected individuals 
and upon malnutrition [94]. The infection process of S. Ty-
phimurium is regulated by cyclic di-GMP signaling and 
biofilm components at various stages as dissected by ex-
perimental studies with cell culture and animal models to 
show unique and distinct contributions of individual cyclic 
di-GMP turnover proteins (see below; [69, 83, 91, 95–97]).

Close association with epithelial cells is a characteristic 
of gastrointestinal pathogens and one of the first contacts 
of the bacteria with host tissue. S. Typhimurium forms 
biofilms on intestinal epithelial cells [98, 99]. Surprisingly, 
the two csgD-activated extracellular matrix components 
curli and cellulose have opposing roles in cell adherence. 
Curli fimbriae promote adhesion, while the exopolysac-
charide cellulose inhibits adhesion of S. Typhimurium to 
the gastrointestinal cell line HT-29 (Fig. 2b; [83, 99, 100]). 
While a similar adherence pattern has been observed in a 
commensal and urinary tract infection E. coli strain [28, 
101], the functionality of cellulose is context dependent; 
in the probiotic strain E. coli Nissle 1917, cellulose produc-
tion promotes adhesion [41].

Invasion or uptake of S. Typhimurium into cells of the 
epithelial cell lining is one of the key steps in the patho-
genicity of S. Typhimurium [102]. Saturation of the bac-
terial cell with cyclic di-GMP by overexpression of the 
diguanylate cyclase AdrA had a profound negative effect 
on invasion into the gastrointestinal epithelial cell line 
HT-29 [83]. Inhibition of virulence properties can be par-
tially or even fully restored upon deletion of the biofilm 
regulator csgD, identifying csgD as one central hub for the 
acute virulence versus biofilm switch at the epithelial cell 
lining in S. Typhimurium [83]. Relieve of invasion occurs 
further through inhibition of the production of cellulose 
and capsule extracellular matrix components (Fig.  2c; 
[31, 65, 83]). Cellulose production can be activated, 
though, by cyclic di-GMP independently of CsgD [31, 
103]. Possible mechanisms of reduction of invasion are 
prevention to establish adherence and shielding the type 
III secretion system-1 nanomachine via production of the 
cellulose exopolysaccharide [83, 104].

Dissecting the effect of individual cyclic di-GMP turn-
over proteins showed that 10 out of 20 deletions of indi-
vidual GGDEF/EAL domain genes altered the invasion 
phenotype with 7 mutants showing a conventional and 
three mutants showing an unconventional phenotype. 
The molecular basis of interference with invasion has 
started to become unraveled for some of these GGDEF/
EAL domain proteins (see below).

Breaching the epithelial cell lining by S. Typhimurium 
causes massive secretion of the pro-inflammatory cyto-
kine IL-8, which subsequently attracts neutrophils to 
clear the infection [105]. Again, flooding the bacterial cell 
with cyclic di-GMP abolishes induction of the pro-in-
flammatory cytokine IL-8 in the epithelial cell line HT-29 
(Fig.  2d, 3; [83]). Deletion of the genes for 6 cyclic di-
GMP turnover proteins affects IL-8 secretion, while three 
of those proteins affect both invasion and IL-8 secretion. 
In contrast, secreted cyclic di-GMP and cyclic di-GMP 
systemically applied to the host is commonly immuno-
stimmulatory, with cyclic di-GMP recognized as a non-
cytotoxic adjuvant [17, 83, 106–110].

Macrophages take up Salmonella beyond the gastroin-
testinal epithelial barrier for transport to inner organs via 
the blood stream [111–113]. S. Typhimurium uptake and 
survival in macrophages has been investigated in Salmo-
nella susceptible animal models by mimicking Salmonel-
la enterica serovar Typhi infection in humans long before 
the invasive S. Typhimurium ST313 clone emerged [69, 
114]. S. Typhimurium produces cellulose within the Sal-
monella-containing vacuole in macrophages, which re-
stricts its proliferation and attenuates acute virulence 
during systemic infection of Salmonella susceptible mice 
(Fig. 5a; [39, 96]). Different mechanisms can lead to al-
teration of cellulose production such as the MtgC viru-
lence factor which interacts with the F1F0 ATP synthase 
to restrict cellulose biosynthesis. The cellulase BcsZ, 
which substantially upregulates virulence of S. Ty-
phimurium, suggests that dysregulated biosynthesis of 
cellulose and not expression of the cellulose synthase 
BcsA is a determinative virulence modifying factor. Of 
note, ST313 clone members of S. Typhimurium possess a 
number of single nucleotide polymorphisms inside open 
reading frames and in intergenic regions, which have 
been shown to modulate virulence of this organism. For 
example, an amino acid substitution in the sensory Cache 
1 domain of the diguanylate cyclase STM1987 causes re-
duced cellulose production but enhanced murine and hu-
man macrophage survival [97]. Equally, ST313 represen-
tatives harbor mutations in the gene for the alkaline phos-
phatase superfamily member BcsG [115]. As BcsG 
stabilizes the cellulose synthase BcsA post-translationally 
in combination with covalent modifications of the glu-
cose subunits growing glucan chain by the phosphoetha-
nolamine phospholipid headgroup [27, 29], the reduced 
cellulose biosynthesis is predicted to lead to enhanced 
proliferation in macrophages. Thus, intracellular prolif-
eration without cellulose production opposes growth re-
striction upon biosynthesis of the cellulose biofilm matrix 
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component, which basically oppositely reflects biofilm 
formation versus planktonic cell proliferation in the ex-
tracellular gastrointestinal space. Whether and, if so, why 
cellulose-producing bacteria are more susceptible to in-
tracellular antimicrobial defense mechanisms needs to be 
shown. The channeling of glucose into cellulose instead 
of glycolysis which is required for S. Typhimurium in 
macrophages might restrict proliferation [116].

In bone-marrow-derived macrophages, at least three 
different subpopulations of intracellular Salmonella: fast, 
moderate, and slow growing have been identified [95]. 
Counterintuitively, the cellulose-producing slow-grow-
ing subpopulation was significantly more depleted upon 
deletion of three cyclic di-GMP-specific phosphodiester-
ases required to lower cyclic di-GMP levels shortly after 
entry into the macrophages (Fig. 1). The requirement for 
survival upon immune cell exposure might contribute 
that STM3615, encoding one of two redox-responsive 

phosphodiesterases, required for proliferation in macro-
phages, is also required for luminal colonization [91].

Intracellular and extracellular cellulose production 
provides an excellent example of the distinct roles of bio-
films within host cells versus the luminar space. Within 
host cells, proliferation of planktonic cells is promoted, 
while slow-growing cells in a cellulose-producing biofilm 
status might persist without destruction of the host cell 
on a longer time scale. Outside host cells in the extracel-
lular gastrointestinal space, the large number of biofilm 
cells outnumbers the few planktonic cells that breach the 
epithelial cell lining. Whether other biofilm types are ex-
pressed in immune cells cannot be excluded.

Contribution of Type III Secretion System-1

Cyclic di-GMP contributes at many stages to adjust 
virulence properties of S. Typhimurium; however, which 
of these processes are affected on the molecular level re-
mains unknown. S. Typhimurium possesses two type III 
secretion systems (TTSS-1 and TTSS-2) needle-like nano-
machines that tip adhere to the epithelial cell to inject ef-
fector proteins for host cell manipulation. Invasion of S. 
Typhimurium into epithelial cells requires genes of the 
Salmonella pathogenicity island 1 that code for the TTSS-
1 [117]. TTSS-1 is regulated by a variety of extra- and in-
tracellular signals [118–120] such as small intestine 
growth conditions with low oxygen and high salt to pro-
mote optimal expression of TTSS-1 proteins. Regulatory 
pathways for TTSS-1 expression converge at the tran-
scriptional regulator HilA [117]. Polysaccharide compo-
nents on the surface of bacteria have been demonstrated 
to interfere with invasion and/or type III secretion system 
functionality. The length of the O-antigen chain of lipo-
polysaccharide [121–123] and likewise in S. Typhi, the 
Vi-capsule [124] counteracts invasion of host cells. Inhi-
bition by extracellular matrix components is, however, 
not universal as in P. aeruginosa biosynthesis of extracel-
lular biofilm matrix does not seem to correlate with inter-
ference with type III secretion functionality [90]. On the 
other hand, in S. Typhimurium, adhesive curli fimbriae 
mediate adherence [28, 83], a prerequisite for TTSS-1 
functionality and invasion [125].

In many bacteria including S. Typhimurium, TTSS-
1/2 systems are subject to regulation by cyclic di-GMP 
signaling on the transcriptional and post-transcriptional 
level [119]. Thereby, biofilm formation and virulence 
properties can be closely linked as expression of type III 
secretion system components can be upregulated in bio-

a

b

Fig. 5. Contribution of biofilm components and virulence factors 
to virulence and biofilm formation in S. Typhimurium. (a) Cellu-
lose production and csgD expression of S. Typhimurium establish 
extracellular and intracellular biofilms [5, 39. 40, 91, 95, 96]. Left: 
S. Typhimurium produces cellulose inside macrophages. Right: S. 
Typhimurium produces cellulose in extracellular biofilms. (b) The 
phosphorylated SsrB response regulator of the SsrA/SsrB 2-com-
ponent system stimulates expression of the TTSS-2 2-component 
system inside the Salmonella-containing vacuole of macrophages 
[131], while the unphosphorylated SsrB response regulator aids 
promoter activation of the csgDEFG operon encoding csgD, the 
rdar biofilm activator, and additional genes required for the bio-
genesis of amyloid curli fimbriae [120, 132]. Cyclic di-GMP, cyclic 
diguanylate monophosphate.
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films [93, 126] and required for the formation of mature 
biofilms and multicellular behavior [127, 128].

In S. Typhimurium, csgD and cyclic di-GMP signaling 
interfere with TTSS-1 functionality downstream of the 
activity of the TTSS-1 central regulator HilA [6, 83, 91]. 
Thereby, cyclic di-GMP-mediated csgD expression has 
been exemplarily shown to inhibit the secretion of the 
TTSS-1 effector SopE2 [83, 91, 128, 129]. In csgD compe-
tent cell, cyclic di-GMP turnover proteins, diguanylate 
cyclases, and phosphodiesterases regulate secretion of ef-
fector proteins by their scaffold rather than by catalytic 
activity [71]. Those findings are consistent with results 
from P. aeruginosa where TTSS-mediated cytotoxicity to-
ward the CHO cell line is affected by cyclic di-GMP sig-
naling [90]. The subset of GGDEF/EAL mutants demon-
strating alteration in cytotoxicity toward the CHO cell 
line was only partially overlapping with the subset con-
tributing to virulence in a burn wound mouse model.

Contribution of Type III Secretion System-2

The TTSS-2 is required for survival and proliferation of 
S. Typhimurium inside the Salmonella-containing vacuole 
[130]. The SsrA-SsrB 2-component system is regulated by 
the transcriptional regulator HilD, which affects the expres-
sion of HilA coordinating the expression of TTSS-1 and 
TTSS-2. A major transcriptional regulator of the TTSS-2 is 
the response regulator SsrB phosphorylated by its cognate 
histidine kinase SsrA [131]. On the other hand, though, in 
the lumen of the gastrointestinal tract of the nematode Cae-
norhabditis elegans unphosphorylated SsrB is an anti-viru-
lence factor to be required for the activation of transcription 
of the biofilm regulator csgD (Fig. 5b; [132]). The associa-
tion of biofilm formation with TTSS-2 is more tight than 
previously thought as the TTSS-2-encoded MerR-like tran-
scriptional regulator MlrB repressess csgD expression in-
side macrophages [133]. These findings showed that bio-
film formation is tightly counterregulated with virulence in 
S. Typhimurium by even using the same components. Of 
note, not only SsrB but also CsgD directs biofilm formation 
in its unphosphorylated form [72].

Regulation of the IL-8 Response by Cyclic di-GMP 
Signaling

In the absence of cellulose production, S. Typhimuri-
um can effectively bind to and invade epithelial cells via 
curli fimbriae and subsequently trigger production of the 

pro-inflammatory cytokine via curli-bound flagellin 
(Fig.  2d; [37, 56, 101]). High levels of cyclic di-GMP, 
though, did not trigger IL-8 production by HT-29 cells 
[83]. Stimulation of secretion of the pro-inflammatory 
cytokine IL-8 is recovered upon deletion of csgD, which 
relieves the secretion of monomeric flagellin. The non-
stimulatory phenotype of S. Typhimurium during high 
cyclic di-GMP concentrations may possibly be a result of 
inhibition of the secretion of monomeric flagellin induc-
ing IL-8 in the HT-29 cell line [134].

Similar to invasion, the cyclic di-GMP signaling sys-
tem regulates flagellin secretion, as monitored by stimu-
lation of the secretion of the pro-inflammatory cytokine 
IL-8, by a complex network of cyclic di-GMP turnover 
proteins (Fig. 1, 3; [91]). While the diguanylate cyclase 
STM1287 conventionally represses IL-8 secretion, the 
two EAL domain proteins, STM0468 and STM4264, and 
the GGDEF-EAL proteins, STM1703 and STM2503, 
stimulate IL-8 secretion equally as the degenerated 
GGDEF-EAL protein STM3375. Several of the EAL pro-
teins seem to work in the same pathway as double mu-
tants do not additively diminish the phenotype.

Flagella Regulon-Related Phenotypes Affected by 
Cyclic di-GMP Signaling

With the flagellar regulon cascade delicately manipu-
lated on different levels, the flagellum is not only a bacte-
rial virulence factor with swimming and swarming motil-
ity to promote colonization and tissue invasion [83, 136]. 
Monomeric flagellin is recognized as a major pathogen-
associated molecular pattern (PAMP) and systemic anti-
gen being a major antigen in Crohn’s disease [136, 137].

Differential in vivo affinities for cyclic di-GMP for the 
flagellar motor break, the cyclic di-GMP receptor YcgR 
(2 μM), and subsequently the cellulose synthase BcsA (8 
μM) involved in the inhibition of bacterial motility and in 
increase in cellulose-based biofilm matrix production, re-
spectively, ensure coordinated steps toward S. Typhimuri-
um biofilm formation [135, 138]. During bacterial infec-
tion, the polymeric flagellar filament can act as a virulence 
factor with secreted monomeric flagellin as an immuno-
gen triggering innate as well as adaptive host response.

Recognition of flagellin monomers by epithelial cells 
occurs by pattern recognition receptors. Toll-like re-
ceptors (TLRs) are a group of important transmem-
brane pattern recognition receptors and until now, 15 
TLRs have been identified, from which TLR 1–10 are 
found in humans [139]. TLRs have been found to reside 
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on the surface or within cell compartments of not only 
epithelial and innate immune cells, but also neuronal 
cells, endothelial cells, and other cell types. After recog-
nition of PAMPs, TLRs trigger a signaling cascade, 
which leads to the release of pro-inflammatory cyto-
kines in order to subsequently promote an immune re-
sponse. Recognition of flagellin by TLR5 and in the case 
of plants by FLS2 [140] subsequently leads to NF-kB 
activation, chemokine release, T-cell activation, and 
other inflammatory phenotypes with flagella produc-
tion to be shut off at the later stage of infection [141, 
142]. In bacterial infection of plants, high intracellular 
cyclic di-GMP concentrations drastically reduce the 
virulence of Pseudomonas syringae pv. tomato (Pto) 
DC3000 through inhibition of flagellar motility among 
other pleiotropic effects resulting from cyclic di-GMP 
signaling on bacterial behavior [143, 144]. Stimulation 
of the secretion of monomeric flagellin has been ob-
served in response to host cells [82], and it remains to 
be shown whether this stimulation involves a cyclic di-
GMP signaling pathway. Equally whether, and how, se-
cretion of monomeric flagellin is coupled to the flagel-
la biosynthesis process is unknown [128]. In conclu-
sion, the above described work shows that secretion of 
monomeric flagellin is dependent on the expression of 
biofilm regulators and cyclic di-GMP signaling [83, 
91].

The two evolved EAL domain only proteins STM1344 
and STM1697 do not possess phosphodiesterase activity 
nor do these proteins bind cyclic di-GMP but inhibit the 
flagella regulon by inhibiting the activity of the class 1 
regulator FlhD2C4 through protein-protein interactions 
[145–147]. In this way, STM1344 and STM1697, both 
contribute to regulation of swimming motility and phase 
variation of flagellar expression [145, 146]. Both proteins 
promote virulence presumably by their contribution to 
the delicate regulation of expression of flagellar antigenic 
filaments. Furthermore, STM1344 promotes resistance to 
Salmonella-induced oxidative stress and inhibits rapid 
macrophage killing [148].

On the other hand, the EAL-only protein YhjH is the 
only motility-dedicated phosphodiesterase [92, 135]. 
YhjH, despite possessing catalytic activity, is actually 
more closely related to STM1344 and STM1697 than to 
any other EAL domain in S. Typhimurium [67, 149]. 
Three diguanylate cyclases differentially feed into the in-
hibition of motility addressing the YcgR motor break 
(STM2672), the BcsA cellulose synthase (STM1987), or 
both receptors (STM4551) [135].

Bacterial Cyclic di-GMP Signaling in Immunity

Overgrowth of the microbial flora is prevented by an 
outer and inner mucus layer on the surface of the epitheli-
um [150], which provides a mechanical, physicochemical, 
and biological barrier accumulating bacteriolytic enzymes 
like lysozyme and antimicrobial peptides secreted from Pa-
neth cells [151, 152]. In addition, nutritional immunity 
challenges, for example, iron acquisition by microbial pro-
duced siderophores [153, 154]. Microbial secreted cyclic di-
GMP can contribute not only to stimulate innate immu-
nity, but to overcome nutritional immunity [12, 109]. Upon 
ingestion, few S. Typhimurium cells penetrate the mucus 
layer to reach the mucosal cell lining as the first barrier 
[155]. In mammalian as well as in plant host cells, innate 
immune receptors located in the cell membrane and intra-
cellular receptors recognize PAMPs and induce an innate 
immune response known as pattern-triggered immunity 
(PTI) as a first line of response [156, 157]. Commensal bac-
teria trigger low-level PTI, evade, or even suppress PTI in 
order to successfully colonize the host [158]. Pathogen-
PAMPs include the following: lipid A part of the lipopoly-
saccharide present in the outer membrane of Gram-nega-
tive bacteria, components of the bacterial cell wall such as 
peptidoglycan, microbial DNA, and physiological amyloids 
such as curli [159]. Another PAMP that plays an important 
role in triggering mucosal innate immune responses, as de-
scribed above, is flagellin [160].

Based on initial reports [106, 161], cyclic di-GMP was 
recognized as a PAMP, to trigger protective host innate and 
adaptive immune responses [110]. The comprehensive 
stimulation of immunity might contribute cyclic di-GMP 
to be delivered exogenously in a murine model of bacterial 
pneumonia. A local or systemic administration of cyclic di-
GMP prior to challenge with Klebsiella pneumoniae result-
ed in significantly increased animal survival and bacterial 
reduction in the lung and blood [110]. In combination with 
the initiation of robust innate and adaptive immune re-
sponses characterized by enhanced accumulation of neu-
trophils and alphabeta T cells, as well as activated natural 
killer cells and macrophages expressing inducible nitric ox-
ide synthase and nitric oxide, the cell recruitment was as-
sociated with early elevated expression of chemokines and 
type I cytokines. These initial fundamental findings estab-
lished cyclic di-GMP and subsequently analogous cyclic di-
nucleotides not only as effective immune-modulators and 
enhancers, but also as potential anti-biofilm and anticancer 
agents. The subsequent identification of cyclic di-GMP and 
other cyclic di-nucleotide receptors in mammals paved the 
way for the identification of the central cGAS-cGAMP-
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STING axis for sensing and responding to cytoplasmic nu-
cleic acids [162–164]. Cyclic di-GMP can also activate the 
intracellular sensor STING, suggesting that cytosolic bacte-
ria release this immune activator [38, 165]. Upon Salmo-
nella infection and subsequent cyclic di-GMP release, 
STING activation induces Interferon Regulatory Factor 1 
responsible for TH17 subspecification in the mucosal im-
mune system [166]. The association between high cyclic di-
GMP concentration in the colon and stabilization of STING 
by cyclic di-GMP-induced ubiquitination in a mouse mod-
el of spontaneous colitis indicates an underestimated de-
gree of interkingdom cross talk by this ubiquitous second 
messenger [167]. These observations in an animal model 
also put forward that substantial secretion of cyclic di-GMP 
and other cyclic di-nucleotides can occur, perhaps not only 
by gastrointestinal bacteria such as E. coli, but also lung 
pathogens like M. tuberculosis [168, 169].

The Yin and Yang of Biofilm Formation in the 
Gastrointestinal Tract

The biofilm regulator csgD is expressed in the gastro-
intestinal tract and can be required for colonization 
(Fig. 6; [170, 171]). Consequently, curli (and other physi-

ological microbial amyloids) are produced during acute 
and chronic infections [172–175]. These amyloid PAMPs 
are recognized by TLR1/TLR2 in combination with the 
CD14 adaptor [176–178] and intracellular NOD-like re-
ceptors [179]. Thereby, recognition of curli by host im-
mune components leads, on the one hand, to the strength-
ening of the epithelial barrier function and dampens in-
flammation in the gut [180, 181] and, on the other hand, 
upon breaching of the intestinal barrier, to autoantibody 
formation with delayed onset of autoimmunity, inflam-
mation, and functioning as a seed to promote enhanced 
aggregation leading to neurogenerative diseases [173, 
182–185]. The csgD biofilm activator is impaired or ab-
sent in the invasive S. Typhimurium clone ST313, equal-
ly as in S. Typhimurium [94]. The deficiency to produce 
curli may contribute to enhanced translocation as dem-
onstrated for non-ST313 curli mutants [181]. Thus, in the 
luminar space, production of these physiological amy-
loids prevents their own, other amyloids and bacterial cell 
translocation to protect the host from systemic disease 
and overshooting inflammatory processes.

Conclusion

Although biofilms are commonly considered as one 
physiological state in a bacterium, various modes of bio-
film formation exist that might have different conse-
quences on microbial host interactions. Thereby, even 
concomitantly expressed extracellular matrix compo-
nents can play opposite roles in microbial physiology. 
The major regulator of biofilm formation, the ubiquitous 
second messenger cyclic di-GMP, delicately regulates 
biofilm formation and pathogen-host interactions. 
Thereby, extracellularly of bacteria, the role of cyclic di-
GMP and other cyclic di-nucleotides in a host environ-
ment is in stark contrast to the intracellular role of cyclic 
di-GMP in bacteria. Cyclic di-GMP is an intracellular 
second messenger signaling molecule in bacteria that 
promotes biofilm formation, which transforms cells into 
a low virulence, (relatively) low immunogenic status that 
is more similar to persistent commensalism than reflect-
ing an acutely virulent pathogen. However, microbial se-
creted or systemically and mucosally applied cyclic di-
GMP, cyclic di-AMP, and other cyclic di-nucleotides ei-
ther stimulate or also inhibit immune responses. In this 
way, bacteria have the possibility to distinctively manipu-
late the immune system response. To what extent this se-
cretion process occurs in bacteria, whether and how it is 
regulated, and in the case of secretion of cyclic di-nucle-

cdiGMPCsgD CsgD
cdiGMPCsgD CsgD

iNOS

NO NO

NO

NO

NFkB

Fig. 6. Contribution of the biofilm component curli to intestinal bar-
rier function and invasion versus autoimmunity, seed function, and 
inflammation. Luminally expressed curli are recognized by TLR2/
TLR1 in combination with CD14. This receptor recognition of amy-
loid fibers induces a phosphatidylinositol 3-kinase-dependent path-
way to strengthen the epithelial barrier function in order to prevent 
invasion of cells into deeper tissue (left). Amyloid fibers or bacterial 
cells expressing curli located systemically or exposed to immune cells 
cause the production of autoimmune antibodies, enhance amyloid 
formation, and cause an inflammatory response via iNOS, NFkap-
paB, and other pathways. Mouse figure is taken from https://www.
flaticon.com/free-icon/mouse-black-animal_40508. TLR, toll-like 
receptor; cyclic di-GMP, cyclic diguanylate monophosphate.
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otides by E. coli and M. tuberculosis, its precise molecular 
mechanisms need to be unraveled. Furthermore, the in-
teraction of biofilms with immune cells such as M cells 
and dendritic cells at the interface between innate and 
adaptive immune response with cyclic di-nucleotide-pro-
ducing bacteria has not been thoroughly explored.
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