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Abstract

Characterizing metastable neural dynamics in finite-size spiking networks remains a daunt-

ing challenge. We propose to address this challenge in the recently introduced replica-

mean-field (RMF) limit. In this limit, networks are made of infinitely many replicas of the finite

network of interest, but with randomized interactions across replicas. Such randomization

renders certain excitatory networks fully tractable at the cost of neglecting activity correla-

tions, but with explicit dependence on the finite size of the neural constituents. However,

metastable dynamics typically unfold in networks with mixed inhibition and excitation. Here,

we extend the RMF computational framework to point-process-based neural network mod-

els with exponential stochastic intensities, allowing for mixed excitation and inhibition. Within

this setting, we show that metastable finite-size networks admit multistable RMF limits,

which are fully characterized by stationary firing rates. Technically, these stationary rates

are determined as the solutions of a set of delayed differential equations under certain regu-

larity conditions that any physical solutions shall satisfy. We solve this original problem by

combining the resolvent formalism and singular-perturbation theory. Importantly, we find

that these rates specify probabilistic pseudo-equilibria which accurately capture the neural

variability observed in the original finite-size network. We also discuss the emergence of

metastability as a stochastic bifurcation, which can be interpreted as a static phase transi-

tion in the RMF limits. In turn, we expect to leverage the static picture of RMF limits to infer

purely dynamical features of metastable finite-size networks, such as the transition rates

between pseudo-equilibria.

Author summary

Electrophysiological recordings show that neural circuits process information by dynami-

cally switching between quasi-stationary states, whereby neurons exhibit sustained, ste-

reotypic activity. Such alternations of stable and unstable bouts of activity is referred to as

neural metastability. The observation of metastability supports the view that neural com-

putations are implemented by sequences of input-dependent transitions between quasi-

stationary states. Therefore, understanding neural computation conceptually hinges on
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characterizing metastable dynamics in biophysically relevant network models. Modeling-

wise, metastable dynamics can only emerge in finite-size neural networks, for which irre-

ducible neural variability controls the rate of transition between various quasi-stationary

states. Unfortunately, the quantitative analysis of neural networks typically requires sim-

plifying assumptions that effectively erase finite-size induced metastability. To remedy

this point, we apply a “multiply-and-conquer” approach that consider neural networks

made of infinitely many copies of the original network of interest. This setting allows us to

introduce simplifying assumptions that render the dynamics of certain biophysically rele-

vant networks tractable, while remaining predictive of metastability in the finite-size origi-

nal network.

Introduction

One of the striking features of neural activity is its high degree of trial-to-trial variability in

response to identical stimuli [1, 2]. In all generality, there are two nonexclusive explanations

for such variability: neural variability can reflect fluctuations of unmonitored variables, such as

global attention state or cross-sensory influences [3, 4]; or neural variability can arise from

inherently noisy transduction mechanisms, such as photon counting noise or faulty synaptic

transmissions [5, 6]. Independent of its origin, neural variability propagates throughout neural

circuits in the form of seemingly stochastic spiking activity. In turn, these neural circuits must

shape part of this variability [7]. Owing to the high degree of connectivity observed in cortical

circuits, a prevailing hypothesis is that a neuron’s response is primarily shaped by its mean

input drive, computed as an average over many equally contributing synapses [8]. However,

contrary to this view, some experimental evidence supports that synaptic inputs can impact

the neural response individually rather than via population averages. For instance, calcium

imaging of dendritic trees in the visual cortex has revealed that synapses impinging on the

same neuron are tuned to largely distinct features of the inputs [9, 10]. This suggests that only

a fraction of the otherwise large number of synaptic inputs is active when processing visual

information via subthreshold integration. Moreover, like many other components of neural

activity, synaptic currents have been shown to be approximately lognormally distributed in

cortex [11, 12]. Such heavy-tailed distributions also suggest that a small number of large synap-

ses primarily shapes subthreshold integration. Finally, the post-spiking reset mechanisms tak-

ing place in each neuron formally implement a feedback of the neuron’s spiking activity onto

itself [13]. In this view, albeit not a synaptic input, a neuron’s own spiking represents the single

input that most reliably impacts subthreshold integration. These observations support that a

significant part of the neural variability arises from the discrete processing of a limited number

of stochastic spiking inputs. As a result of this discrete processing, understanding quantita-

tively variability remains a conundrum in realistic neural networks. This limitation is espe-

cially concerning as variability has been recognized as an integral part of neural computations

rather than a mere nuisance to faithful information processing [14–16]. For instance, neural

variability is a key determinant of the metastable dynamics thought to support computations

in neural networks [17, 18].

A primary hurdle to understanding neural variability is perhaps the lack of mechanistic net-

work models for which variability can be quantified in relation to a few biophysically relevant

neural features. Quantifying variability in stochastic network models often relies on drastic

simplifying approximations, typically obtained in the thermodynamic-mean-field (TMF) limit

[19–22]. This limit considers infinite-size networks whereby neurons receive a large number
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of vanishingly small synaptic inputs, with synaptic strengths typically scaling in inverse pro-

portion of the number of inputs. By virtue of their definition, TMF limits fail to capture the

variability of finite-size neural networks when stochasticity is shaped by the discrete nature of

the interacting neuronal components. This is because TMF limits substitute a deterministic

mean-field drive for fundamentally stochastic neural inputs, thereby erasing some of the vari-

ability of the original, finite-size network. To better capture finite-size effects in neural variabil-

ity, it would be useful to have mean-field models that preserve the stochastic nature of the

neural inputs. In [23], we introduce such models within the replica-mean-field (RMF) frame-

work. This framework elaborates on a multiply-and-conquer approach drawing on ideas from

the theory of communication systems [24, 25] rather than from statistical physics [26, 27]. The

focus of the RMF framework is the analysis of a limit network, the so-called RMF network,

whose dynamics approximates the activity of the original, finite network of interest. This RMF

limit is obtained by making infinitely many replicas of the original network and by implement-

ing a randomized routing of the interactions across replicas. Randomizing interactions across

replicas yields simplified dynamics by erasing nontrivial dependencies in RMF networks,

where neurons are effectively driven by independent Poissonian bombardments [28]. Compu-

tationally, the RMF approach aims at specifying the stationary rates of these driving Poisson

processes as functions of the parameters defining the original network. Such parameters natu-

rally include, e.g., the finite neuronal population size, the finite degree of synaptic connectivity,

and the finite synaptic strengths. Our introductory work [23] demonstrated that RMF limits

can capture finite-size effects in the stationary dynamics of certain neural networks. However,

this was only done for a restricted class of excitatory models with a limited range of dynamics,

excluding metastable ones.

Here, we develop the RMF computational framework for a new class of models with mixed

inhibition and excitation and we demonstrate that the RMF approach applies to an extended

range of dynamics, including metastable ones. These models, referred to as the linear-expo-

nential reset (LER) models, have three essential features: (i) LER neurons integrate finite-size

spiking interactions via a continuously relaxing internal variable, mimicking the membrane

potential; (ii) the instantaneous neuronal firing rate is determined as an exponential function

of the neuron’s internal variable; and (iii) the internal variable resets to base level upon spiking,

thereby implementing a refractory period. Thus defined, LER models belong to a larger class

of generalized linear models studied in computational neuroscience [29] and are examples of

stochastic-intensity-based models. Stochastic-intensity-based models have been successful in

accounting for many key problems in neural coding such as measuring the regularity of neu-

ron spiking events [30], decoding velocity and direction from the motor cortical recordings

[31] and predicting the stability of the neuronal dynamics [29]. In this work, we present analyt-

ical tools and numerical methods to calculate the stationary RMF firing rates in LER neural

networks as functions of the network parameters. In the RMF setting, these rates fully parame-

trize the neural dynamics as sufficient statistics for the stationary distribution of the network

states. Thus, we are able to derive the neural variability, i.e., the moments of the stochastic

intensities and of the internal variables, from the knowledge of the firing rates alone. Such cal-

culations can be performed in the RMF limits for any network topologies and are numerically

efficient in the sense that they avoid Monte-Carlo schemes [32]. Moreover, we find that the

RMF estimates agree well with the exact, event-driven simulations of the original finite-size

network [33, 34].

Due to their (exponential) nonlinearity, we find that mixed networks of LER neurons are

prone to metastable dynamics. Metastable networks exhibit dynamics characterized by fluctua-

tions around pseudo-equilibrium states at small time scales and sharp transitions between

pseudo-equilibria at larger time scales. Simulating finite-replica models of metastable networks
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reveals that the transition rates between pseudo-equilibria typically vanish exponentially with

the number of replicas. Thus, just as in TMF limits, dynamical ergodicity breaks down in infi-

nite-size metastable RMF networks and metastability turns into multistability. Concretely, this

means that the equations governing the TMF and RMF dynamics both admit multiple solu-

tions for the stationary rates [35]. However, by contrast with TMF limits, RMF limits predict

self-consistently a nontrivial stationary distribution for the inputs, and correspondingly, non-

zero moments at any order. We show that the first two RMF moments can satisfactorily cap-

ture the variability of a finite, metastable network of interest. Specifically, we demonstrate this

point for a bistable neural network whose structure is motivated by the study of perceptual

rivalry in neuroscience [36]. Remarkably, the RMF limit can predict the variability of such net-

works even when the metastability originates from as few as 40 strongly interacting neurons,

when finite-size effects dominate. These results are obtained when subjecting the 40 neurons

to weak TMF-like excitatory inputs, modeling uncorrelated background activity [9, 37]. Elabo-

rating on this example, we also show that our RMF approach can numerically detect the emer-

gence of bistability as a stochastic pitchfork bifurcations [38]. We further discuss this

stochastic pitchfork bifurcation, a dynamical phenomenon, as a form of static phase transitions

whereby order is established across replicas. We also show numerical evidence suggesting that

transition rates can indeed be inferred from quantifying neural variability in the RMF

approach.

Methodology-wise, we derive the self-consistent equations for the RMF stationary rates of

LER networks in the form of delay differential equations (DDEs). Unlike in standard settings,

these DDEs do not come equipped with a notion of initial conditions on a delayed range to

specify their solutions [39–42]. Rather, we determine these solutions solely by imposing the

regularity and normalization conditions that any probabilistic model shall satisfy. To our

knowledge, there are no closed-form solutions to this problem and to date, there are no stan-

dard method for numerically solving it. We develop such a method by adapting the resolvent

formalism [43–45] to write the RMF stationary firing rates as divergent series. In turn, we

compute the resulting rates via an iterative scheme utilizing Padé approximants summation

[46, 47]. This methodology incidentally delivers two insights: (1) The RMF approach reveals

that three biophysical timescales compete to shape the neuronal response, including its vari-

ability. These are the timescales associated with relaxation, with spontaneous firing, and with

spiking—or rather reset. In that respect, a key insight is to recognize that a post-spiking reset

acts as a randomizing feedback, which implements rate saturation while promoting indepen-

dent neuronal variability. This observation is independent of modeling details, has implica-

tions in terms of network stability, and is physically interpretable within singular perturbation

theory. (2) The RMF approach offers to analyze metastable systems via finite-dimensional sto-

chastic bifurcations, which can be interpreted as static phase transitions over the replicas. This

is conceptually new on two grounds as (a) even in finite-dimensional systems, stochastic bifur-

cations generally form infinite-dimensional processes and (b) stochasticity is erased when

phase transitions are treated in classical thermodynamic limits. In this context, a natural future

direction is expanding the RMF analysis to systematically predict transition rates in finite

metastable network models.

The structure of the manuscript is as follows. First, we formulate the RMF framework for

the network dynamics of interest and establish the corresponding RMF self-consistent equa-

tions. Second, we discuss these equations from a numerical point of view and review Padé

approximants summation for numerical estimation. Third, we demonstrate our computational

approach with a focus on finite-size effects in metastable dynamics and compare them with

the TMF approximations. Finally, we discuss the biophysical relevance of our modeling

approach and introduce some future computational extensions.
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Modeling and theory

General approach and dynamics of interest

Replica-mean-field framework for spiking networks. In principle, the RMF approach

can apply to any network dynamics whereby elementary network constituents—here neurons

—interact via spikes. By spikes, we mean that interactions come in the form of precisely time-

stamped, stereotypical, transient impulses. Fig 1a shows an example of networks evolving in

response to spiking interactions. In such finite-size networks, spiking interactions generally

introduce complex dependencies between neurons, with non-trivial correlation structure.

Because of these complex dependencies, almost all finite-size spiking networks are analytically

intractable. To circumvent this limitation, classical modeling approaches approximate the

dynamics of interest via simplifying mean-field limits with trivial correlation structure, i.e.,

with independently firing neurons [19–22]. However, these limits are obtained by considering

approximating networks of infinite size, whereby each neuron interacts with an infinite num-

ber of neurons, but via vanishingly small interactions. Thus, classical mean-field approaches

erase the neural variability originating from the finite size of interactions.

The purpose of the RMF approach is to better capture neural variability by performing a

modified mean-field approximation that preserves finite-size effects. Specifically, we design

the RMF approach in [23, 28] so that neurons still emit spikes in response to a variable but dis-

crete number of inputs, each with finite size, as opposed to being subjected to a deterministic

average drive. In short, these RMF dynamics are obtained by assuming that each neuron

receives inputs from other neurons via independent Poisson processes. This amounts to

assuming that interactions occur as randomly as possible, i.e., with trivial dependencies, given

that these interactions still take the form of variable, discrete, spiking events. A priori, it is

unclear why such a simplifying assumption, commonly referred to as the Poisson hypothesis

in network theory [48, 49], would lead to the well-posed dynamics of some limit physical sys-

tem. Indeed, even when driven by Poissonian independent inputs, spiking neuronal models

generally have non-Poissonian outputs. In other words, the Poissonian regime does not natu-

rally stabilize in finite-size dynamics.

Fortunately, it turns out that a simple replication process allows one to build physical limit

networks supporting RMF network dynamics. This replication process produces enlarged net-

works made of R copies of the original network, each with K neurons indexed by i, 1� i� K.

In such R-replica networks illustrated in Fig 1b, when a neuron (i, r) of type i spikes from a

replica r, 1� r� R, it interacts with neurons (j, qj), j 6¼ i, according to the same rule as in the

Fig 1. RMF models. Panel (a) shows the original networks of K = 3 neurons. Panel (b) represents the finite-replica

model with r = 4 replicas. When a neuron spikes (e.g., green neuron), it interacts with downstream neurons sampled

uniformly at random across replicas. Panel (c) shows schematically that the RMF models are obtained in the limit of an

infinite number of replicas and represent infinite-size physical models supporting RMF dynamics. This figure is

reproduced from [52] with permission.

https://doi.org/10.1371/journal.pcbi.1010215.g001
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original dynamics, except that each target replica qj is drawn uniformly and independently

across replicas. Thus, the construction of RMF networks relies crucially on the possibility to

precisely time interactions in spiking networks as it allows for the randomized routing of inter-

actions across replicas. RMF networks are obtained by taking the limit of an infinite number

of replicas R!1 as depicted in Fig 1c. In this limit, neurons become independent as sug-

gested by the fact that their probability to interact over a finite period of time vanishes as 1/R.

Accordingly, the law of rare (interaction) events [50] suggests that when collected across repli-

cas, inputs to a given neuron (i, r) from neurons of type j are received with the same interac-

tion size μij according to a Poisson process. Thus, in RMF networks, neurons are allowed to

individually deviate from being Poisson spike generators because randomizing interactions

across replicas guarantees aggregated Poissonian spiking deliveries. These intuitive arguments

can be checked numerically and shall hold for all spiking networks. In this work, we focus on

rate models called intensity-based spiking networks, which comprise a large class of models

for which we rigorously established the Poisson hypothesis in [51].

Mean-field limits for a simple intensity-based spiking network. In general, the activity

of a K-neuron spiking network can be modeled as a K-dimensional stochastic point process

{Ni(t)}1�i�K, where t denotes time and i is the neuron index [53, 54]. For each neuron i, the

component Ni(t) is specified as the counting process registering the spiking occurrences of

neuron i up to time t. In other words, NiðtÞ ¼
P

k1fti;k�tg, where fti;kgk2Z denotes the full

sequence of spiking times of neuron i and we label spikes so that ti,0� 0< ti,1 for all 1� i� K
by convention. 1A denotes the indicator function of set A, where 1AðxÞ ¼ 1 if x is in A and

1AðxÞ ¼ 0 if x is not in A. The simplest instance of such counting processes Ni(t) is the Poisson

process for which spike generation is governed by a deterministic, instantaneous, firing rate

function λi(t). Informally, the rate λi(t) determines the probability of finding a spike in the

infinitesimal time interval (t, t + dt] as P½Niðt þ dtÞ > NiðtÞ� ¼ liðtÞ dt. A shortcoming of

Poisson processes is that they do not allow for stochastic spiking inputs to individually shape

the instantaneous firing rate, as should be the case in realistic stochastic spiking models. To

address this point, the instantaneous firing rate λi(t) must be modeled as a stochastic process,

whose probability law depends on the past states of the network. Formally, this corresponds to

defining λi(t) as the stochastic intensity of the point process Ni(t) [55, 56]. Then, specifying the

dynamics of the corresponding intensity-based networks consists in mechanistically relating

the joint law of {λi(t)}1�i�K to the past spiking history of the network {Ni(s)}1�i�K,s�t, possibly

given some initial condition {λi(0)}1�i�K.

In the absence of a reset mechanism, the simplest mechanistic intensity-based models are

perhaps the celebrated self-excited linear Hawkes processes [57, 58]. These processes are speci-

fied by the linear integral equations

liðtÞ ¼ hi þ
X

j6¼i

mij

Z t

� 1

e� ðt� sÞ=ti NjðdsÞ ; ð1Þ

where we only consider excitatory interactions: μij� 0. As they only involve exponential inte-

grands with neuron-specific time constants τi, the above integral equations are equivalent to

the perhaps more familiar stochastic differential equation

liðtÞ ¼ lið0Þþ
1

ti

Z t

0

hi � liðsÞð Þ ds
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

relaxation

þ
X

j6¼i

mijNjðtÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

interaction

; ð2Þ

which clearly separates the relaxation term and the interaction terms. According to this
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equation, in the absence of interactions, the rate λi(t) relaxes to its base value hi with time con-

stant τi, whereas λi(t) instantaneously increases by an amount μij whenever neuron j 6¼ i spikes.

Given certain stability conditions precluding rate explosion, it is known that linear Hawkes

models admit stationary dynamics. For such dynamics, the stationary rates bi ¼ E½li� satisfy a

system of linear equations

bi ¼ hi þ ti

X

j6¼i

mijbj : ð3Þ

This system can be derived by taking the stationary expectation of (1), using the fact that we

have E½NiðtÞ� ¼ bit at stationarity. Then, the stability condition amounts to imposing that the

above system admits a set of nonnegative rates {βi}1�i�K as solution.

Albeit linear, Hawkes stationary processes have nontrivial correlation structures due to

finite-size interactions. In view of this, let us use Hawkes processes as a concrete example to

compare approximations via the TMF limit and the RMF limit. In the TMF limit, each neuron

is subjected to a deterministic drive obtained by averaging over an infinite-size network via the

law of large numbers. Concretely, this means that one should substitute βjt for the original

Hawkes processes Nj(t) in (1). This implies that the rates λi are also deterministic, and consis-

tently setting their constant value to be βi directly yields the exact system of equations (3).

However, all variability of the rates λi is erased in the process. By contrast, the RMF limit pro-

vides us with a Poissonian approximation obtained by substituting independent Poisson pro-

cesses Pj(t) with rate βj for the original Hawkes processes Nj(t) in (1). Concretely, this means

that

li ¼ hi þ
X

j6¼i

mij

Z 0

� 1

es=ti PjðdsÞ ; ð4Þ

where by stationarity, there is no lack of generality to choose λi = λi(0). Thus, by contrast with

the TMF limit, the RMF limit provides us with a stochastic approximation for the rates. Taking

the stationary expectation of (4) also yields the exact system of equations (3) for the mean fir-

ing rates, whereas the rate variability can be estimated as

V½li� ¼
X

j6¼i

m2

ij

Z 0

� 1

e2s=ti E PjðdsÞ
h i

¼
ti

2

X

j6¼i
m2

ijbj ; ð5Þ

by virtue of Campbell’s formula for Poisson processes [55, 56]. The above simple treatment

illustrates the distinction between TMF and RMF limits for linear Hawkes dynamics. Both

TMF and RMF limits recover the exact system of equations (3). This is a special feature of lin-

ear Hawkes dynamics, and for more general intensity-based network dynamics, we shall

expect TMF or RMF limits to only yield approximate mean-field relations. However, only the

RMF limit provides us with consistent variability estimates, obtained at the cost of imposing a

trivial correlation structure via the Poisson hypothesis. Here our goal is to quantify neural vari-

ability in the RMF limits of certain class of nonlinear intensity-based spiking networks,

referred to as linear-exponential reset (LER) networks.

Finite-size linear-exponential reset neuronal dynamics. The LER neuron model is based

on the class of linear-nonlinear Poisson (LNP) neurons [59–61], with the addition of individ-

ual post-spiking reset rules [62, 63]. Such models of LNP neurons with reset were formally

introduced as the Galves-Löcherbach models [64]. In the LER network, the stochastic intensity

λi(t) is exponentially related to a neuron-specific internal variable xi(t), which integrates past
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neuronal interactions. Specifically, we have

liðtÞ ¼ hieaixiðtÞ ; ð6Þ

where hi and ai are positive constants. The dynamics of the internal variable xi(t) is as follows.

Whenever neuron i spikes, xi(t) instantaneously resets to zero, erasing all memory effects at the

individual neuron’s level. At the same time, neurons j 6¼ i register the instantaneous deliveries

of Dirac-delta impulses in their internal variables xj(t) via synaptic strengths μij. This registra-

tion proceeds in a leaky fashion so that xi(t) obeys the linear stochastic differential equation

xiðtÞ ¼ xið0Þ�
1

ti

Z t

0

xiðsÞ ds
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

relaxation

þ
X

j6¼i

mijNjðtÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

interaction

�

Z t

0

xiðs
� ÞNiðdsÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reset

; ð7Þ

where τi denotes the relaxation time of the neuronal internal variable to zero. Observe that the

last integral term in Eq (7) implements the post-spiking reset rule to zero. Moreover, note

that in view of Eq (7), hi appears as the (nonzero) base spiking rate of neuron i, whereas ai

models its excitability.

Given (6), Eq (7) fully specifies the dynamics of LER networks in the same fashion as (2)

does for linear Hawkes processes. It is also instructive to specify LER dynamics via a stochastic

integral equation akin to (1), which directly relates the stochastic intensities {λi(t)}1�i�K to the

past spiking history of the network {Ni(s)}1�i�K,s�t. Such an integral equation reads

liðtÞ ¼ hi exp ai

X

j6¼i

mij

Z

ðliðtÞ;t�
e� ðt� sÞ=ti NjðdsÞ

 !

; ð8Þ

where li(t) is the last time neuron i spikes before t: li(t) = supk{ti,k� 0|ti,k� t}. A merit of the

above equation is to exhibit the finite memory of individual neuronal dynamics with reset. To

see this, observe that λi(t) only depends on the past spiking history of the network starting

from li(t), i.e., on fNiðsÞg1�i�K;liðtÞ<s�t . Another merit of Eq (8) is to reveal that the reset mecha-

nism implements a stochastic feedback that effectively precludes rate explosions. This follows

from the fact that the last spiking time li(t) is a stochastic variable, even in mean-field limits,

and from the fact that the larger the rate, the shorter the memory length over which spiking

inputs are integrated. This is because the memory length is bounded by the interspike intervals

ti,k+1 − tt,k, which on average, scales in inverse proportion to the mean firing rate:

bi E½ti;kþ1 � tt;k� ¼ 1. One final merit of Eq (8) is that it can generalize to spiking interactions

of any shapes and to arbitrary rate dependency. However, in view of obtaining tractable RMF

limits, we restrict ourselves to exponential nonlinearities, for which the specification via sto-

chastic differential Eq (7) is possible.

To sum up in more concrete terms, we model a neural network as a directed weighted

graph whose nodes are neurons and whose directed edges are synaptic weights μij from neuron

j to i. Within the network, the state of a neuron i is given by its internal variable xi, which

determines the neuronal instantaneous firing rate λi via the exponential relation Eq (6). The

individual neuronal dynamics consists of three components: (i) interaction, (ii) reset, and (iii)
relaxation. (i) When neuron i fires, xj, j 6¼ i, updates to xj + μji. (ii) At the same time, xi resets to

zero. (iii) In between spikes, each xi(t) relaxes toward zero with time constant τi. Thus speci-

fied, the dynamics of LER networks defines a continuous-time Markov chain. Considerations

from the regenerative theory of Markov chains show that in the presence of relaxation, i.e.,

whenever maxi τi <1, LER network dynamics are ergodic [23, 65]. This means that collecting
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the typical states of the networks defines a unique stationary distribution, independent of ini-

tial conditions.

Development of the computational framework

Replica mean-field limit for networks of exponential neurons. A benefit of considering

LER models is that they naturally accommodate inhibition by allowing for negative synaptic

weight μij< 0. This is by contrast with linear models considered in [23] for which including

inhibition conflicts with the required nonnegativity of the rate functions λi(t). Unfortunately,

just as for their linear counterparts, an exact analytical treatment of the finite-size LER models

hinders on the complex structure of the activity correlations. This limitation motivates consider-

ing LER networks in the RMF limit, which comprises an infinite number of replicas of the origi-

nal systems [52]. By original system, we mean the K-neuron network with LER dynamics

described by Eq (7). The R-replica model is obtained by considering that a neuron i within each

replica r, 1� r� R, follows the same autonomous dynamics as that of neuron i in the original

system. However, the difference with the original system is that upon spiking, a neuron i from

replica r interacts with neurons (j, q), j 6¼ i, via the original weights μji but in replicas q, chosen

uniformly at random. Formally, this corresponds to the following set of stochastic equations

xi;rðtÞ ¼ xi;rð0Þ �
1

ti

Z t

0

xi;rðsÞ ds

þ
P

q

P
j6¼imij

R t
0
1fvq;ijðsÞ¼rg Nj;qðdsÞ �

R t
0

xi;rðs� ÞNi;rðdsÞ ;
ð9Þ

where for all s� 0, 1� r, q� R, 1� i 6¼ j� K, vr,ij(s) are independent random variables uni-

formly distributed over {1, . . ., R}. These random variables are routing addresses specifying that

when neuron (j, r) spikes at time s, it targets a neuron of type i in replica vr,ij(s).
Intuitively, the randomization of interactions present in Eq (9) degrades dependences

between neurons and across replicas. For large number of replicas, i.e., in the RMF limit, the

neurons become asymptotically independent. Moreover, each neuron of type i asymptotically

receives inputs from neurons of type j 6¼ i with Poissonian statistics across replicas. For often

being only conjectured, the emergence of this simplified limit dynamics is referred to as the

“Poisson Hypothesis” in network theory [48]. The Poisson Hypothesis was recently established

rigorously for generic RMF limits, including LER models [51]. Under the Poisson Hypothesis,

in RMF limits of LER networks, a neuron i from a representative replica admits the effective

dynamics given by

xiðtÞ ¼ xið0Þ �
1

ti

Z t

0

xiðsÞ dsþ
X

j6¼i
mijPjðtÞ �

Z t

0

xiðs
� ÞNiðdsÞ ;

where {Pj(t)}j6¼i denote independent Poisson processes with stationary firing rate βj. Thus, at

fixed network structure, the dynamics xi(t) only depends on the network background activity

via the rates {βj}j6¼i. To be consistent under the assumption of stationarity, these rates must col-

lectively satisfy the system of equations

bi ¼ hiE½eaixi � ¼ F iðfbjgj6¼iÞ ; 1 � i � K ; ð10Þ

where the notation F i emphasizes that βi is evaluated as a function of the rates {βj}j6¼i. In the

following, we will refer to F i as a rate-transfer function. The fact that firing rates characterize

alone the stationary distribution of the neural network is a feature of RMF limits. In fact, speci-

fying RMF limits for LER networks consists in solving the self-consistent system Eq (10). This

is one of the main goals of this work.
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Functional characterization via delay differential equations. Heretofore, we have only

considered RMF limits and their associated self-consistent system Eq (10) formally. To exploit

RMF limits computationally, one must find explicit forms for the rate-transfer functions fea-

tured in Eq (10). Determining these explicit forms is the main technical challenge of the RMF

approach and is the topic of the next section. Here, as a first step toward this goal, we establish

functional relations between the stationary rates βi via probabilistic arguments. Specifically, we

exploit the rate-conservation principle for point processes [66, 67] to exhibit a system of delay

differential equations (DDEs) featuring the rates βi.

In a nutshell, the rate-conservation principle states that in the stationary regime, any real-

valued function of the network states reaches an equilibrium where there is a balance between

its rate of increase and its rate of decrease. By virtue of the Poisson Hypothesis for RMF limits,

we can apply the rate-conservation principle to any function of the internal states xi(t) inde-

pendently. A natural choice is to consider exponential function xiðtÞ 7! euxiðtÞ, whose stationary

expectation defines the moment-generating function (MGF) LiðuÞ ¼ E½euxi �. The MGF Li fully

specifies the stationary distribution of xi(t) and is a well-behaved analytical function when it

exists on an open interval containing zero. In the following, we assume that the MGF Li always

exists in the RMF limit. By this, we mean that the MGF Li remains finite on an open interval

containing zero, which implies analyticity in zero so that xi(t) admits moments of all order.

As a process, t 7! euxiðtÞ satisfies a stochastic equation which can be deduced from Eq (7) as

euxiðtÞ � euxið0Þ ¼ �
u
ti

Z t

0

xiðsÞe
uxiðsÞds

þ
X

j6¼i

ðeumij � 1Þ

Z t

0

euxiðs� Þ PjðdsÞ

þ

Z t

0

ð1 � euxiðs� ÞÞNiðdsÞ :

ð11Þ

The three consecutive integral terms in the RHS correspond to continuous relaxation, inde-

pendent Poisson bombardments, and post-spiking reset, respectively. At stationarity, we have

E½euxiðtÞ� ¼ E½euxið0Þ�, so that the rate-conservation principle implies that the RHS has zero sta-

tionary expectation. In turn, we can interpret the stationary expectation of the three integrals

in term of the MGF Li (see S1 Appendix for derivation). Ultimately, the rate-conservation

principle takes the form of the following linear DDE

u
ti

L0iðuÞ � ViðuÞLiðuÞ � bi � hiLiðuþ aiÞð Þ ¼ 0 ; ð12Þ

where we have introduced ViðuÞ ¼
X

j6¼i
bjðe

miju � 1Þ for brevity. In the above equation, the

nonlocal term Li(u + ai) is due to the exponential form of Eq (6) for the rate λi(t) as interpret-

ing the expected reset term in Eq (11) involves evaluating

E½liðsÞeuxiðsÞ� ¼ E½eaixiðsÞeuxiðsÞ� ¼ Liðuþ aiÞ : ð13Þ

In the framework of perturbation theory, Eq (12) can be viewed as a singularly perturbed delay

differential equation, whose perturbation parameter hi, unlike many other more common

cases, is on the delay term. To see this, note that bi ¼ hi E½eaixi � ¼ hiLiðaiÞ, so that Eq (12) reads

L0iðuÞ
ti
�

ViðuÞ
u

LiðuÞ þ hi
Liðuþ aiÞ � LiðaiÞ

u

� �

¼ 0 ; ð14Þ
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where hi appears as the coefficient of a forward discrete derivative. In the limit of hi! 0, Eq

(14) becomes an analytically solvable, first-order homogeneous ODE. When h> 0, the pres-

ence of a delay term drastically changes the nature of the problem at stake, at least mathemati-

cally. Because of this drastic change, one needs to resort to techniques from singular

perturbation theory to numerically solve Eq (14). In this regard, observe that Eq (14) also

exhibits the relaxation rate 1/τi as a singular perturbation parameter. Indeed, in the limit of

τi!1, Eq (14) becomes a pure delay equation, with no relaxation component. However, by

contrast with the ODE recovered when hi! 0, the delay equation obtained when τi!1

resists closed-form resolution. For this reason, hi will play the central part as a perturbation

parameter.

The main caveat to solving Eq (14) for generic LER models (1/τi, hi 6¼ 0) is that the nonlo-

cality of the DDEs Eq (12) precludes a direct analytical treatment, while posing problems with

respect to solution uniqueness. To see this, observe that if one interprets the variable u as a

time parameter, the nonlocal term Li(u + ai) formally introduces a negative delay −ai. Due to

the negativity of this delay, one can only solve the DDE Eq (14) of the form x0(u) = f(x(u),

x(u + ai)) backward, i.e., for decreasing value of u. Moreover, such solutions are only unique

given the knowledge of some initial conditions on an interval of duration ai. However, there is

no natural notion of initial conditions at our disposal. Luckily, we will be able to address this

caveat in a probabilistic setting. Specifically, we will see that there is a natural representation

for a probabilistically interpretable solution to Eq (14), with no need to specify any initial

conditions.

Self-consistent equations via resolvent formalism. Our goal is to characterize the unique

MGF solution to the DDE Eq (14). Achieving this goal will allow us to give an explicit form to

the rate-transfer functions formally defined by Eq (10). For simplicity, we omit all the neuronal

indices whenever possible in the following. For instance, we will denote the output stationary

firing rate of neuron i by β when unambiguous. Our strategy is to adapt the resolvent formal-

ism to our delayed framework [68] in three steps.

First, we consider the forward discrete derivative term (L(u + a) − L(a))/u as a known inho-

mogeneous term so that we can view Eq (14) as a linear ODE about L. The method of the varia-

tion of parameters yields integral forms for L involving its shifted version L(� + a), but also

some undetermined initial condition. We resolve the latter indeterminacy by selecting the

only solution taking value L(a) = β/h, as required by the definition of the stationary rate:

b ¼ E½lðtÞ� ¼ hi E½eaixi � ¼ hLðaÞ. This yields the following integral equation

LðuÞ ¼
bqðuÞ

h
� ht

Z u

a

qðuÞ
qðvÞ

Lðvþ aÞ � LðaÞ
v

dv ; ð15Þ

where q denotes the homogeneous solution to Eq (12) excluding the forward discrete deriva-

tive term: qðuÞ ¼ exp ðt
R u

a VðvÞ=v dvÞ.
Second, in view of Eq (15), we define the auxiliary function H(u) = (L(u + a) − L(a))/u.

Substituting H(u) into Eq (15), we obtain the following integral equation

HðuÞ ¼
b

h
qðuþ aÞ� 1

u

� �

� qðuþ aÞ
ht
u

Z uþa

a

HðvÞ
qðvÞ

dv
� �

; ð16Þ

where the delayed nature of the problem appears via the nonlocal integration upper bound.

Observe that the inhomogeneous term in Eq (16) is analytic, whereas the integral term is ana-

lytic whenever H is analytic. Eq (16) is the basis for adapting the resolvent formalism to our
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delayed framework. To see this, let us define the sequence of iterated kernels

QmðuÞ ¼ qðuþ aÞ
1

u

Z uþa

a

Qm� 1ðvÞ
qðvÞ

dv
� �

; ð17Þ

with Q0(u) = (q(u + a) − 1)/u. Then, we can formally write a solution to Eq (16) as the series

HðuÞ ¼
b

h

X1

m¼0

ð� htÞmQmðuÞ ; ð18Þ

where h appears as a perturbation parameter via the dimensionless quantity hτ. Note that the

kernels Qm are independent of h but also of β, the yet-to-be-determined output firing rate.

Note also that as the Qm are analytic in u, H is an analytic function around zero as soon as the

series converges uniformly on an open disk containing zero. We conjecture that this is always

the case. This is supported by simulations which show that the probability density function of

the internal variable x is decaying superexponentially. Such superexponential decay implies

that the moment generating function of x, as well as the function H, should be analytical (see

S1 Fig).

Third, we specify β as a function of the input parameters by exploiting the normalization

constraint of the MGF: L(0) = 1. From the definition of H above, we have that −aH(−a) = L(0)

− L(a) = 1 − β/h. Thus, together with Eq (18), we must have

h
b
¼ 1 � a

X1

m¼0

ð� htÞmQmð� aÞ ; ð19Þ

where the dependencies on the input rates βj, j 6¼ i, are mediated by the kernels Qm. Observe

that in the absence of inputs, i.e., for V(u) = 0, we have q(u) = 1 so that all the terms Qm(−a) =

0. Thus, in the absence of inputs, we recover consistently that β = h, the spontaneous spiking

rate. In the presence of inputs, Eq (19) determines the rate-transfer function F of a neuron in

a feedforward network. When considering a recurrent network, these rate-transfer functions

define the sought-after self-consistency equations Eq (10), which must be jointly satisfied.

These equations take the explicit forms:

bi ¼ hi

"

1 � ai

X1

m¼0

ð� hitiÞ
mQi;mð� ai; fbjgj6¼iÞ

#� 1

; ð20Þ

where we have indexed all neuron-specific quantities and highlighted the dependencies on the

input rates βj, j 6¼ i. In the following, we will refer to the quantities computed by Eq (20) as

“RMF calculation”. We discuss the numerical methods used to perform the RMF calculation

in the next section.

Numerical methods

This section accounts for the numerical methods used to estimate the rate-transfer functions

formally expressed by Eq (19). This section is not required to read the ensuing results and dis-

cussion sections.

Divergent perturbative series

The formal series expansion Eq (19) suggests a natural numerical scheme to compute β. At

stake is to compute the values Qm(−a), m� 0, in order to approximate the output rate β by
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truncating the series
P1

m¼0
Qmð� aÞym at y = −hτ. As the functions Qm are defined iteratively via

the nonlocal integral relation given in Eq (17), the numerical computation of Qm(−a) requires

mesh grids in different ranges for different m. Specifically, calculating Qm(−a) requires the

knowledge of Qm−1 on the domain [0, a]. Knowing Qm−1 in the domain [0, a] requires the

knowledge of Qm−2 on the domain [0, 2a]. By straightforward iteration, calculating Qm(−a) ulti-

mately requires all the Qn, 0� n�m − 2, to be known in the range [0, (m − n)a], respectively.

Therefore, denoting the ultimate order of the approximation by M, we first evaluate Q0, which

we know in closed form, on some mesh grid on the domain [0, Ma]. Then, we proceed to

sequentially evaluate Qn+1 for increasing order by numerical integration of Qn via Eq (19) over

the domain [0, (M − n)a]. After repeating this iteration M times, we collect Q0(−a), Q1(−a), � � �,

QM(−a). We will discuss how to choose the approximation order M in the next section.

In principle, one can hope to compute β by direct summation of the Taylor series involving

the collected coefficients fQmð� aÞgM
m¼0

. The convergence of such a series would be justified

within the resolvent formalism if the functional map Qm 7! Qm+1 given by Eq (17) is a contrac-

tion [69]. Unfortunately, this condition does not hold for moderately large excitation as

shown in Fig 2, which estimates the radius of convergence of the series as r = limm!1 rm with

1/rm = |Qm(−a)|1/m. Fig 2a shows that 1/rm grows superexponentially when the neuron receives

excitatory inputs. This indicates a zero radius of convergence so that direct summation using

Eq (19) will fail whenever h 6¼ 0. By contrast, Fig 2b shows that 1/rm admits a finite limit when

the neuron is subjected to inhibitory inputs alone. This is also true for weak inputs, as shown

in Fig 2c and 2d.

Fig 2. Plots of 1/rm = |Qm(−a)|1/m v.s. m. This figure shows the numerical values of the series coefficients subjected to

different types of inputs. The input rates βe,i = 0.5 kHz are the same across all four panels. In panel (a), the neuron is

subjected to an excitatory input with μe = 3. The superexponential growth of 1/rm is clearly manifested in this log-scale

plot. In panel (b), the neuron is subjected to an inhibitory input with μi = −3. In panel (c) and (d), the neuron is

subjected to a weak excitatory and inhibitory input with μe = 0.3 and μi = −0.3 respectively. In these three cases, 1/rm
converges to finite values. Parameters: h = 1 Hz, a = 0.1, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g002
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This numerical evidence suggests that β, as a function of the perturbation parameter h, is

nonanalytic in zero whenever the neuron is driven by strong excitatory inputs. Moreover, even

when the series has finite radius, we will see that the convergence is only possible for a very

restricted range of inputs (see the next section). This is due to h being a singular perturbation

parameter when h! 0. There exist different techniques to approximate the general solution of

singular perturbation problems such as, e.g., multi-scale analysis [70] or matched asymptotics

of distinguished solutions [71]. Here, we leverage the knowledge of the divergent series to

form convergent approximations via Padé theory [46, 47].

Padé approximants

Direct Taylor series summation fails for neurons whose drive is dominated by excitation. This

is a major drawback as nonlinear network dynamics typically involve regimes in which subsets

of neurons are strongly excited. Such regimes will typically arise in the RMF limits of metasta-

ble systems, for which active groups of neurons are transiently stabilized by strong recurrent

excitation. To account for strong excitation drives, we need to improve the domain of conver-

gence of our numerical methods. This can be done by evaluating rate-transfer functions via

Padé approximants summation [46, 47].

Formally correct but numerically divergent series stem from “invalid” Taylor expansions

because the point of evaluation lies outside the radius of convergence or because the function

is singular at that point in the first place, with a zero radius of convergence. Intuitively, diver-

gent series result from trying to approximate a function with nonanalytic singularities by poly-

nomial approximations of increasing degree, whose limit behavior is bound to be analytic. To

address this point, Padé approximants substitute polynomials for rational functions. Infor-

mally, the use of rational functions allows for a better approximation of nonanalytic functions

by mimicking their singularities via the poles of the approximants. Given a function f(x), its

[m, n] Padé approximant at x = 0 is the ratio of a degree-m polynomial and a degree-n polyno-

mial:

½m; n�ðxÞ ¼
p0 þ p1xþ p2x2 þ � � � þ pmxm

1þ q1xþ q2x2 þ � � � þ qnxn
; ð21Þ

where the m + n + 1 coefficients are determined so that f(x) − [m, n](x) = O(xm+n+1), i.e., the

Taylor expansion of f(x) agrees with that of [m, n](x) up to the first m + n + 1 terms. A com-

mon approximating scheme is given by the zigzag diagonal chain:

� � � ! ½m;m� ! ½m;mþ 1� ! ½mþ 1;mþ 1� ! � � � :

For fixed x, if the Padé approximants along this chain converge, we assign the limiting value to

be the functional value of the original divergent series. This leads us to the numerical criteria

for determining the cut-off order M: we choose M to be the smallest integer such that |[M/2,

M/2](x) − [M/2 − 1, M/2](x)| < δ, given an error level δ> 0.

The parametric range for which the Padé approximants summation converges to the cor-

rect result generally exceeds that of the direct Taylor series summation. To check this, we con-

sider a single neuron subjected to an excitatory input of varying rate βe and strength μe. For

each parametric point (βe, μe), we test if the computed output rate β lies within one standard

deviation of the simulated β. The results are shown in Fig 3, where each panel corresponds to a

different set of h and a. From Fig 3a, we observe that the direct method is only accurate for

weak excitatory inputs. The contour curve of the convergent parametric regime is approxi-

mately linear in this log-scale plot, which means the maximal computable excitatory input rate

βe is exponentially decreasing when we increase the excitatory synaptic strength μe. By
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contrast, the Padé approximant summation yields a significantly better coverage on the (βe, μe)

parametric space. Although the maximal βe still decreases exponentially when μe is large, the

decay is much slower, especially in the low and moderately high rate regime. Fig 3b shows the

convergent parametric regimes with a = 0.2 doubled from a = 0.1. Both of the regimes shrink

into half, which is expected considering that in Eq (6), only the product of a and μ matters.

The nonlinear dependence of the convergent regime is more apparent when h becomes large.

As shown in Fig 3c, when h = 50 Hz, the convergent regime of the direct Taylor summation in

the high βe regime is highly suppressed compared with that of Padé approximants.

Computational efficiency

The RMF approach consists in approximating the exact dynamics of finite-size networks by

the computationally tractable dynamics of the corresponding RMF limits. As infinite net-

works, these RMF limits are not amenable to exact simulations. This is by contrast with the

finite network of interest, whose dynamics can be simulated exactly via Monte-Carlo methods

[32]. Fortunately, RMF dynamics are entirely characterized by the stationary rates solving the

self-consistent equations (20). The RMF computational efficiency is measured by the numeri-

cal cost of solving these equations.

To assess the RMF computational efficiency, we compare the numerical cost of solving the

self-consistent equations (20) with that of estimating exact stationary rates via Monte-Carlo

methods. For convenience, we perform such a comparison in the single neuron setting, where

the RMF approximation is exact. Specifically, we consider a single neuron subjected to excit-

atory inputs of size μe = 1 delivered at βe = 1kHz. For such parameters, our RMF calculations

converge to finite values. We compare these rate values with Monte-Carlo estimates obtained

via an exact event-driven simulation scheme detailed in S1 Appendix. In all generality, the pre-

cision of these latter estimates depends on the number of simulated spiking events. For this

reason, we perform Monte-Carlo simulations for a fixed number of spiking events ranging

from 10 to 104. Then, we compute the mean and standard deviation of the rate estimates by

averaging over 32 independent repeats.

In Fig 4a, we compare Monte-Carlo estimates (circles) obtained for a varying number of

spiking events with the corresponding RMF estimates (dashed line). As expected, the simula-

tion estimates and RMF calculations agree but the standard deviation of simulation estimates

gets larger when computed for fewer spiking events. In Fig 4b, we plot the relative standard

Fig 3. Convergent parametric regimes. These figures show the comparisons of the convergent parametric regimes for

the direct Taylor series summation and Padé approximants summation. The convergence regimes are shaded in

different colors and their envelope curves are shown. The vertical axis is in log scale. The convergence of each

parametric point (βe, μe) is determined by whether or not the computed β value is within one standard deviation of the

simulated β value. In panel (a), h = 1 Hz, a = 0.1; in panel (b) h = 1 Hz, a = 0.2; in panel (c) h = 50 Hz, a = 0.1.

Parameters: τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g003
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deviation of the simulated estimates. We find that to achieve moderately accurate simulation

estimates, e.g., within 5% relative standard deviation, we need about 400 spiking events per

repeat, i.e., about 1.3 × 105 inputs. In Fig 4c, we plot the corresponding processing times for

both methods. As expected, the time used by Monte-Carlo simulation scales linearly with the

desired number of spiking events. Achieving moderately accurate simulation estimates takes

several minutes of processing time, whereas our RMF calculation takes a comparably negligi-

ble amount of processing time (0.09s in this example).

Results

Rate-transfer functions

Nonlinear corrections and reset mechanism. The derivation of Eq (14) shows that its

delayed nature is due to the presence of a post-spiking reset mechanism. This post-spiking

reset mechanism becomes irrelevant when h = 0 as Eq (14) simplifies to the solvable homoge-

neous ODE: uL0(u) = V(u)L(u). Then, the normalization condition L(0) = 1 imposes that

L(u) = q(u)/q(0), leading to β = hL(a) = h/q(0). The abrupt loss of the delayed terms in Eq (12)

for h = 0 reveals the latter solution as a distinguished limit for L when h! 0. In that respect,

one can check that h/q(0) is precisely the first-order term in Eq (20) and reads explicitly

b ¼ he
P

j
bjwj
þ Oðh2Þ with wj ¼ t

Z a

0

ðemjv � 1Þ=v dv ; ð22Þ

where wj is the effective synaptic weight of upstream neuron j. The nontrivial dependence of

the effective weights wj on the original synaptic strengths μj follows from including finite-size

effects in the RMF framework [28, 52]. For small synaptic weights μj� 1/a, we recover the

classical mean-field regime for which the linear scaling wj’ τμj a holds. We will later see that

even for moderate values of μj, finite-size effects can have a substantial impact on evaluating

the stationary moments of the dynamics.

Eq (22) reveals that any nonlinear correction to the first-order estimate is due to including

the reset mechanism. For Eq (20) being a singular expansion, these higher-order corrections

do not always yield a convergent series. However, we expect the first-order term to be a valid

Fig 4. Computational efficiency of the RMF method. Panel (a) shows the spiking rates of a single neuron subjected

to a fixed excitatory input with

βe = 1 kHz and μe = 1. The black dashed line indicates the RMF calculations of the rate. The red circles and error bars

indicate the simulated mean and standard deviation of the spiking rate computed from different numbers of spiking

events. Specifically, we run the event-driven simulation until N spiking events for the single neuron are accumulated.

This process is repeated for 32 times. During each repetition, we record the total time T k (k = 1, � � �, 32). The mean

firing rates of the neuron are then computed by �b ¼ ð
P32

k¼1
N=TkÞ=32. The standard deviations of the rates (indicated

by error bars) over these 32 repetitions are computed by taking the square root of ð
P32

k¼1
ðS ¼ N=TkÞ

2
� �b2Þ=ð32 � 1Þ.

Panel (b) shows the relative standard deviations of the simulated rates. The relative standard deviations are computed

by StdðbÞ=�b. Panel (c) shows the CPU time consumed for simulating different numbers of spiking events with 32

repetitions (red circles), together with the CPU time of the RMF calculation (black dashed line). The simulation

platform is a 2021 MacBook Pro with Apple M1 Pro chip. Parameters: τ = 10 ms, h = 1 Hz, a = 0.1.

https://doi.org/10.1371/journal.pcbi.1010215.g004
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approximation as long as the reset timescale, i.e., the mean interspike interval 1/β, remains

large compared with the relaxation time τ: τ� 1/β. This is because in this regime, fast relaxa-

tion erases the slower influence of the reset mechanism in shaping the distribution of the inter-

nal variable x. By contrast, in the regime of moderately large excitation 1/β’ τ, the reset

mechanism starts to significantly impact the dynamics of x and to dampen the first-order

exponential dependence of β on the input rates βj. In principle, neurons can fire at a rate up to

200Hz for a leak time constant τ larger than 10ms. Thus, if one interprets the internal variable

x as a proxy for the membrane voltage, the biophysically relevant range of neural activity

includes values in the intermediary regime βτ’ 1, for which nonlinear corrections are neces-

sary. Exploring this regime requires using the Padé approximants associated to the divergent

series.

We confirm numerically the above discussion by considering the simplest excitatory neuro-

nal model, whereby a neuron is subjected to an input of rate βe via the positive synaptic weight

μe. Fig 5a and 5b quantify nonlinear corrections to the first-order prediction by plotting β/h as

a function of h at fixed input conditions. As expected, the no-reset limit β = h/q(0) holds for

h! 0. By contrast, in the opposite limit h!1, the frequent resets due to spontaneous spik-

ing erase the impacts of the relaxation as well as the inputs in between spikes, so that the spon-

taneous spiking emission dominates the dynamics: β! h. By comparison with Fig 5a and 5b

shows that the stronger excitatory drive, the larger the correction to the first-order terms. We

mark the transition between the two asymptotic regimes by the mid-point h1/2 such that

β(h1/2) = h(1 + 1/q(0))/2. To explore the domain of validity of the first-order expansion, we

then check that at the mid-point value h1/2, we have βτ’ 1, even for eventually large nonlinear

correction. To this end, we perform a systematic RMF calculation to represent βτ for h1/2 as a

function of the input rate βe and the synaptic weight μe. Fig 5c shows that the stronger the

input, the smaller value of βτ. However, this dependence is weak and βτ’ 1 holds throughout.

This confirms our analysis about the domain of validity of the first-order approximation.

Moment analysis of the neuronal response. The crux of the RMF approach is to capture

the stationary dynamics of a neuron via a parametric probabilistic model. Moreover, this

model admits the output rate β as a sufficient statistics, assuming the biophysical parameters

Fig 5. Nonlinearity of firing rates with post-spiking reset mechanism. In panel (a) and (b), the log-linear plots of β/h
v.s. h show the nonlinearity resulted from the post-spiking reset mechanism. In panel (a), the neuron is subjected to a

single excitatory input with βe = 1 kHz and μe = 1, while in panel (b), the input is of βe = 1.5 kHz and μe = 2.5. Panel (c)

is the contour plot of the value of βτ at mid-point h1/2, where excitatory input rate βe and strength μe are varied. The

contours are equidistant with respect to the value of βτ. For the simulated data, we run the event-driven simulation

until 400 spiking events for the single neuron are accumulated. This process is repeated 32 times. During each

repetition, we record the total time Tk(k = 1, � � �, 32). The mean firing rates of the neuron are then computed by
�b ¼ ð

P32

k¼1
400=TkÞ=32. The standard deviations of the rates (indicated by error bars) over these 32 repetitions are

computed by taking the square root of ð
P32

k¼1
ðS ¼ 400=TkÞ

2
� �b2Þ=ð32 � 1Þ. Parameters: a = 0.1, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g005
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and the input rates known. This means that given these assumptions, all the moments of the

stationary neuronal dynamics can be deduced from knowing β. For LER neurons, the

moments of interest are those of the stochastic intensity, MnðlÞ ¼ E½ln
�, n> 1, and those of

the internal variable x, MnðxÞ ¼ E½xn�, n> 0. With knowledge of β, Mn(x) can also be com-

puted efficiently for all n> 0 via expansions akin to Eq (20) (see S1 Appendix). In turn, this

allows one to estimate Mn(λ), n> 1, by truncation of the series

MnðlÞ ¼ hn
X1

k¼0

ðanÞk

k!
MkðxÞ : ð23Þ

Here, we demonstrate that the above RMF computational framework accurately quantifies

the response of LER neurons subjected to Poissonian bombardments. We proceed by compari-

son with exact, event-driven, Monte-Carlo simulations under various driving conditions and

for biophysically-relevant parameter values [33, 34]. Bear in mind that in all cases, our compu-

tational results are obtained incomparably faster than those estimated via Monte-Carlo simula-

tions. We will see that such a computational advantage leverages to neural networks in the

next section. In demonstrating our point, we will discuss the general features of the LER neu-

ronal response in light of the competition existing between the two timescales at play: the

relaxation time τ, and the mean interspike interval 1/β. We will also consider closed-form

approximations for various regimes of activity.

For a feedforward neuron, the input-rate-dependence of β is encoded via the rate-transfer

function Eq (20). In Fig 6, we explore this rate-transfer function numerically to reveal that—

perhaps surprisingly—LER neurons essentially behave as stochastic rectifier linear units

(ReLUs). In addition to our RMF calculations, we consider three types of approximations for

comparison. At a low spiking rate, the relaxation timescale dominates, e.g., τ� 1/β< 1/h, and

we utilize the first-order, no-reset approximation. At a high spiking rate, e.g., τ’ 1/β, we con-

sider two heuristically-derived approximations in the TMF limit and with or without relaxa-

tion. Both approximations are obtained via a simple probabilistic argument (see S1 Appendix).

In Fig 6a, when excitation dominates, the zero-order exponential approximation breaks

down when β exceeds 10Hz, which happens at about 2kHz for the considered synaptic

strength. Note that the input rates quantify the frequencies of synaptic activations so that 2kHz

corresponds to, e.g., 20 upstream neurons firing at 100Hz or 200 upstream neurons firing at

10Hz. By contrast, the RMF calculations accurately predict the quasilinear input-rate depen-

dence of β (up to convergence failure). At high drive βe, the output rate adjusts so that on aver-

age, the βe/β received inputs are canceled by a single reset over the timescale 1/β. This balance

generically leads to a weakly sublinear rate dependence in the RMF limit as well as in the TMF

limit. In the TMF limit, we heuristically establish that at large βe, βTMF’ aβe μe/ln(1 + aβe

μe/h). This TMF approximation produces the right scaling but only becomes accurate for

exceedingly high rates, when finite-size effects become negligible (see inset for the ratio β/

βTMF). In Fig 6b, we show that the mean internal variable �x ¼ M1ðxÞmirrors the behavior of β
after logarithmic compression. A low-rate linear growth �x ’ tbeme is followed by a logarithmic

behavior �x ’ lnð1þ abeme=hÞ=ð2aÞ at high drive. In Fig 6c and 6d, when inhibition domi-

nates, the neuron seldom spikes so that τ� 1/β, and the reset becomes irrelevant. Then, long

interspike intervals allow for the integration of many inputs so that finite-size effect can be

neglected as in the heuristic TMF limit. As a result, all approximations perform accurately.

Fig 7 compares the second-moment predictions deduced from our various approximations.

Comparing Fig 7a and 7b with Fig 7c and 7d consistently shows that predicting the variability

in both λ and x requires RMF calculation when excitation dominates whereas the zero-order,

no-reset approximation suffices when inhibition dominates (see S1 Appendix). Aside from
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this core observation, two remarks are worth making: First, we remark in Fig 7a and 7b that

the RMF calculations interpolate well between the low-rate and high-rate variability regimes.

When the input rate is low, the variability mainly comes from the relaxation as in the no-reset

limit. When the neuron spikes more frequently in response to strong drive, the reset mecha-

nism becomes the dominant source of variability. The latter can be captured asymptotically by

the TMF limit. Second, we remark in Fig 7c and 7d that the TMF approximations fail to cap-

ture neural variability for both quantities, even though the mean response is accurately pre-

dicted in the inhibitory case. This is because TMF limits inherently neglect finite-size effects

by assuming that the stochastic intensity varies deterministically in between spikes. Such an

assumption leads to drastic underestimation of the variability in the inhibition-dominated

regime, at least before the neuron becomes virtually silent.

Finite-size effects and balanced regime. As mentioned above, a benefit of the RMF

framework is that it enables the study of finite-size effects. In TMF approximations, finite-size

effects are erased in the process of scaling interactions in the limit of infinite-size networks. As

a result of this process, synaptic weights only appear as multipliers of the input rates in the

rate-transfer functions [23]. This is not the case in RMF limits as shown by the nontrivial

dependence of the effective weights wj, which act as rate multipliers, on the original weight μj

in Eq (22).

Fig 6. Rate-transfer functions: Mean firing rates β and mean internal variables �x. For panel (a) and (b), the neuron

is subjected to an excitatory input with varying rates βe from 0 to 10 kHz and fixed strength μe = 1.0. In panel (a), the

top-left inset shows the ratio β/βTMF in a wider range of input rates. For panel (c) and (d), the neuron is subjected to an

inhibitory input with varying rates βi from 0 to 5 kHz and fixed strength μi = −1.0. The inset in panel (c) is in

logarithmic scale to show its exponential dependence. For the simulated data, we run the event-driven simulation

until 400 spiking events for the single neuron are accumulated. This process is repeated 32 times. During each

repetition, we record the total time Tk(k = 1, � � �, 32). The mean firing rates of the neuron are then computed by
�b ¼ ð

P32

k¼1
400=TkÞ=32. The standard deviations of the rates (indicated by error bars) over these 32 repetitions are

computed by taking the square root of ð
P32

k¼1
ðS ¼ 400=TkÞ

2
� �b2Þ=ð32 � 1Þ. Meanwhile, we record the entire time

series of the internal variable x, with which we compute the mean of x. The standard deviations of the internal variable

x (indicated by error bars) are computed over these 32 repetitions. Parameters: h = 1 Hz, a = 0.1, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g006
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We quantify these finite-size effects by elucidating the dependence of the mean and vari-

ance of the LER neuronal response on the synaptic weights at fixed overall mean drive. By this,

we mean that we jointly vary the numbers Ke, Ki and the weights μe, μi of the synapses so as to

maintain the overall levels of excitation and inhibition, denoted by E = Ke μe and I = Ki μi. Spe-

cifically, we compare the three following RMF approximations with their TMF counterparts:

(1) Ke excitatory inputs alone; (2) Ki inhibitory inputs alone; (3) Ke excitatory inputs balanced

by Ki inhibitory inputs with Ke = Ki and E = I. The latter balance condition is a core assump-

tion to a broad class of models accounting for the maintenance of neural variability in the limit

of infinite-size networks, the so-called balanced network models [72].

Fig 8 shows the RMF calculations and the simulated values for the mean and standard devi-

ation of the internal variable with biologically relevant parameters. In all cases, our RMF pre-

dictions coincide with simulated results to numerical error. As expected for excitatory inputs

(Fig 8a and 8a’), the input variability tends to average out for large number of inputs Ke.

Accordingly, we observe that the TMF limit is accurate in this regime. By contrast, when Ke is

small and finite-size effects are no longer negligible, the TMF limit marginally overestimates

the mean, while underestimating the standard deviation by about twofold when Ke = 7. This is

consistent with the TMF limit erasing variability, even in the presence of a stochastic reset.

When driven by purely inhibitory inputs (Fig 8b and 8b’), neurons remain silent for long

period over which the variability in the inputs averages out. As a result, the TMF limit

Fig 7. Rate-transfer functions: Standard deviation of the neuron firing rates Std(λ) and of the internal variables

Std(x). For panel (a) and (b), the neuron is subjected to an excitatory input with varying rates βe from 0 to 10 kHz and

fixed strength μe = 1.0. For panel (c) and (d), the neuron is subjected to an inhibitory input with varying rates βi from 0

to 5 kHz and fixed strength μi = −1.0. For the simulated data, we run the event-driven simulation until 400 spiking

events for the single neuron are accumulated. This process is repeated 32 times. During each repetition, we record the

entire time series of the internal variable x, with which we can compute the moment of x for any given order. Std(λ) is

computed from Eq (23) with cut-off order 15. Std(x) is computed by taking the square root of M2ðxÞ � M2
1
ðxÞ. The

standard deviations of the quantities (indicated by error bars) are computed over these 32 repetitions. Parameters:

h = 1 Hz, a = 0.1, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g007
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performs well for all input number Ki. Nevertheless, the neural variability is still largely under-

estimated. This is again because TMF generally erases input variability, with a more drastic

effect with inhibitory inputs. For instance, the TMF limit yields a seventeenfold reduction of

the variability for Ki = 7. The overperformance of RMF over TMF is magnified in the balanced

case (Fig 8c and 8c’). Under this condition, the TMF limit gives zero mean and variance for

the internal variable as there is no net drive: ∑j βjμj = 0. However, the corresponding finite-size

system is dominated by the next order fluctuation, yielding nonzero mean and variability.

Actually, one can check that for balanced conditions, the mean firing rate increases in keeping

with the standard deviation of x, and against the mean of x, as Ke = Ki decreases. This confirms

that the neural response is dominated by input variability in this regime. The slight negative

trend of the mean of x is due to the nonlinearity of the exponential function, which biases

against upward excursions from zero.

Metastability in the RMF limit

Network activity via fixed-point resolution scheme. We are now in a position to charac-

terize the dynamics of a recurrent LER network in the RMF limits. Recall that such limit

dynamics are approximate versions of the original K-neuron dynamics, which are obtained via

randomization of interactions across an infinite number of replicas. As a result of this

Fig 8. Finite-size effect. This figure shows the means and standard deviations of the internal variable of a neuron

subjected to different configurations of input, varying the number of input channels. For all panels, E = 20 and I = −20,

μe = E/Ke, μi = I/Ki. Panel (a) and (a’): excitation only, βe = 50 Hz. Panel (b) and (b’): inhibition only, βi = 50 Hz. Panel

(c) and (c’): Ke = Ki = K, βe = βi = 50 Hz. For the simulated data, we use the same methods described in the captions of

Figs 6 and 7 to compute the values (points) and standard deviations (error bars). Parameters: a = ln(100)/20� 0.23,

h = 1 Hz, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g008
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randomization, within each replica, each neuron i experiences inputs as if delivered according

to independent Poisson processes with rate βj, j 6¼ i. The parametrization of the inputs via rates

alone is the root cause for the RMF frameworks being computationally tractable. Within a

recurrent network, these rates need to be determined by solving the system Eq (20) for self-

consistent stationary rates β = {β1, . . ., βK}. By virtue of its interpretation in terms of a physical

limit, the RMF system Eq (20) must admit some solutions β?. These solutions can be computed

efficiently for LER networks.

Interpreting Eq (20) as a fixed-point problem naturally leads to estimate possible solutions

β? via the naive iterative scheme: βnþ1 ¼ FðβnÞ. Aside from issues of Padé convergence, we

expect this naive scheme to be locally convergent because the rate-transfer functions are

weakly sublinear for large rates, which precludes runaway iterations. At the same time, these

rate-transfer functions are also strongly supralinear (exponential) at low rate, so that solution

uniqueness is not necessarily guaranteed. In practice, we find that whenever the Padé approxi-

mants summation converges, the naive scheme always locally converges toward a solution βn

! β?, which may depend on the initial condition β0. A good choice for the initial condition is

of the form β0 = h + � where � represents a possibly random perturbation. Such initial condi-

tions can be made to fall into the region of Padé convergence, while it is possible to achieve dis-

tinct solutions by tuning � (if several solutions exist). We compare the RMF and simulated

rates for two network structures with strong connections: In Fig 9a and 9b, the considered net-

work has a dominant sparse feedforward structure, which promotes input independence as in

the RMF limit. Accordingly, RMF rate approximations yield accurate predictions. In Fig 9c

and 9d, the considered network has a dense recurrent structure, which promotes input correla-

tions in excitatory networks. However, recurrent inhibition appears to maintain input inde-

pendence and RMF calculation is accurate as well.

The two networks considered above have a single fixed-point RMF solution β?. Intuitively,

this is because the original system has a single “equilibrium” state, so that the corresponding

ergodic dynamics is dominated by a single relaxation time. By contrast, metastable systems

admit several local “pseudo-equilibria”, leading to multi-timescale dynamics: At small

Fig 9. Comparison of RMF and simulated rates in inhomogeneous networks. Two networks of 80 excitatory and 20

inhibitory neurons are considered. In panel (a), the network is feedforward with 4 excitatory layers and one last

inhibitory layer inhibiting the first layer. The neurons between layers are connected with probability 75% and the

synaptic strengths are uniformly random between 3 and 6, as shown in (b). Panel (c) and (d) are for a network with no

particular structure. Each pair of neurons is connected with probability 50% and the synaptic strengths are uniformly

random between 0 and 4. For the simulated data, we run the event-driven simulation until 40000 spiking events for the

entire network are accumulated. This process is repeated 32 times. During each repetition, we record the total time

Tk(k = 1, � � �, 32) and spiking event count Si,k for each neuron i(i = 1, � � �, 100). The mean firing rates of neurons are

computed by �b i ¼ ð
P32

k¼1
Si;k=TkÞ=32. The standard deviation of the rates (indicated by error bars) over these 32 trials

are computed by ð
P32

k¼1
ðSi;k=TkÞ

2
� �b2

i Þ=ð32 � 1Þ. Parameters: a = 0.1, h = 5 Hz, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g009
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timescales, the dynamics is dominated by the relaxation time to the pseudo-equilibrium it

occupies. At large timescales, the dynamics is dominated by sharp transitions between distinct

pseudo-equilibria. In the TMF approach, the rate of transitions between pseudo-equilibria

vanishes exponentially fast with the size of the system, and the system becomes multistable in

the infinite-size limit [35]. We expect a similar picture in the RMF approach. To validate this

expectation, we consider the RMF limit for the simplest metastable dynamics, that of a neural-

network model alternating between only two pseudo-equilibria. We expect to detect multi-

stability via a transition whereby the RMF system Eq (20) starts admitting several stable solu-

tions. In practice, the stability of a solution can be checked by creating an ensemble of

iterations starting from randomized initial values.

Multistable limit of metastable networks. In principle, elementary computations can

unfold in neural circuits by allowing some inputs to gate transitions between distinct output

states of the circuit. In noisy neural networks, such gating processes give rise to metastable

dynamics [18, 73–75]. Metastability has been studied for neural networks in the TMF limits

[35, 76]. Here, we extend the analysis of metastability to the RMF framework with of focus on

neural variability. Specifically, we demonstrate that our computational approach can capture

the bistable response of a network model used to emulate perceptual rivalry [36].

The structure of the network is shown schematically in Fig 10a. The network comprises two

symmetric groups of neurons Group1 and Group2, with identical features and symmetric con-

nections. Each group comprises a cluster of excitatory neurons (Exc1,2) and a cluster of inhibi-

tory neurons (Inh1,2). The excitatory neurons in Exc1,2 are fully connected within their own

clusters, represented by the self-pointing arrows. The inter-cluster arrows represent full con-

nection between corresponding clusters. For simplicity, we set all the excitatory and inhibitory

synaptic strengths to be equal to μe and μi, respectively. Aside from their within-network

interactions, all neurons are subjected to TMF-type inputs of fixed rates and strength with

(βμ)TMF = 1.5 kHz. This corresponds, e.g., to each neuron having 1000 weak synapses of

strength μTMF = 0.1 activating at a rate of βTMF = 15 Hz. Accounting for these TMF-type inputs

amounts to adding a linear term in the function V(u)! V(u) + (βμ)TMF u. This hybrid picture

Fig 10. Network structure and simulated time series of internal variable x. Panel (a) shows that the system has two

identical groups (Group1,2) of neurons with symmetric connections. In each group, there is one cluster of excitatory

neurons and one cluster of inhibitory neurons. Each cluster consists of an equal number of K/4 neurons. The

connections between clusters are as shown. The synaptic strength is μe from any excitatory neuron and μi from any

inhibitory one. In panel (b), (c) and (d), we plot the time series of x for a representative neuron in Exc1, with fixed

inhibitory strength μi = −4.0. The system exhibits: in panel (b), monostability with μe = 0.7; in panel (c), fluctuation

with μe = 1.2; in panel (d), bistability with μe = 1.7. Parameters: K = 40, h = 1 Hz, a = ln(100)/20� 0.23, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g010
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is biologically relevant considering recent evidence that only a restricted set of inputs is

responsible for neuronal tuning, with most synapses only engaging in background activity [9,

37]. The inclusion of strong mutual inhibition across symmetric groups of neuron shall turn

the network into a stochastic bistable switch. In the following, we study such a switch for a

small total number of neurons (N = 40 with 10 neurons in each cluster), so that neural variabil-

ity will be a key determinant of the overall dynamics. The ability to deal with such small sys-

tems is one of the core benefits of the RMF framework.

We first confirm through simulations that this system can indeed exhibit bistability. Fig

10b, 10c and 10d show the time series of the internal variable x of one representative neuron in

Exc1. In Fig 10b, we simulate with μe = 0.7 and μi = −4.0. In this case, all activities are strongly

suppressed by the inhibition. The system exhibits no bistability. Upon increasing the excitatory

strength to μe = 1.2 while leaving μi unchanged, the system becomes marginally bistable as

shown by the enhanced fluctuations observed in Fig 10c. This is an indication that the corre-

sponding deterministic system is on the edge of a dynamical transition or bifurcation. How-

ever, such bifurcations are notoriously difficult to detect in a noisy setting [38]. Further

increasing μe reveals clear alternations between two relatively stable states as shown in Fig 10d

for μe = 1.7. We refer to these states as the “up” state or the “down” state depending on the

mean value of x during these states. Fitting the simulated dynamics via a hidden Markov

model allows us to parse out the various dominance periods during which either Group1 or

Group2 is up [77, 78]. This approach leverages the fact that conditionally to be up or down, the

distribution of the internal variable x remains approximately Gaussian.

Next, we check that our RMF framework can capture the bistable switch behavior, and per-

haps even detect the bifurcation. To this end, we numerically solve the RMF system Eq (20)

obtained for the considered network. As expected, we find two distinct stable solutions for

high enough cross-inhibition μi. When the RMF limit is multistable, different choices of initial

values can lead to distinct solutions. Not surprisingly, if we choose larger initial values for neu-

rons in Group1 (e.g., β0,i = h + �, i 2 Group1, � > 0), the iteration will converge to a state where

Group1 is in the up state. The thus obtained two sets of rate solutions parametrize two probabi-

listic models for two up and down metastable states.

In Fig 11, we compare exact simulation results in the finite-size network (data points) to

our theoretical calculations in the infinite-size RMF limit (solid curves). The branching behav-

ior of b ¼ E½l�, E½x� and E½x2� clearly indicates a transition from a monostable regime to a

bistable regime. Our calculation is in good agreement with the simulated values outside of the

shaded region. In the shaded region, where the bifurcation between monostability and bistabil-

ity occurs, it is numerically ill-posed to distinguish between up and down states. The system

does not persist in either states long enough for us to accurately compute the desired quanti-

ties. Fortunately, and as in the TMF limit, our theoretical calculation offers to precisely pin-

point the bifurcation via the forking behavior of the solution rates. However, contrary to the

TMF limit, the RMF limit allows us to retain the neural variability due to stochastic inputs. In

particular, at the cost of neglecting correlations, the RMF approach provides us with estimates

about the higher moments of the dynamics. In Fig 11c, we show that the simulated and theo-

retically calculated second moments E½x2� are well matched.

The absence of correlation in our RMF model appears not to affect our prediction, whereas

Fig 12a shows that the original network exhibits a non-trivial correlation structure. This is

because the non-trivial correlation structure of the original network is largely due to stochastic

switching and simplifies to a tractable feedforward correlation structure when conditioning on

the group of neurons that is up or down, as shown in Fig 12b and 12c. During a dominance

period of the original dynamics, up-state neurons constitute the main source of variability.

Fig 12b and 12c show that the activity of up-state neurons is essentially uncorrelated, in part
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owing to their frequent but irregular spiking resets. Such an activity is well-approximated in

the RMF limit. By contrast, the activity of down-state neurons is dominated by strong, shared

feedforward inhibitory inputs. Fig 12b and 12c show that as a result, the activity of down-state

is strongly correlated but in response to an approximatively Poissonian drive. Such an activity

is also well-approximated in the RMF limit. More generically, we expect the RMF approxima-

tion to perform well for metastable systems with more than two quasi-equilibria, as long as a

distinct quasi-equilibrium corresponds to a distinct population of neurons silencing all other

populations of neurons.

Finite-size effects and metastability. Synaptic distributions in real neural networks fol-

low a highly skewed distribution: there is a large number of weak connections but only a few

strong ones, whose strengths vary over two orders of magnitudes [11]. Studies have also

shown that meaningful neural activity is triggered by strong, correlated synaptic inputs rather

than uncorrelated, weak ones [9, 37]. Our RMF modeling approach allows us to quantify how

the size of the synaptic inputs impacts bistability, at the cost of neglecting activity correlations.

Fig 11. Mean firing rates β, mean internal variables �x and the second moments of the internal variables E½x2� for

the bistable networks from RMF calculations and simulations. These figures shows in panel (a), the output rates β;

in panel (b), the mean internal variables �x and in panel (c), the second moments of x, with varying excitation strength

μe and fixed inhibitory strength μi = −4.0. Gray-shaded region is where the transition from monostable system to

bistable system happened and we are not able to compute the simulated rates accurately, however, we can still perform

RMF calculation within this region. For the simulated data, we run the event-driven simulation until 16000 spiking

events for the entire network are accumulated. This process is repeated 32 times. During each repetition, we record the

total time Tk(k = 1, � � �, 32) and total spiking event count Si,k for each neuron cluster i(i = 1, � � �, 4). The mean firing

rates of neurons are computed by �b i ¼ ð
P32

k¼1
Si;k=TkÞ=32. The standard deviation of the rates (indicated by error bars)

over these 32 trials are computed by ð
P32

k¼1
ðSi;k=TkÞ

2
� �b2

i Þ=ð32 � 1Þ. Meanwhile, we record the entire time series of

the internal variable x, with which we can compute the moment of x for any given order. The standard deviations of

the quantities (indicated by error bars) are computed over these 32 repetitions. Parameters: Ktotal = 40, h = 1 Hz, a = ln

(100)/20� 0.23, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g011
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To do so, we consider the same hybrid model where neurons are all subjected to TMF-type

background inputs, but where the circuit connections implementing cross-inhibition are

treated in the RMF limits.

In this setting, we can quantify the emergence of bistability when varying the synaptic

strength μe and μi involved in the cross-inhibitory circuit, thereby performing a phase space

analysis of the network. Importantly, this phase space analysis only requires solving the corre-

sponding self-consistent RMF equations rather than prohibitively costly simulations. We uti-

lize the RMF solution rates to quantify bistability via the following bifurcation observable Δ:

D ¼
bExcu

þ bInhu
� bExcd

� bInhd

bExcu
þ bInhu

þ bExcd
þ bInhd

: ð24Þ

where the subscripts Excu, Inhu and Excd, Inhd refer to neuronal groups in the up and down

states, respectively. By definition, as both excitation and inhibition are larger in the up state,

the observable Δ ranges between 0 and 1. In the monostable regime, Δ� 0 is minimum since

ðbExcu
; bInhu

Þ � ðbExcd
; bInhd

Þ. By contrast, in the bistable regime, when the neurons are silenced

in the down state, i.e. ðbExcd
; bInhd

Þ � ð0; 0Þ, Δ� 1 is maximum. Fig 13a shows the parametric

density plot of Δ obtained by varying μe and μi.

As expected, the regime of activity of the system is controlled by the overall level of cross-

inhibition, which appears loosely linear in μe and μi. This is because cross-inhibition obviously

requires the excitation of the mediating inhibitory neurons. For weak cross-inhibition, the net-

work response is dominated by the uniform TMF background and fluctuates around its only

equilibrium state. Increasing μe and μi leads to a sharp transition to a bistable regime. For

small circuits, with about 10 neurons per subnetworks, this transition occurs for large synaptic

weights requiring an RMF treatment as the TMF approximation yields wrong rate estimates.

The sharpness of the transition indicates a strong silencing of neurons in the down state, in

line with the strong nonlinearity of the network dynamics. In that respect, we find that the

TMF approximation predicts that bistability emerges for smaller synaptic weights than

observed in small networks, while also underestimating the firing rates.

We conclude by utilizing our RMF computational approach to exhibit behaviors that are

otherwise challenging to obtain via simulations. Specifically, we exhibit in Fig 13b the scaling

Fig 12. Correlation structure of the original bistable network. Panel (a) reveals that neurons are positively correlated

within the same group, but negatively correlated across groups. This shows that the correlation structure of the

metastable dynamics is primarily shaped by stochastic switches between up and down states. Panels (b) and (c) show

the correlation structure of the same dynamics but conditioned on (b) Group1 being up or (c) Group1 being down.

This shows that up-state neurons are weakly correlated, whereas down-state neurons are strongly correlated for

receiving strong, shared inhibitory inputs. The correlations are estimated from simulated data, where we run the

event-driven simulation until 400000 spiking events for the entire network are accumulated. We record the time series

of the internal variables xi. The unconditioned correlations are computed by Cor(xi, xj) = Cov(xi, xj)/(Std(xi)Std(xj)).

The conditioned correlations are computed using the corresponding time series components (up/down state) detected

and cropped from the whole time series. Parameters: μe = 1.5, μi = 4.0, a = ln(100)/20� 0.23, h = 1 Hz, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g012
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of the critical weights at the bifurcation μe with respect to the subnetwork size K, assuming a

fixed ratio μe/μi = 0.2 and μe/μTMF = 10. Interestingly, we found that the critical weight scales

approximately as 1=
ffiffiffiffi
K
p

, similar to the scaling formally defining the balanced thermodynamic

limit. In this limit, inhibition and excitation cancel one another on average. As a result, neuro-

nal activity is driven by the fluctuations in the inputs. The 1=
ffiffiffiffi
K
p

scaling ensures that neural

variability is preserved in the large K limits for independent inputs. We observe a similar phe-

nomenon for critically tuned networks in the RMF limit, for which inputs are always indepen-

dent. This is because neural variability is an invariant of the dynamics at the bifurcation, where

networks start alternating between the newly individualized up and down states. Preserving

this variability throughout network sizes in the RMF limit naturally requires a 1=
ffiffiffiffi
K
p

scaling,

which remarkably persists down to very small system sizes.

Discussion

Modeling assumptions for a computational framework

One of our leading motivations is the hope to quantify finite-size effects in the dynamics of

noisy neural networks. To this end, we have adopted a reductionist modeling approach build-

ing on the central assumption that noise arises internally via a rate-based, spike-generating

process. To account for the potential individual impact of a single synaptic activation, we have

modeled the instantaneous spiking rate as a history-dependent stochastic intensity λ. Each

synaptic delivery transiently impacts this stochastic intensity by causing instantaneous jumps

in keeping with the synaptic weights. This bare framework leads to a series of well-identified

pitfalls, which can be fixed with additional modeling components.

First, the requirement that the stochastic intensity remains a nonnegative quantity imposes

that the joint integration of inhibition and excitation should be mediated by an internal vari-

able x. This variable, albeit thought of as a membrane potential, is allowed to vary without

bound, so that inhibition and excitation can be safely integrated algebraically. In turn, the sto-

chastic intensity is deduced from x via a necessarily nonlinear, rectifying function, akin to the

f − I curves. The simplest such function that is also monotonic is the exponential one [31, 79].

Second, with supralinear rectifying functions, the dynamics of recurrent networks can

become ill-posed, with possibly diverging stochastic intensities [80]. Such an explosive behav-

ior can be tamed by introducing an additional nonlinearity in the rectifying functions, e.g., by

Fig 13. Phase transition. Panel (a): In this density plot of bifurcation observable Δ, μe and μi are varied. The white

dashed line represents the parameters (μe, −μi) used in Fig 11. The black circles correspond to the parameters for the

simulations shown in Fig 10b, 10c and 10d. Panel (b) is the log-log plot of the value of μe at the onset of bifurcation

varying the size of the network, determined by thresholding Δ = 0.01 in the RMF calculation (black circles). The red

dashed line is the linear fitting in the log-log scale, which has a slope of −0.48. Parameters: h = 1 Hz, a = ln(100)/20�

0.23, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g013

PLOS COMPUTATIONAL BIOLOGY Metastable spiking networks in the replica-mean-field limit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010215 June 17, 2022 27 / 36

https://doi.org/10.1371/journal.pcbi.1010215.g013
https://doi.org/10.1371/journal.pcbi.1010215


imposing biologically plausible high-rate saturation. An alternative route that does not require

saturation is to consider an instantaneous post-spiking reset mechanism, which implements a

form of refractory period [62, 63]. By contrast with that implied by saturation, the type of non-

linearity introduced by this reset mechanism is still computationally tractable.

Third, in the absence of relaxation, neuronal dynamics may be ill-posed when neurons are

dominated by inhibitory inputs, even in the presence of a reset mechanism. Indeed, steady

inhibition can cause the internal variable to diverge over time limt!1 x(t) = −1, effectively

silencing the neuron. We remedy such a caveat by allowing the internal variable to relax

toward a base level. While biophysically relevant, such relaxation precludes runaway dynamics,

and thereby neuronal silencing. Incidentally, it also guarantees the ergodicity of the finite-size

dynamics [23].

Biophysical relevance and limitations

Theoretical considerations alone show that all the above modeling assumptions must be

included in any stochastic-intensity-based neural models. These are also the only modeling

features we consider. This drastic oversimplification clearly neglects important aspects of neu-

ronal processing such as propagation delays [81], synaptic adaptation and fatigue [82], or neu-

ronal compartmentalization [83]. Perhaps the most serious limitation of the LER model is

being current-based for integrating inputs without conductance mediation. In conductance-

based models, the internal variable x explicitly models the membrane voltage, which is natu-

rally bounded by the ionic reversal potentials. In the context of point-process-based models,

this naturally excludes the possibility of rate explosion. We do not address these limitations

here as our main point is only to develop a computational framework where the impact of

finite-size effects can be quantified in relation to a few key modeling assumptions.

That being said, despite the crudeness of their modeling assumptions, we found that LER

neurons operate in a biologically relevant regime for parameters inferred from real-world mea-

surements. In particular, we set large synaptic weights to be such that a single synaptic excita-

tion at base level causes the internal variable x to transiently increase by 2% of its range. Here

we defined the range as the mean value of x when β’ 100 Hz. Such choices mirror the obser-

vation that large synaptic events cause up to *0.5 mV depolarization at the soma, for a typical

upward voltage range of 20 mV. There are also natural choices for the two timescales featuring

as free parameters [79]: We set the relaxation timescale τ to be equal to the membrane time

constant 10ms. We adopted a base rate of h = 1 Hz, as the putative spontaneous firing rate of

an isolated neuron. The latter choice of a base rate is actually more flexible than it appears.

Indeed, varying levels of background activity modulates the effective value of h.

This biologically relevant computational framework opens up the possibility for the studies

of novel biological phenomena. For example, we can estimate the parametric dependences of

the experimentally measurable quantities (e.g., means and variances of the membrane volt-

ages) on the finite-size network components (e.g., network sizes and synaptic strengths). This

allows us to account for the role that individual neurons can play in shaping the neural activi-

ties, in contrast with most computational frameworks that ignore such individual impacts.

Such characterization of the activities by the finite-size components further allows us to infer

the underlying network structures, of which our computational framework can readily study

the collective neural dynamics such as metastability.

Moreover, there are direct extensions to LER models that can be treated within our frame-

work. One alteration is to implement a post-spiking hyperpolarization of fixed size, say ν,

rather than a hard reset to zero. In this case, the discrete derivative term shall be replaced by

the delay term L(a + u)(euν − 1)/u, and the resulting DDEs are still tractable via resolvent
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formalism. However, the rate-transfer function would become asymptotically linear so that

network dynamics will no longer be unconditionally stable. Other alterations are to allow for

relaxation toward a value b 6¼ 0 and resets to value r 6¼ 0. This leads to considering auxiliary

terms of the form VðuÞ ¼ buþ
P

jbjðeumj � 1Þ with spontaneous rate of the form hear. Again,

the resulting RMF problems are still tractable but now offer some interesting modeling aspects.

One such aspect is to allow for b and r to be slowly dependent on neuronal activity to model

some form of a fatigue or adaptation process.

Analyticity, nonlocality, and singular perturbation

The computational framework of the RMF approach relies on the Poisson hypothesis, which

posits that neural inputs are distributed according to independent Poisson processes [28, 48].

Such a hypothesis is justified when neuronal interactions are randomized across an infinite

number of replicas of a given finite-size network. The simplifying Poisson hypothesis allows

one to parametrize the probability distribution of a neural network via the individual neuronal

spiking rates alone. Therefore, in the RMF limit, elucidating the typical state of a neural net-

work amounts to solving self-consistently for these stationary firing rates. These rates are

determined as fixed-point solutions of the system of equations specified by rate-transfer rela-

tions, which can be seen as implementing some nonconservative Kirchhoff’s laws [84].

To compute rate-transfer functions in the RMF limit, our strategy is to derive conservation

laws holding in the stationary regime. Then, we use these conservation laws to functionally

characterize the typical distribution of neuronal states via their MGFs. For LER neurons, such

a functional characterization takes the form of nonlocal DDEs bearing on the MGFs L. Analyt-

ical solutions to these DDEs uniquely specify these MGFs, from which the stationary rates can

be deduced as β = hL(a). However, as for most nonlocal equations, solutions to our DDEs can-

not be expressed explicitly and one has to resort to singular perturbative methods.

In principle, one can hope to obtain tractable distinguished limits in two asymptotic

regimes: for vanishing relaxation τ!1 and for vanishing spontaneous rate h! 0. In prac-

tice, only the limit h! 0 is useful. Indeed, when τ!1, the DDE simplifies to a pure delay

equation, which constitutes an ill-conditioned numerical problem. More fundamentally, in the

absence of relaxation, we do not know whether the original dynamics is ergodic. In particular,

the RMF limit may become ill-posed with neurons being silenced for diverging durations by

increasingly large amounts of inhibition. By contrast, when h! 0, the DDE becomes a simple

ODE, so that the corresponding MGF Lh=0 is given as the only solution satisfying the normali-

zation condition Lh=0(u) = 1. This solution is valid whenever the reset mechanism can be

neglected, i.e., for low output spiking rate β� 1/τ.

For moderately large firing rates, we are able to solve the DDEs via resolvent formalism.

Interestingly, this resolution does away with the requirement of specifying initial conditions

on a delayed interval, as one generally expects for DDEs. This is because the resolvent formal-

ism naturally selects for the set of solutions such that the graph of (h, u) 7! (h, L(h, u)) forms a

continuous manifold anchored on the analytical boundary Lh=0 when h! 0. Thus, we circum-

vent the need for local initial conditions over an interval for Lh at fixed h, by imposing global

regular conditions on (h, u) 7! (h, L(h, u)) when varying h. We conjecture that this manifold is

analytic in u as required for MGF functions, whereas analyticity in h can fail, at least in h = 0

when excitation dominates the input drives. Because of the lack of analyticity in h, the resol-

vent formalism only produces a formal, possibly divergent, series expansion in terms of powers

of h, the singular perturbation parameter. Although we have not characterized the type of non-

analyticity at stake, we found that Padé approximants summation can accurately predict out-

put rates when the formal series diverges. This suggests that L(�, u) might be a meromorphic
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function on some open region of the complex plane whose singularities all lie outside of the

nonnegative real axis [85].

Dynamical transition via RMF limits

We utilize our RMF framework to partially analyze the metastable dynamics of small networks.

As well-known for the TMF limit, metastability turns into multistability in the RMF limit: the

residence times in the various pseudo-equilibria diverge exponentially with the number of rep-

licas. By contrast with the TMF limit, however, these pseudo-equilibria remain probabilistic,

with stationary distributions parametrized by self-consistent firing rates. Moreover, the RMF

approach predicts the transition to bistability in small metastable networks with accurate esti-

mates of the mean activity as well as the neural variability, when conditioned to being in either

pseudo-equilibrium.

Detecting bifurcation in stochastic systems is a notoriously arduous task [38]. This is

because including noise in a finite-dimensional system generally turns its dynamics into an

infinite-dimensional one, typically specified via a master equation. For instance, one can show

that the transient dynamics of a K-neuron LER network is specified by a linear partial differen-

tial equation bearing on the time-dependent MGF L(t, u):

@tLþ G½L� ¼ 0 ; with Lðt; uÞ ¼ E
�

e
PK

i¼1
uixiðtÞ

�

; ð25Þ

where G is some K-dimensional nonlocal differential operator. Loosely speaking, ergodic

metastable networks can be characterized as those networks admitting multimodal stationary

distributions, which in principle, can be derived from the knowledge of L(t, u). Unfortunately,

due to its nonlocalities, Eq (25) as well as its stationary version G½L� ¼ 0, is impervious to an

analytical and numerical treatment. These hindering nonlocalities are due in part to the possi-

ble nonlinearity of the stochastic intensities, but mainly to the boundary terms mediating neu-

ronal interactions [23, 52].

The RMF strategy consists in considering approximate infinite-size networks where these

boundary terms simplify thanks to the Poisson hypothesis. According to the Poisson hypothe-

sis, neurons behave independently so that the transient MGF admits a product form

Lðt; uÞ ¼
QK

i¼1
Liðt; uÞ, where each marginal MGF Liðt; uÞ ¼ E½euxiðtÞ� satisfies a nonlocal par-

tial differential equation

@tLiðt; uÞ þ
@uLiðt; uÞ

ti
�

Viðt; uÞ
u

Liðt; uiÞ

þ hi
Liðt; uþ aiÞ � Liðt; aiÞ

u

� �

¼ 0 :

ð26Þ

The resolution of the above equation still resists direct treatment in the transient regime. How-

ever, in the stationary regime, the infinite-dimensional PDE problem reduces to a DDE prob-

lem, which is revealed to be finite-dimensional via our analysis: all boils down to solving the

K-dimensional RMF system (10). This finite-dimensional setting allows to resort to classical

bifurcation analysis [86]. Indeed, solving Eq (10) shows that the transition to bistability occurs

in the RMF limit when the single equilibrium obtained for low cross-inhibition loses stability

and when two distinct pseudo-equilibria emerge. Thus, the emergence of bistability is dynami-

cally akin to a classical, finite-dimensional supercritical pitchfork bifurcation in the RMF limit.

However, it is perhaps better stated to say that the RMF framework detects metastability as

a static phase transition rather than a dynamical bifurcation. After all, our RMF treatment only

considers stationary solutions with no explicit regard for the transient dynamics, while the
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emergence of bistability corresponds to the spontaneous ordering of all replicas. In this light,

we predict that the emergence of bistability in the RMF limit represents a continuous phase

transition. This prediction is supported by the apparent continuity of the stationary rates

through criticality, which is to be expected from the bifurcation picture. Moreover, the bifurca-

tion picture also suggests that the RMF phase transition is analogous to low-temperature spon-

taneous magnetization in the Curie-Weiss model, with cross-inhibition weights playing the

role of coupling variable. However, the order of the phase transition remains to be elucidated

as numerics suggest a rather smooth dependence of the rates at criticality. It is also worth not-

ing that critical RMF networks could exhibit nontrivial long range correlations across replicas,

reminiscent of second-order phase transition. It remains to be explored whether such critical

behavior would encode any information about the original metastable dynamics.

More generally, we hope to leverage our RMF framework to estimate key dynamical prop-

erties of metastable dynamics, such as the transition rates between pseudo-equilibria. In the

classic theory of reaction rates, these transition rates can be approximated via phenomenologi-

cal Eyring-Kramer’s laws given some notion of energy landscapes [87]. Unfortunately, we do

not have a consistent notion of energy in our model. Nevertheless, we can still use the first and

second moments of the internal variable x to form Eyring-Kramer’s-type candidate laws for

the observed rates. Although we do not have a systematic derivation for such laws, preliminary

analysis suggests that these transition rates can be inferred from our RMF predictions. In sup-

port of this, Fig 14 shows that the empirical transition rates observed in our bistable system are

accurately predicted from our RMF treatment. The empirical rates are estimated from exact

but numerically expensive Monte-Carlo simulations, whereas the RMF rates are computed

Fig 14. Prediction of transition times using Eyring-Kramer’s law. Panel (a) represents schematically the effective

double-well potential energy landscape used to predict the transition rate for the bistable network. In principle, such an

energy landscape should at least be four-dimensional as it involves 4 groups of neurons. However, an one-dimensional

effective model already offers good predictions as we find that a single switching direction (arrow) dominates the

transition dynamics. Panel (b) shows that the transition times inferred from our RMF model (horizontal axis) predict

the empirical transition times obtained from Monte-Carlo simulations (vertical axis). Each data point corresponds to a

different pair of parameters (μe, μi). μe ranges from 1.2 to 1.6 in the increment of 0.1. Data points with distinct μe’s are

shown in different colors and marks. μi ranges from 4 to 14 in the increment of 0.25. The arrow in the figure indicates

the direction of increasing μi. For the predicted transition times, we apply the Eyring-Kramer’s law by estimating the

potential energy of our system from a mixture of two normal distributions. Such distribution is constructed using

solely the means and standard deviations of the up and down states computed from the RMF calculation. Please refer

to S1 Appendix for more details. For the simulated transition times, we simulate the dynamics of our bistable network

until 100 transitions between up and down states are accumulated. The transitions are detected using a hidden Markov

model. This process is repeated 16 times. During each repetition, we record the total time Tk(k = 1, � � �, 16). The

simulated transition times of the network are then computed by Ttransition ¼ ð
P16

k¼1
Tk=100Þ=16. The standard

deviations of the transition times (indicated by error bars) over these 16 repetitions are computed by taking the square

root of ð
P16

k¼1
ðTk=100Þ

2
� T2

transitionÞ=ð16 � 1Þ. Parameters:

Ktotal = 40, h = 1 Hz, a = ln(100)/20� 0.23, τ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1010215.g014
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phenomenologically via an Eyring-Kramer’s-type law. This law is obtained from a simple one-

dimensional energy landscape model inferred from the knowledge of the first and second

moments of the internal variable x conditioned to being in the up or down state (see S1

Appendix for details). To justify the form of our one-dimensional model, we heuristically

determine that switching between up and down states is dominated by a single escape process,

whereby down-state neurons transiently activate by chance. The preliminary results presented

in Fig 14 demonstrate the possibility of predicting the transition rates with our RMF frame-

work. Further quantifying the dependencies of the transition rates on all the modeling parame-

ters will require a more principled treatment. We anticipate that such treatment will

extrapolate finite-size transition rates from the scaling behavior of the corresponding rates in

the RMF limit, which shall satisfy some large deviations principle [88].

Supporting information

S1 Appendix. Supplementary text. A: Derivation of the DDEs, B: Simulation method, C: Cal-

culation for higher moments, D: Different approximation methods, E: Prediction of dynamical

transition rates. Fig A: Bistable networks. Fig B: State switching paths.

(PDF)

S1 Fig. Distribution of the internal variable x. The distribution of the internal variable x of a

single neuron subjected to various different types of inputs. The detailed input parameters are

listed above. Parameters: h = 1 Hz, a = 0.1, τ = 10 ms.

(PDF)
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