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Abstract

Liver organoids (LOs) are of interest in tissue replacement, hepatotoxicity and pathophysio-

logical studies. However, it is still unclear what triggers LO self-assembly and what the opti-

mal environment is for their culture. Hypothesizing that LO formation occurs as a result of a

fine balance between cell-substrate adhesion and cell-cell cohesion, we used 3 cell types

(hepatocytes, liver sinusoidal endothelial cells and mesenchymal stem cells) to investigate

LO self-assembly on different substrates keeping the culture parameters (e.g. culture

media, cell types/number) and substrate stiffness constant. As cellular spheroids may suffer

from oxygen depletion in the core, we also sought to identify the optimal culture conditions

for LOs in order to guarantee an adequate supply of oxygen during proliferation and differen-

tiation. The oxygen consumption characteristics of LOs were measured using an O2 sensor

and used to model the O2 concentration gradient in the organoids. We show that no LO for-

mation occurs on highly adhesive hepatic extra-cellular matrix-based substrates, suggesting

that cellular aggregation requires an optimal trade-off between the adhesiveness of a sub-

strate and the cohesive forces between cells and that this balance is modulated by substrate

mechanics. Thus, in addition to substrate stiffness, physicochemical properties, which are

also critical for cell adhesion, play a role in LO self-assembly.

Introduction

The growing evidence that three-dimensional (3D) microenvironments contribute critically to

tissue function has led to the rapid development of cellular organoids. That cells aggregate

spontaneously in vitro has been known for decades, however only recently have scientists

begun to manipulate stem cells and different parenchymal cell types in different conditions to

generate mini-functional organs. We now know that in the right conditions (cell number, cell

types, substrate, agitation) and with the right timing (addition of differentiating media), stem

cells proliferate and self-organize to form tissue proxies known as organoids [1–3]. Since they

recapitulate the in vivo micro-environment to a large degree, self-assembled tissue organoids
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can be used to study development, toxicity and diseases or can be applied to tissue engineering

and drug development. However, although the key players in organoid formation have been

identified, it is still unclear what triggers cellular self-assembly and what the optimal environ-

ment is for culturing and maintaining these mini-organs.

Given the growing incidence of chronic liver disease as well as the organ’s importance in

drug metabolism, liver organoids (LOs) are of particular interest for their wide range of poten-

tial applications in both medicine and in the pharmaceutical industry. Takebe and co-workers

first described the generation of liver organoids, using a combination of human hepatocyte-

like cells derived from induced pluripotent stem cells, endothelial cells and mesenchymal stem

cells (MSCs) seeded onto substrates made of MatrigelTM diluted in an equal volume of endo-

thelial growth medium (i.e. x2 dilution) [2]. Increasing the Matrigel dilution negatively

affected LO formation, which was almost absent at 8x and 16x dilution, while changing the

substrate composition to only adhesive proteins (Laminin and Entactin, Laminin, Collagen I),

or biochemically inert 1.5% agarose, completely inhibited LO formation. In a more recent

study, the same group investigated the formation of LOs on polyacrylamide substrates with

different stiffness, coated with MatrigelTM diluted to 227x in HEPES [4]. Ramachandran et al.

used the same principles to assemble LOs derived from adult human hepatocytes, liver sinu-

soid endothelial cells (LSECs) and MSCs, on Matrigel with an equal volume of endothelial

growth medium (i.e. Matrigel x2) [5]. They observed that the organoids developed a necrotic

core after a few days in static culture, indicating nutrient depletion in the centre of the bud.

Generating LOs for in vitro applications, such as assessment of drug safety and efficacy or

disease models, requires that liver bud formation be reproducible and rapid and that the orga-

noids maintain their functional capacity for several days to allow chronic testing. Therefore, in

this study we addressed a number of questions pertinent to the optimization of LO formation

and their culture in vitro: i) Is LO formation a matter of substrate properties, adjuncts such as

growth factors, or both of them? ii) Is stiffness or adhesiveness the trigger for LO assembly? iii)

What are the optimal conditions for LO culture to ensure adequate oxygen supply through to

the core?

To identify the key players in LO formation, providing insights into the balance between

substrate adhesion and cell cohesion, we first focused on substrate properties and tested LO for-

mation on 8 different substrates keeping the culture parameters (e.g. culture media, cell types

and numbers, etc.) constant among experiments. Specifically, we studied i) non-adhesive aga-

rose substrates, ii) highly adhesive substrates derived from decellularised liver and iii) Matrigel.

In some cases, to isolate effects due to adjunct growth factors, the materials were also investi-

gated with and without the addition of endothelial cell growth medium (LSEC medium). Cells

seeded onto Matrigel-LSEC medium substrates as described in Ramachandran et al. [5] were

used as positive control for LO formation. We then set up an experimental protocol to measure

LO oxygen consumption, correlating our results with those of LO glucose uptake. The results

were used to predict the oxygen concentration gradient in the organoids and thus propose

appropriate culture conditions to ensure their long-term viability in vitro. Finally, the adhesion-

cohesion balance on different substrates was evaluated by quantifying the expression of integ-

rin-β1 and connexin-32.

Materials and methods

Cell source

Human upcyte1 hepatocytes, upcyte1 LSECs and upcyte1 MSCs, upcyte1 Hepatocyte

Growth Medium and upcyte1 High Performance Medium, upcyte1 LSEC Medium were

obtained from Medicyte GmbH (Heidelberg, Germany). Foetal bovine serum was obtained
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from PAN GmbH (Aidenbach, Germany). The upcyte process was performed according to Bur-

kard et al. [6]. Cells were cultured in a humidified incubator (37˚C, 5% CO2, 95% humidity)

and passaged at 70–80% confluence. Living cells were counted using Trypan Blue exclusion.

Cell culture substrates

MatrigelTM hydrogels. BD Matrigel™ Basement Membrane Matrix was obtained from

Corning. The gel was thawed overnight at 4˚C, then diluted 1:1 with upcyte1 LSEC Growth

Medium, obtaining the Matrigel-LSEC precursor solution for positive control experiments, as

described in Ramachandran et al. [5].

Since the upcyte1 LSEC Growth Medium used for preparing Matrigel-LSEC substrates

contains adjuncts including foetal bovine serum (FBS) and growth factors (GFs) which may

affect LO formation, MatrigelTM diluted 1:1 with PBS (named Matrigel-PBS) was also investi-

gated as a substrate for LO formation to help in identifying the key player(s) triggering this

spontaneous process.

For the generation of one liver organoid in a 24-well format, 380 μL of Matrigel-LSEC or

Matrigel-PBS solution (~200 μL/cm2) were added to the plates/chambers and incubated at 37˚C

for 30 to 45 minutes to allow for polymerization. The culture plates and pipette tips were pre-

cooled at -20˚C before use to prevent MatrigelTM gelation during preparation. The mechanical

properties of Matrigel-PBS were assumed to be equal to those of Matrigel-LSEC. The compres-

sive modulus of x2 diluted Matrigel substrates was estimated from literature as ~ 300 Pa [4–7].

Agarose gels. Agarose gels were prepared at different final concentrations (i.e. 0.01, 0.05,

0.1, 0.25, 0.5 and 1.5% w/v) in order to find the best one matching the stiffness of Matrigel

x2-based substrates. This strategy allows decoupling the role of mechanical properties from

other Matrigel-related signals in directing LO formation [7]. Agarose gels were prepared dis-

solving agarose powder (A9539, Sigma-Aldrich) in boiling deionised water (1/2 of final solu-

tion volume). The solution was then cooled to 40˚C and LSEC medium added to reach the

final volume. Then, 380 μL/well of the agarose-LSEC solution was cast in 24 well plates and

cooled at 4˚C for 1h to allow for gelation.

Liver-ECM gels. Substrates for liver organoid formation were also obtained from decellu-

larised porcine liver extracellular matrix (dECM). Briefly, cylindrical liver samples were obtained

from 1 year old healthy pigs as a slaughter by-product and decellularised using a 3 day long

immersion and agitation procedure based on non-ionic detergents, which was shown to preserve

key adhesive ECM proteins [8]. The liver dECMs obtained were lyophilised and ground into

powder, then enzymatically digested using a 4 mg/mL pepsin solution (Pepsin from porcine gas-

tric mucosa, P7012, Sigma-Aldrich) in 0.1 M HCl under moderate stirring for 48 h at room tem-

perature, obtaining a 40 mg/mL liver ECM digest as reported by Lee et al. [9]. The digest was

neutralised at pH 7.4 adding 0.5 M NaOH dropwise, then diluted with deionised water obtaining

a 20 mg/mL ECM pre-gel solution, which was biochemically characterised in terms of total

amino content (TAC) and total collagen content (TCC). The ECM pre-gel solution was ali-

quoted and stored at -20˚C until use. As for Matrigel, the ECM pre-gel solution was thawed

overnight at 4˚C, then 380 μL of solution were added to 24 well plates and incubated at 37˚C for

30 to 45 minutes to allow for polymerization. Diluted 10 mg/mL ECM-LSEC hydrogels were

also investigated as substrate for LO formation by adding an equal volume of upcyte1 LSEC

Growth Medium to the 20 mg/mL ECM pre-gel solution.

Liver ECM pre-gel solution biochemical characterisation

The Total Collagen Content (TCC) was determined using Sirius Red. A TCC calibration curve

was made using standard samples of collagen type I from rat tail (C3867, Sigma-Aldrich) in
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0.02 N CH3COOH. The Total Amino Content (TAC) was determined spectrophotometrically

using the Ninhydrin assay. The TAC calibration curve was established using standard samples

of cysteamine (Cysteamine� 98.0% (RT), 30070, Sigma-Aldrich) prepared in PBS 1X and

buffered to pH 7.4 (i.e. the same as the ECM pre-gel solution) to avoid any pH related bias. For

both assays, a pepsin solution with no liver dECM powder was prepared (as described in ‘Liver

ECM gels’) and used as a blank for absorbance readings of liver ECM pre-gel solution samples.

Mechanical characterisation of agarose and liver ECM gels

Mechanical tests were performed on cylindrical samples of both agarose and ECM gels pre-

pared in a custom designed mold with 13 mm diameter– 8 mm height wells. Unconfined com-

pressive tests were performed at room temperature with a Zwick/Roell ProLine Z005 uniaxial

testing device (Zwick/Roell, Ulm, Germany) equipped with a 10 N load cell (Zwick/Roell

Xforce HP 10 N) at a strain rate of 0.01 s-1. Prior to testing, samples were equilibrium swollen

in PBS 1X and carefully measured in thickness and diameter with a calliper (0.05 mm resolu-

tion), averaging readings from at least three different points. Force and displacement data

were acquired starting with the upper plate of the testing device (connected to the load cell)

close to but not in contact with the sample, to guarantee a zero pre-stress initial condition and

a constant approach velocity [7,10–13]. Samples were partially immersed in PBS 1X while

being tested to preserve their hydration during experiments [7,10–12,14]. Experimental force

and displacement data were respectively normalised to sample cross-sectional area and initial

length, obtaining engineering stress and strain. Compressive moduli were derived as the slope

of the linear portion of the stress-strain plot [15,16].

Liver organoid generation

Trypsinized cells were re-suspended in liver organoid growth medium (upcyte1 Hepatocyte

Growth Medium and upcyte1 LSEC Growth Medium in 1:1 ratio). 1.0 × 106 upcyte1 hepa-

tocytes, 1.0 × 106 upcyte1 LSECs and 0.2 × 106 upcyte1 MSCs were mixed in 1 mL of liver

organoid growth medium, added to the hydrogel-coated plates and incubated (37˚C, 5% CO2,

95% humidity) for the formation of liver organoids. Cells were cultured under static condi-

tions for up to 72 h, changing the medium at 24, 36, 48 and 60 hours. Culture medium samples

from LO-forming substrates collected at different time points after LO formation (i.e. at 24,

36, 48, 60 and 72 h after cell seeding) were stored at -20˚C and then biochemically character-

ised in terms of albumin, urea and glucose content to evaluate LO metabolic activity.

Biochemical analysis of LO culture medium: Albumin, urea and glucose

Albumin production in 10 μL samples of LO media was measured using an enzyme linked

immunosorbent assay (Human Albumin ELISA Quantitation Set, Bethyl laboratories Inc,

Montgomery, TX) as per manufacturer’s instructions. Urea secretion was measured using the

urease based colorimetric method described in Zawada et al. [17]. Glucose concentration in

10 μL samples was determined by the Yellow Springs Glucose 2300 STAT as per manufactur-

er’s instructions. Complete liver organoid growth medium (i.e. upcyte1 Hepatocyte Growth

Medium and upcyte1 LSEC Growth Medium in 1:1 ratio) including all the adjuncts (e.g.

FBS), was used as a blank for all readings.

LO oxygen consumption

Oxygen is widely considered as the limiting nutrient for 3D cell cultures [18]. In order to

establish the optimal LO culture conditions ensuring long-term organoid viability and
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functionality, the bulk Oxygen Consumption Rate (OCR) of the LO (termed OCRLO) was char-

acterised at specific time-points (i.e. at 24, 48 and 72h after cell seeding).

A commercial needle oxygen sensor (Neofox Phase Measurement system, Ocean Optics

Inc, Ostfildern, Germany) was used for O2 measurements. A “two point" calibration was per-

formed to establish a linear relationship between the measured signal and the oxygen concen-

tration. Cell culture medium at 37˚C in equilibrium with atmospheric oxygen was used as

20.9% O2 reference for sensor calibration, while culture medium containing freshly pre-

pared 1% w/v sodium sulphate was used as a reference for 0% oxygen, as per the manufac-

turer’s instructions. In order to ensure that the LO oxygen consumption is the only cause of

oxygen concentration variations over time, the organoid was placed in a modified 1.5 mL

Eppendorf tube filled with 1 mL of fresh culture medium at 37˚C and, after placing the LO

inside, completely sealed to avoid any inward oxygen flux from external atmosphere. Then,

the oxygen probe was inserted through the tube at a distance of about 4 mm from the LO.

The tube was placed in a water bath at 37˚C on an orbital shaker set at 50 rpm, in order to

maintain a homogenous (i.e. space-independent) concentration of oxygen within the pro-

bed culture medium.

Oxygen concentration was recorded for up to 3h, storing data with a time interval of 5 sec-

onds. Measurements were performed in triplicate at each of the time point investigated. The

generic oxygen transport equation to fit experimental data is shown in Eq 1.

@cO2

@t
¼ Dr2cO2

� u � rcO2
þ RO2

ðEq: 1Þ

where
@cO2

@t denotes the first time derivative of oxygen concentration measured in the culture

medium, Dr2cO2
and u � rcO2

represent oxygen diffusive and convective transport, respec-

tively, and RO2
is the LO oxygen consumption. Thanks to the isolation and orbital shaking of

the LO-containing Eppendorf tube, no inward oxygen flux is present in the medium and spa-

tial oxygen gradients can be neglected, thus Eq 1 can be reduced to
@cO2

@t ¼ RO2
. Oxygen con-

sumption is generally modelled with Michaelis-Menten kinetics (i.e. RO2
¼

OCRLO �cO2

KmþcO2

, with Km�

7.39 μM for hepatocytes [18–21]), which ensures that at very low oxygen concentrations,

where cells barely survive, the oxygen consumption decreases with the available oxygen con-

centration (cO2
). To derive the OCRLO only data where cO2

� Km were considered (i.e. the first

15 minutes of acquisition), thus oxygen consumption kinetics was approximated as a zero-

order reaction (i.e. RO2
¼ OCRLO) and the OCRLO derived with a linear fit of experimental oxy-

gen concentration decrease measured over time. Data fitting and analysis were performed

using MATLAB (The MathWorks, Inc., Massachusetts USA).

Modelling LO oxygen transport and consumption

Steady-state multi-physics 3D models which couple oxygen mass transport and consumption

to fluid dynamics [18] were developed in COMSOL Multiphysics 3.5a (COMSOL AB, Stock-

holm, Sweden, 2009) in order to study oxygen concentration profiles inside a liver organoid

cultured in a 24-well plate (static culture). Furthermore, given the experimental results on long

term LO culture reported in Ramachadran et al. [5], a dynamic system based on the LiveBox1

bioreactor (IVTech srl, Italy), was also investigated. Michaelis-Menten oxygen consumption

was considered in the model, imposing Km = 7.39 μM [18–21] and using the OCRLO value

measured at 24 h, i.e. that immediately after LO formation, representing the worst case.

In particular, each configuration modelled was divided in two sub-domains: i) a fluid

domain, in which no oxygen consumption occurs and where the fluid dynamics as well as the

Liver organoids: Adhesion-cohesion balance and oxygen consumption
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oxygen diffusive and convective transport are solved, and ii) the liver organoid, modelled as an

ellipsoid (3 mm width, 1 mm height, typical experimental dimensions of the LOs), treated as a

solid region where only oxygen diffusion and consumption are solved.

Oxygen transport and consumption in both the static well and the LiveBox1 bioreactor

were assumed to be governed by the generic advection and diffusion equation in its non-con-

servative formulation (i.e., that for an incompressible fluid) [18]. The velocity field resulting

from fluid flow convection in the LiveBox1 was solved using the incompressible Navier-Stokes

equations for a Newtonian fluid. On the basis of our previous experiments, the inlet velocity in

the LiveBox1 was set to vin = 4.24�10−3 m/s (corresponding to 200 μL/min inflow) [5,22]. Fur-

thermore, since the LiveBox1 bioreactor is realized in PDMS, a gas permeable elastomer [23],

the inward oxygen flux through the PDMS bioreactor walls was considered in the model

according to the following expression [24]:

NO2 ;PDMS ¼ KO2
pO2
�

cO2

KH;O2

 !

ðEq: 2Þ

Here, pO2
is the ambient oxygen partial pressure (159 mmHg [25]), KH;O2

is Henry’s con-

stant for oxygen at 37˚C (1.32 × 10−3 mol�m−3�mmHg−1 [26]), cO2
is the oxygen concentration

in the bioreactor culture chamber at the liquid-PDMS interface, KO2
is the global mass transfer

coefficient, defined as KO2
¼ Pm=L, where Pm is the oxygen permeability in PDMS (3.786�10–

11 mol�m�m-2�s-1�mmHg [23]) and L is the PDMS thickness (6 mm in the LiveBox1). To incor-

porate the inward oxygen flux through the PDMS side walls, the flux boundary condition was

applied at the lateral walls of the bioreactor, imposing the oxygen flux of Eq 2. Table 1 summa-

rizes all the boundary conditions imposed in these models.

Adhesion/cohesion markers

Immuno-fluorescence and confocal acquisitions. Adhesion dependent cells, such as

hepatocytes express multiple adhesion molecules, including integrins. Of these, Integrin-β1 is

crucial for cell attachment to the ECM and for hepatocyte survival and function following

trauma [27,28]. Connexin-32 is the major gap junction protein mediating cell-to-cell commu-

nication between hepatocytes and underlies a number of liver-specific functions such as glyco-

genolysis and albumin secretion [29].

In order to investigate whether cell-cell adhesion and cell-substrate cohesion balance is

altered between LO-forming and non LO-forming substrates, the expression of adhesive (i.e.

Table 1. Boundary conditions used for the oxygen convection and diffusion and for the Navier-

Stokes models.

Model Surface Boundary condition

Oxygen convection and

diffusion

System side walls Inward oxygen flux through PDMS

(NO2 ;PDMS
)

Interface between the LO and the

fluid sub-domain

Continuity

Fluid domain inlet Constant oxygen concentration (cO2
=

0.21 mol/m3)

Fluid domain outlet Convective flux (n � (−Drc) = 0)

Navier-Stokes Solid-liquid interfaces No slip (u = 0)

Fluid domain inlet Normal inflow velocity (vin)

Fluid domain outlet Pressure, no viscous stress (p0 = 0)

doi:10.1371/journal.pone.0173206.t001
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Integrin-β1) and cohesive (i.e. Connexin-32) markers was investigated via immunochemistry.

All the analyses were performed after 72h of culture. Briefly, LOs were collected and embedded

in optimum cutting temperature (OCT) compound for subsequent cryo-sectioning. Slices of

10 μm thickness were obtained with a Leitz 1702 cryostat (Leica GmbH, Bensheim, Germany)

and collected on SuperfrostTM glass slides (Thermo Scientific). Cells which did not form self-

assembled organoids were stained directly on the substrates.

Immunofluorescence was performed as per manufacturer’s instructions using Anti-Integrin

beta 1/CD29 rabbit monoclonal antibody (NB110-57123, Novusbio) and Anti-Connexin 32

mouse monoclonal antibody (13–8200, Invitrogen) primary antibodies and Goat Anti-Rabbit

IgG H&L (Alexa Fluor 488, ab150077, Abcam) and Goat Anti-Mouse IgG H&L (Alexa Fluor 647,

ab150119, Abcam) as respective secondary antibodies. The samples were imaged using a confocal

microscope (Nikon A1, Italy). In particular, images were acquired using a 10x objective with a

pixel-to-micron ratio of 0.14 μm on a 512x512 matrix. Acquisitions within the green (for Integ-

rin-β1) and red (for Connexin-32) channels were performed using the same confocal settings.

Quantitative image analysis. To quantify cell-cell adhesion and cell-substrate cohesion

between the different substrates investigated, the Mean Pixel Intensity (MPI) of the objects of

interest (i.e. Integrin-β1 and Connexin-32 positive structures respectively on the green and the

red channel of each scan) was evaluated using the method detailed in Gonzalez et al. [30].

Briefly, for each channel investigated a global threshold with Otsu’s method [31] was per-

formed to identify the objects. Then, the MPI of the detected objects was calculated in each

channel (ch) using Eq 3:

MPIch ¼

Pi¼M
i¼1

IM;ch

M
ðEq: 3Þ

where M is the number of the object pixels and IM,ch represents the pixel intensity in that

channel.

Statistical analyses

All tests were carried out at least in triplicate. Results are reported as the mean ± standard devi-

ation, unless otherwise noted. Statistical differences were assessed using ANOVA followed by

Tukey’s honestly significant difference test (Tukey’s HSD test). The statistical analysis was

implemented in OriginPro 9.0 (OriginLab Corporation, Northampton, Massachusetts, USA),

setting significance at p< 0.05.

Results

Biochemical characterisation of liver ECM pre-gel solution

The TCC of ECM pre-gel solution was found to be 19.7 ± 0.2 mg/mL, suggesting that almost

all proteins of liver dECM digest (i.e. 20 mg/mL by preparation) are collagenous. The TAC

was 213 ± 14 mM. The free amino groups of the liver ECM pre-gel solution allow the use of

covalent crosslinking approaches (e.g. chemical, enzymatic) in addition to the physical (i.e.

thermal) gelation employed in this work, thus expanding the possible range of applications for

this liver-derived material and increasing the tunability of the properties of the hydrogel

obtained thereof.

Mechanical characterisation of agarose and liver ECM gels

The compressive moduli obtained for agarose gels at different concentrations are reported in

Fig 1A, showing a non-linear increase of modulus with agarose concentration, as expected
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[32]. Since no gel formation was obtained at agarose concentrations below 0.1% w/v, this con-

centration represented the best compromise to mimic Matrigel-LSEC stiffness and hence was

chosen as an inert substrate to decouple the effect of mechanical properties from other Matri-

gel-related signals in triggering liver organoid formation.

The compressive moduli of ECM gels were found to be in between those of 0.1% agarose

and Matrigel-LSEC substrates (Fig 1B), with a decrease in compressive modulus with decreas-

ing ECM concentration, as expected [9].

Liver organoid formation

The matrices used to decouple the effects of substrate stiffness, adjuncts and adhesiveness in

kick-starting organoid formation were:

1. Adjunct enriched Matrigel-LSEC (300 Pa) as a positive control for a soft substrate;

2. Adjunct-free Matrigel -PBS (300 Pa) to determine the effects of adjuncts;

3. 1.5% agarose -LSEC (87 kPa) to test for organoid formation on a stiff inert substrate with

adjuncts;

4. 1.5% agarose gel (87 KPa) to test for organoid formation on a stiff inert substrate without

adjuncts;

5. 0.1% agarose-LSEC (800 Pa) to test for organoid formation on a soft inert substrate with

adjuncts;

6. 0.1% agarose gel (800 Pa) to test for organoid formation on a soft inert substrate without

adjuncts;

7. 20 mg/mL ECM gel (600 Pa) to test for organoid formation on soft adhesive substrate;

8. 10 mg/mL ECM-PBS gel (400 Pa) to test for organoid formation on a soft adhesive substrate

with adjuncts.

Note that the closest Matrigel x2 stiffness matched agarose gel (0.1% w/v) and 1.5% w/v aga-

rose-LSEC gels were investigated to compare results with those obtained by Takebe et al. who

Fig 1. Agarose and liver ECM gels mechanical properties. A) Compressive moduli of agarose gels prepared at

different weight/volume (w/v) concentrations. Agarose gels were not formed below 0.1% w/v. The dashed line represents

the stiffness of Matrigel-x2 substrates (estimated from the literature). B) Mechanical properties of 20 mg/mL ECM gel and

10 mg/mL ECM-LSEC gel. The two dashed lines represent the stiffness of 0.1% agarose and Matrigel x2 substrates.

doi:10.1371/journal.pone.0173206.g001
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observed LO formation on x2 diluted Matrigel with endothelial cell growth medium but no

LO formation on 1.5% w/v agarose gels [2].

The outcome of liver organoid formation onto the different substrates at 24 h is shown in

Fig 2. When plated on Matrigel-LSEC coated wells, as expected, the three different upcyte1

human cell types (hepatocytes, LSECs and MSCs) self-assembled into a compact organoid

structure after 24 h, while a poorly stable and partially disrupted LO was formed on Matrigel-

PBS. Good LO formation was observed on agarose-LSEC gels both at 0.1% and 1.5% w/v con-

centration, while no LO formation was observed in the absence of LSEC adjuncts, in agree-

ment with results previously reported by Takebe et al. [2]. As several non-adherent cells were

found in the absence of LSEC medium, no further analyses were performed on these agarose

substrates. Moreover, neither 20 mg/mL ECM nor 10 mg/mL ECM-LSEC gels were able to

support LO assembly. Nuclear staining with DAPI indicated that cells tend to adhere on the

ECM gel surfaces rather than forming a LO, likely due to their highly adhesive nature (Fig 3).

No differences in cell spreading were observed between cells seeded on 20 mg/mL ECM gels

and 10 mg/mL ECM-LSEC gels. Again, these data are in agreement with Takebe’s original

report, in which substrates with adjuncts consisting of adhesion ligands (entactin, laminin, col-

lagen), did not support cellular self-assembly [2].

Biochemical analysis of LO culture medium

Metabolic analyses were carried out only for substrates where good LO formation occurred (i.e.

Matrigel-LSEC, 0.1% and 1.5% agarose-LSEC). Albumin and urea measured during the static

Fig 2. Outcome of liver organoid formation on different substrates at 24 h.

doi:10.1371/journal.pone.0173206.g002
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culture are shown in Fig 4A and 4B, respectively. Liver organoids on 0.1% and 1.5% w/v agarose-

LSEC gels exhibit a similar trend of albumin and urea production during culture, with no signifi-

cant differences at the same time point (2-way ANOVA, p< 0.05). The only exception is albumin

production at 48 h, which is higher on 1.5% agarose-LSEC gels with respect to 0.1% gels. Urea and

albumin production of LO on agarose-LSEC gels is generally higher than in LO on Matrigel-LSEC

(except for albumin production at 72 h which is equal for all the three substrates investigated).

Fig 4C shows glucose concentrations over time measured during the 72 h static culture. Glu-

cose concentrations measured for LO cultured on 0.1% and 1.5% agarose-LSEC gels exhibit a

similar trend, with no significant differences at the same time points. Negative concentrations

indicate that liver organoids are consuming glucose from the cell culture medium, while posi-

tive values denote glucose production by the liver organoids. In particular, LO cultured on aga-

rose-LSEC gels consumed glucose from cell culture medium until the end of the experiments

(i.e. up to 72 h), while those cultured on Matrigel-LSEC consumed glucose until day 2, then

started to produce glucose from 60 h onwards. We hypothesise that glucose levels increase on

the Matrigel-LSEC compared to the Agarose-LSEC substrates because Matrigel contains growth

factors, including EGF (Epidermal Growth Factor) ranging from 0,5 to 1.3 ng/ml. (Suppliers

datasheet). As described in the literature [33], EGF can induce the inhibition of the glucose

transporter GLUT2. Inhibition of this transporter could result in glycogen degradation and glu-

coneogenesis [34]. Moreover, cell-matrix interactions could also affect hepatic glucose metabo-

lism, especially in 3D liver organoid systems. In fact, Lu et al. [35] and Wen and coworkers [36]

both describe an increase in glucose synthesis in 3D organoid or collagen matrices.

LO oxygen consumption

A typical time-dependent profile of the oxygen concentration is shown in Fig 5A. Only data

acquired during the first 15 minutes were considered in the linear fit to derive the OCRLO

Fig 3. DAPI-stained cells on ECM gel at 24h. A representative image of cells seeded on 20 mg/mL ECM gel

is shown.

doi:10.1371/journal.pone.0173206.g003

Liver organoids: Adhesion-cohesion balance and oxygen consumption

PLOS ONE | DOI:10.1371/journal.pone.0173206 March 7, 2017 10 / 19



Fig 4. Biochemical analysis of LO culture medium. Albumin (A), urea (B) and glucose (C) production at different time points for liver

organoids on different substrates. Significant differences at the same time points (p<0.05) are marked with an asterisk.

doi:10.1371/journal.pone.0173206.g004

Fig 5. Measurement and analysis of LO oxygen consumption. A) Time-dependent oxygen profile at 24 h after cell seeding. B)

Oxygen concentration versus time data measured in the first 15 minutes used to derive the OCRLO via a linear fit (dashed line).

doi:10.1371/journal.pone.0173206.g005
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(Fig 5B). The OCRLO at 24 h after cell seeding, i.e. immediately after the LO formation, was

equal to 1.39×10−5 ± 5.8×10−7 mol/m3/s, almost 3 times higher with respect to the consump-

tion rates measured at 48 h (4.05×10−6 ± 4.9×10−7 mol/m3/s) and 72 h (4.84×10−6 ± 2.62×10−6

mol/m3/s). This suggests that the organoids suffer from hypoxia during culture under static

conditions, as described in [5].

LO oxygen transport and consumption model

Steady-state multi-physics 3D models which couple oxygen mass transport and consumption

to fluid dynamics [18] were used to predict oxygen concentration profiles inside a liver orga-

noid during culture in a static well and in a bioreactor. Surface plots showing steady-state oxy-

gen concentrations for the LO cultured in the two configurations are shown in Fig 6A, while

oxygen concentration profiles along a vertical line (z-axis) passing through the centre of the

LOs are shown in Fig 6B. Under static conditions the oxygen concentration is below the

threshold for hepatic function [37] (i.e. 0.02 mM) over a large part of the LO volume, while in

the central part of the LO it is below the critical vital concentration (i.e. 0.00264 mM), and

could lead to the development of a necrotic core [5]. On the other hand, in the LiveBox1 the

oxygen concentration is above the two critical values throughout the LO volume, thanks to

fluid flow which enhances the turnover and transport of nutrients. Indeed, the oxygen concen-

trations remain above the critical values for hepatocytes, confirming that the use of a bioreac-

tor greatly improves LO viability and may allow chronic in vitro studies for toxicity or other

applications which require long term culture.

Adhesion/cohesion markers

Liver organoids generated on Matrigel-LSEC substrates showed a level of high expression of

both adhesive (Integrin-ß1, green) and cohesive (Connexin-32, red) markers (Fig 7). Lower

levels of these two markers were observed for LO obtained on Matrigel-PBS gels, which may

explain the poor LO formation. Conversely, cells on non LO-forming substrates, i.e. ECM-L-

SEC and ECM gels, show a very low expression of adhesive and cohesive markers, with Con-

nexin-32 being almost absent on adjunct-free ECM gels. Notably, cell nuclei were smaller and

more rounded in the Matrigel-LSEC organoid, a typical feature of compact 3D tissue morphol-

ogy [38,39].

Quantitative image analyses to determine Mean Pixel Intensities (MPIs) of the two markers

confirm the qualitative trends observed. In particular, integrin-ß1 expression decreases signifi-

cantly from Matrigel-LSEC to both Matrigel-PBS and ECM-LSEC (which showed similar

green MPIs), then further decreases in EMC gel (Fig 8). On the other hand, a significant

decrease of connexin-32 was found going from Matrigel-LSEC to Matrigel-PBS, ECM-LSEC

and ECM gel.

Discussion

Substrate mechanical properties are known to play a critical role in guiding cell behaviour

[7,30], but only one study has investigated how stiffness modulates cell self-assembly into orga-

noids [4]. However, stiffness is only one of the many properties a substrate possesses, and it is

likely the balance between stiffness and biochemical factors (e.g. adhesiveness) that promotes

the formation of compact cell aggregates. The principal aim of this study was thus to explore

LO self-assembly on substrates with different biochemical properties but with similar stiffness.

In 2001 Steinberg and co-workers established that the formation of tissue self-assemblies is

essentially a tug-of-war between substrate adhesiveness and cellular cohesion [40]. Our results

also suggest that LO formation process is the result of a fine balance between cell-substrate

Liver organoids: Adhesion-cohesion balance and oxygen consumption
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Fig 6. Modelling LO oxygen transport and consumption. A) Results from the computational model, using the measured OCRLO at 24 h. LO in the

static well (left) and in the LiveBox1 (right) The computed velocity field in the bioreactor is also shown. B) Oxygen concentration along the vertical axis

passing through the centre of the LO (z-axis) cultured either in the LiveBox1 bioreactor (solid line) or in the static well (dashed line). The dotted horizontal

line indicates the threshold for hepatocyte function (i.e. 0.02 mM).

doi:10.1371/journal.pone.0173206.g006
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adhesion and cell-cell cohesion. As the ECM gels derive from a decellularised matrix prepara-

tion rich with basement membrane proteins (collagen IV, fibronectin and laminin) [8], cell-

substrate adhesion is likely to be dominant over cell-cell cohesion on these gels, so cell adhe-

sion is promoted while LO formation is inhibited. This hypothesis was confirmed through

the immunofluorescent analyses with specific adhesive and cohesive markers (i.e. Integrin-ß1

and Connexin-32, respectively). In particular, the LO formed on Matrigel-LSEC substrates

showed high levels of both Integrin-ß1 and Connexin-32 expression. These two proteins were

expressed at lower levels by the poorly stable and partially disrupted LO formed on Matrigel-

PBS. Although cells on ECM-LSEC substrates expressed similar levels of Integrin-ß1 as those

in the poorly formed LOs obtained on Matrigel-PBS, their expression of Connexin-32 was

found to be significantly lower. These results suggest that cell-substrate adhesion (correlated

with integrin expression) is likely to be dominant over cell-cell cohesion (related to connexion

expression), and may explain the absence of LO formation on ECM-LSEC substrates and con-

firm the tendency of cells to adhere on the hydrogel surface. The expression of both adhesive

and cohesive markers investigated was found to be even lower for cells on ECM gels, with par-

ticular reference to connexin-32 which was almost halved with respect to that on ECM-LSEC

substrates. As discussed above for the latter substrates, this imbalance between the two

Fig 7. Integrin-ß1 (green, 1st column) and Connexin-32 (red, 2nd column) expression on Matrigel-LSEC, Matrigel-PBS,

ECM-LSEC and ECM gel substrates. Blue: cell nuclei (DAPI). Third column: merged image channels. Scale bar: 10 μm.

doi:10.1371/journal.pone.0173206.g007

Fig 8. Mean Pixel Intensity (MPI) for green (Integrin-β1) and red (Connexin-32) channels. The MPI was

calculated from n = 3 independent experiments per substrate investigated, imaging and analysing n = 3

different DAPI-positive areas in each sample (randomly selected). Different letters indicate significant

differences between groups (one-way ANOVA, p < 0.05): lowercase letters are referred to ANOVA results of

green MPI, while capital letters denote ANOVA results of red MPI. Note that the green and red MPI levels

cannot be compared due to differences in the laser power used and in the fluorophore excitation/emission

efficiencies.

doi:10.1371/journal.pone.0173206.g008
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markers, in favour of integrin-β1, is coherent with our hypothesis that cells tend to adhere to

the substrate surface rather than forming a LO.

Since organoids are of use in a wide number of applications, it is of interest to summarise

the substrate dependent factors which contribute to LO formation, using both our data and

those reported recently by Takebe et al (Table 2). In the light of the above considerations, an

analysis of the table shows that LO formation depends on the biochemical nature of the sub-

strate as well as its stiffness. The two factors interact synergistically to promote (or inhibit)

spontaneous LO aggregation. For instance, the ligands provided by the highly diluted (x227)

Matrigel coating are sufficient to allow LO formation on relatively stiff (16000 Pa) polyacryl-

amide substrates, but not on softer (<< 10000 Pa) or stiffer (>> 20000) ones. Even very soft

(300� 1000 Pa) and stiff (>> 20000 Pa) substrates can be used for LO generation, provided

the substrate is enriched with some growth factors present in endothelial cell culture media

(either the upcyte1 LSEC culture medium used in this work or the EGM used in Takebe et al.

[2]). However, albeit ECM derived gels are in the same stiffness range as the other very soft

substrates investigated, they are likely too rich in adhesion-specific ligands to sustain LO for-

mation. Therefore, as evinced by Table 2, cellular self-assembly is the result of the interaction

between the stiffness of a substrate and its biochemical nature. Further studies are necessary to

identify precisely which biochemical factors among those contained in Matrigel, commercial

growth media and tissue-derived ECM gel play determinant roles in guiding organoid self-

aggregation with respect to a given stiffness. In parallel, future investigations on the identifica-

tion of signal pathways initiated by ECM-specific moieties and/or growth factors related to the

induction or repression of integrin and connexin expression should lead to a better under-

standing of the underlying mechanisms of organoid formation. Nonetheless, our consider-

ations suggest that a window rather than a unique set of substrate properties define the

conditions for LO formation.

In conclusion, we show that liver organoid formation is modulated by the nature of the sub-

strate–specifically by the interplay between stiffness and biochemical ligands–and that the high

initial oxygen consumption rate of LOs may lead to hypoxia in the core unless a continuous

flux of nutrients is supplied through a fluidic system. The results can be used to design optimal

conditions for the generation and culture of LOs in vitro.
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