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Bacillus amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid
from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient
tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These
features confer great potential for the synthesis of glutamate derivatives. However,
it is challenging to efficiently convert high levels of glutamate to a particular glutamate
derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by
B. amyloliquefaciens using inulin. First, the polyglutamate synthase gene pgsBCA of B.
amyloliquefaciens NB was knocked out to hinder polyglutamate synthesis, resulting in
the accumulation of intracellular glutamate and ATP. Second, a modular engineering
strategy was applied to coordinate the degradation pathway, precursor competition
pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular
precursor glutamate for L-ornithine synthesis. In addition, the high-efficiency
L-ornithine transporter was further screened and overexpressed to reduce the
feedback inhibition of L-ornithine on the synthesis pathway. Combining these
strategies with further fermentation optimizations, we achieved a final L-ornithine
titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for
strengthening microbial synthesis of high value-added products derived from
glutamate.
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metabolic engineering

INTRODUCTION

With the development of synthetic biology, chemical and material products are increasingly being
obtained by microbial synthesis (McCarty and Ledesma-Amaro, 2019; Luo et al., 2021). These
products are mainly obtained throughmicrobial fermentation using foodmaterials (glucose, sucrose,
and starch) as substrates (Qiu et al., 2017; Jiang et al., 2019). The main reason is that food materials
are easy to use, and their metabolic pathways have also been extensively studied. Nonetheless, the
demand for various products continues to increase, and microbial fermentation using food materials
has some shortcomings, i.e., competition with humans for grain resources (Chen et al., 2020). In
recent years, research on the use of non-grain food materials for fermentation has been growing
steadily. The use of non-grain food materials can make up for the shortage of raw food materials.
Nevertheless, non-grain food materials are difficult to use, warranting the development of methods
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for efficient processing of these materials. To improve efficiency
in the utilization of non-grain rawmaterials, we need to overcome
limitations such as insufficient degrading enzymes and stress
factor inhibition. The development of metabolic engineering and
synthetic biology provides a means to solve these problems.

L-Ornithine is an essential non-protein amino acid widely used
in the food, pharmaceutical, and chemical industries (Sheng et al.,
2021). It is an essential part of the urea cycle and is widely used to
treat liver diseases and burns. In recent years, the development of
L-ornithine products (sweeteners, hepatoprotective drugs, and
slimming products) has been gradually increasing, resulting in a
rapidly growing demand for L-ornithine (Zajac et al., 2010). At
present, L-ornithine obtained by chemical synthesis and
enzymatic catalysis cannot meet the increasing demand. In
addition, chemical synthesis has some drawbacks: chemically
synthesized L-ornithine is a mixture of D-ornithine and
L-ornithine (only L-ornithine has biological activity) and
cannot be directly used in the pharmaceutical and food
industries (Shu et al., 2018a). Fortunately, the rapid
development of synthetic biology provides new ways for
microorganisms to synthesize L-ornithine. Research on
L-ornithine production by biological fermentation thus far has
mainly focused on Corynebacterium glutamicum and Escherichia
coli. Hwang et al. overexpressed the L-ornithine synthesis
pathway genes (argCJBD) in an engineered strain of C.
glutamicum (C.glu/ΔargF/ΔargR/Δprob), and the level of
L-ornithine fermentation increased by 30% to 16.49 g/L
(Hwang et al., 2008). Lee et al. overexpressed N-acetyl
synthase (ArgA214) in E. coli and knocked out speF and proB,
and the L-ornithine titer reached 13.2 g/L (Lee and Cho, 2006).
Current research on the biosynthesis of L-ornithine mainly uses
food materials for fermentation. With the increased demand for
L-ornithine in the pharmaceutical and food industries, the
production scale will inevitably need to expand. This will
require more food materials for fermentation. Moreover, an
insufficient supply of food materials for fermentation will
undoubtedly become a significant problem.

Jerusalem artichoke, a non-grain food crop, is considered a
potential energy source because of its high sugar content.
Jerusalem artichoke contains the storage polysaccharide,
inulin, which accounts for 85% of its dry weight (Li et al.,
2014). This polysaccharide can be used with simple
preprocessing. In recent years, Jerusalem artichoke has been
used as substrate to produce products such as ethanol (Zhang
et al., 2010; Lim et al., 2011), lactic acid (Ge et al., 2009), and 2,3-
butanediol (Sun et al., 2009). In previous studies, we isolated and
identified a bacterial strain from the root of Jerusalem artichoke,
named B. amyloliquefaciens NB (Qiu et al., 2019b). This strain is
deposited in the China Center for Type Culture Collection (China
Center for Type Culture Collection), and the deposit number is
CCTCC NO: M2016346. This strain can efficiently use the crude
extract of Jerusalem artichoke (non-grain food material).
Furthermore, B. amyloliquefaciens NB can efficiently
synthesize poly-γ-glutamic acid (γ-PGA) without exogenous
addition of glutamine (Sha et al., 2020a). Since γ-PGA is a
glutamate polymer, B. amyloliquefaciens NB might have a
highly efficient tricarboxylic acid cycle metabolic flux and

glutamate synthesis ability. These characteristics highlight the
potential for synthesizing glutamate derivatives from non-grain
raw materials in B. amyloliquefaciens through the rational design
of metabolic pathways.

In the present study, B. amyloliquefaciens NB was engineered
for de novo biosynthesis of L-ornithine from inulin. Upon
knocking out the γ-PGA synthase gene in B. amyloliquefaciens
NB, intracellular glutamate and ATP levels were enhanced by
7and 4.5-fold, respectively. The glutamate degradation pathway,
the precursor competition pathway, the L-ornithine synthesis
pathway, and the L-ornithine transport process were further
coordinated to prompt the high level of intracellular precursor
glutamate into L-ornithine synthesis. Building upon these results,
we successfully achieved a final titer of 31.3 g/L L-ornithine from
non-food raw materials (inulin) in an optimized bioreactor
system. Overall, this study aimed to provide a reference for
improving L-ornithine synthesis and a strategy for the use of
non-grain raw materials for microbial synthesis of value-added
products derived from glutamate.

MATERIALS AND METHODS

Microorganisms and Plasmids
The bacterial strains and main plasmids used in this study are
listed in Table 1. Escherichia coliDH5αwas used as a recipient for
plasmid construction.We used the dam− and dcm−-deficient host
E. coli GM2163 to prepare the unmethylated plasmids (Sha et al.,
2020a).

Media and Culture Conditions
For regular cloning and transformation experiments, E. coli and
B. amyloliquefaciens strains were grown at 37°C in Luria-Bertani
(LB) medium (10 g/L tryptone, 10 g/L yeast extract, and 5 g/L
NaCl) containing the appropriate antibiotic. The composition of
the initial fermentation medium was as follows: 80 g/L inulin,
40 g/L (NH4)2SO4, 20 g/L K2HPO4·3H2O, 2 g/L KH2PO4, 0.4 g/L
MgSO4, 0.06 g/L MnSO4·H2O. The initial fermentation inoculum
was 6%. For shake flask and batch fermentation, the cells were
precultured in a 250 ml shake flask with 40 ml of seed culture and
incubated at 37°C while shaking at 200 rpm for 12 h. For flask
cultures, 2.5 ml of the seed culture was transferred into 500 ml
flasks containing 50 ml of medium and cultured at 32°C and
200 rpm for 72 h. All fermentations in shake flasks were
performed without the addition of exogenous sodium
glutamate. During the fermentation process of L-ornithine,
samples were collected periodically to evaluate the synthesis of
L-ornithine and analyze bacterial growth by measuring optical
density at 600 nm (OD600).

To obtain the optimal conditions for B. amyloliquefaciens to
synthesize L-ornithine, we systematically optimized the
fermentation conditions and medium composition in shake
flasks. Some important factors (temperature, inoculum size, liquid
volume, initial pH, carbon source, nitrogen source and metal ions)
were selected to investigate their effects on L-ornithine synthesis.
Firstly, 28°C, 30°C, 32°C, 34°C, 37°C and 40°C were selected to study
the optimal temperature for L-ornithine fermentation. Secondly, we

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 9051102

Zhu et al. The Biosynthesis of L-Ornithine From Inulin

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


investigated the effect of the initial pH of the medium at 6.0, 7.0, 8.0,
and 9.0 on L-ornithine synthesis, respectively. Then, the effects of
inoculum size of 1%, 2%, 3%, 4%, 5%, and 6% on L-ornithine
synthesis were investigated. Finally, the effects of adding 40ml,
50 ml, 60 ml, 70 and 80ml of fermentation broth to 500-ml shake
flask on L-ornithine synthesis were investigated. In addition, the
effects of the carbon source, nitrogen source and inorganic salt of the
medium on L-ornithine synthesis were also investigated respectively.
The Box–Behnken experimental design and response surface

analysis were used to optimize the concentration of three key
components in the L-ornithine fermentation medium: inulin,
peptone, and MgSO4. The Statistica 7.0 software Experimental
Design module was used to perform a quadratic polynomial
regression fitting on the experimental data, and obtain the
quadratic empirical equation model of L-ornithine on inulin,
peptone, and MgSO4 (Y = 12.22 + 0.060A− 0.28B+ 0.17C +
0.087AB+ 0.027AC + 0.010BC − 1.64A2 − 1.29B2 − 1.35C2) (Y is
the predicted value of L-ornithine production; A, B, and C are the

TABLE 1 | Strains and plasmids used in this study.

Strains or plasmids Relevant properties Source

E. coli DH5α F−, φ80dlacZ△M1,△(lacZYA-argF) U169, deoR, recA1, endA1, hsdR17 (rk−, mk+), phoA, supE44, λ−thi-1, gyrA96,
relA1

E. coli GM2163 F−, ara-14 leuB6 thi-1 fhuA31 lacY1 tsx-78 galK2 galT22 supE44 hisG4 rpsL 136 (StrR) xyl-5 mtl-1 dam13::Tn9
(CamR) dcm-6 mcrB1 hsdR2 mcrA

Qiu et al. (2017)

B. amyloliquefaciens NB Glutamate-independent
B. amyloliquefaciens can produce high yield of polyglutamic acid

Qiu et al. (2017)

B. amyloliquefaciens
NB(ΔpgsBCA)

B. amyloliquefaciens NB derivate, deletion of pgsBCA Sha et al. (2020a)

B. amyloliquefaciens NB(ΔpgsA) B. amyloliquefaciens NB derivate, deletion of pgsA This study
B. amyloliquefaciens NB(ΔpgsB) B. amyloliquefaciens NB derivate, deletion of pgsB This study
B. amyloliquefaciens NB(ΔpgsC) B. amyloliquefaciens NB derivate, deletion of pgsC This study
B. amyloliquefaciens NBO1 NBΔpgsBCA derivate, deletion of argF This study
B. amyloliquefaciens NBO2 NBΔpgsBCA derivate, deletion of argI This study
B. amyloliquefaciens NBO3 NBO1 derivate, deletion of argI This study
B. amyloliquefaciens NBO4 NBO3 derivate, deletion of speF This study
B. amyloliquefaciens NBO5 NBO3 derivate, deletion of prob This study
B. amyloliquefaciens NBO6 NBO3 derivate, deletion of speF gene and prob gene This study
B. amyloliquefaciens NBO7 NBO6 derivate, carrying pHY-ArgA This study
B. amyloliquefaciens NBO8 NBO6 derivate, carrying pHY-ArgB This study
B. amyloliquefaciens NBO9 NBO6 derivate, carrying pHY-ArgC This study
B. amyloliquefaciens NBO10 NBO6 derivate, carrying pHY-ArgD This study
B. amyloliquefaciens NBO11 NBO6 derivate, carrying pHY-ArgE This study
B. amyloliquefaciens NBO12 NBO6 derivate, carrying pHY-ArgA-ArgE This study
B. amyloliquefaciens NBO13 NBO6 derivate, carrying pHY-ArgABCDE This study
B. amyloliquefaciens NBO14 NBO6 derivate, carrying pHY- Cg.lysE This study
B. amyloliquefaciens NBO15 NBO6 derivate, carrying pHY- E.coli.lysE This study
B. amyloliquefaciens NBO16 NBO6 derivate, carrying pHY- BS.lysE This study
B. amyloliquefaciens NBO17 NBO6 derivate, carrying pHY- BA.lysE This study
B. amyloliquefaciens NBO18 NBO12 derivate, overexpression of BA.lysE This study
Plasmids
pHT-01 Ampr, Cmr, E. coli−B. subtilis shuttle vector Qiu et al. (2020a)
pDR244 Ampr, Specr, cre/lox-mediated E. coli-Bacillus shuttle vector Qiu et al. (2020a)
pHY Ampr, Cmr, E. coli−B. subtilis shuttle vector, containing the constitutive strong promoter PHpaII, p15A ori Qiu et al. (2020a)
pHT-Cas9n pHT derivate consists of the promoter Pgrac, Cas9n and the terminator Tamy Qiu et al. (2020a)
pDR-pgssgRNA pDR derivate consists of the promoter PHpaⅡ, sgRNA, Tamy, the up and downstream fragment of pgsBCA gene This study
pDR-argIsgRNA pDR derivate consists of the promoter PHpaⅡ, sgRNA, Tamy, the up and downstream fragment of argI gene This study
pDR-argFsgRNA pDR derivate consists of the promoter PHpaⅡ, sgRNA, Tamy, the up and downstream fragment of argF gene This study
pDR-speFsgRNA pDR derivate consists of the promoter PHpaⅡ, sgRNA, Tamy, the up and downstream fragment of speF gene This study
pDR-probsgRNA pDR derivate consists of the promoter PHpaⅡ, sgRNA, Tamy, the up and downstream fragment of prob gene This study
pHY-ArgA pHY containing promoter PHpaⅡ, the gene ArgA and Tamy terminator This study
pHY-ArgB pHY containing promoter PHpaⅡ, the gene ArgB and Tamy terminator This study
pHY-ArgC pHY containing promoter PHpaⅡ, the gene ArgC and Tamy terminator This study
pHY-ArgD pHY containing promoter PHpaⅡ, the gene ArgD and Tamy terminator This study
pHY-ArgE pHY containing promoter PHpaⅡ, the gene ArgE and Tamy terminator This study
pHY-ArgA-ArgE pHY containing promoter PHpaⅡ, the gene ArgA-ArgE and Tamy terminator This study
pHY-ArgABCDE pHY containing promoter PHpaⅡ, the gene ArgA, ArgB, ArgC, ArgD, ArgE and Tamy terminator This study
pHY- Cg.lysE pHY containing promoter PHpaⅡ, the gene Cg.lysE and Tamy terminator This study
pHY- E.coli.lysE pHY containing promoter PHpaⅡ, the gene E.coli.lysE and Tamy terminator This study
pHY- BS.lysE pHY containing promoter PHpaⅡ, the gene BS.lysE and Tamy terminator This study
pHY- BA.lysE pHY containing promoter PHpaⅡ, the gene BA.lysE and Tamy terminator This study
pHY-ArgA-ArgE- BA.lysE pHY containing promoter PHpaⅡ, the gene ArgA-ArgE- BA.lysE and Tamy terminator This study
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coding values of inulin, peptone, and MgSO4, respectively)
(Supplementary Tables S1–S3).

For batch fermentation in a 7.5 L fermenter, single colonies of
engineered strains were picked and grown overnight at 32°C in LB
medium, then inoculated at 1% (V/V) into 250ml shake flasks
containing 20ml of seed medium for 12 h. Seed cultures were
inoculated at 5% inoculum into a 7.5 L fermenter (BioFlo 115,
New Brunswick Scientific, United States) with 4.5 L working
volume. The stirring rate was set to 400 rpm, and the airflow was
1 vvm. To further improve the accumulation of L-ornithine, a fed-
batch fermentation strategy was adopted. The feed solution with
20 g/L sodium glutamate were further fed into the fermenter at a
constant flow rate during the fermentation period from 24 to 48 h.

DNA Manipulation and Plasmid
Construction
The primers used in this study are listed in Supplementary Table
S4. The genome of B. amyloliquefaciens (NC_017190.1) was
extracted using a bacterial total DNA extraction kit (Code
DC103-01, Vazyme, Nanjing, China). DNA fragments of argA
(Gene ID: 947289), argB (Gene ID: 56457340), argC (Gene ID:
56457338), argD (ID: 12201583), and argE (Gene ID: 948456)
were obtained from this genome using primer pairs ArgA-F/R,
ArgB-F/R, ArgC-F/R, ArgD-F/R and ArgE-F/R, respectively. The
plasmid pHY (containing the constitutive strong promoter PHpaII,
p15A ori, CmR) was digested with restriction enzymes SalI/xhoI
and purified by column (Code DC301-01, Vazyme, Nanjing,
China). ArgA, ArgB, ArgC, ArgD, ArgE, ArgABCDE and ArgA-
ArgE were ligated with the linearized pHY vector using
ClonExpress II one-step cloning kit (Code C112-02-AB, Vazyme,
Nanjing, China) to obtain recombinant plasmids pHY-ArgA, pHY-
ArgB, pHY-ArgC, pHY-ArgD, pHY-ArgE, pHY-ArgABCDE and
pHY-ArgA-ArgE, respectively. The genome of B. amyloliquefaciens
LL3,C. glutamicum, E. coli MG1655 and B. subtilis 168was extracted
using a bacterial total DNA extraction kit (CodeDC103-01, Vazyme,
Nanjing, China). The genes encoding L-ornithine transporters BA.
lysE, Cg. lysE, E. coli.lysE and BS. lysE were amplified from genomes
of the different strains mentioned above with primer pairs BA. lysE-
F/R, Cg. lysE-F/R, E. coli.lysE-F/R and BS. lysE-F/R, respectively. The
recombinant plasmids pHY-BA. lysE, pHY-Cg. lysE, pHY-E.
coli.lysE and pHY-BS. lysE were obtained by using the above-
mentioned expression plasmid construction method. The
constructed recombinant plasmids were verified by PCR and
sanger sequencing.

The gene knockout method refers to previous research reports
(Qiu et al., 2020b). To knock out argF, upstream and downstream
fragments of argF (Gene ID: 56457344) were amplified from B.
amyloliquefaciens genome (NC_017190.1) with primer pairs
argFL-F/R and argFR-F/R, respectively. sgRNA of argF was
designed using online software (http://cistrome.org/SSC/) and
obtained by designing primers sgargF-F/R. The DNA fragments
amplified above were ligated by overlapping PCR to obtain
argFsgRNA-argFL-argFR. The fragment argFsgRNA-argFL-
argFR was then ligated with the linearized pDR-uppsgRNA
vector (linearized with restriction enzymes salI/xhoI) using
ClonExpress II one-step cloning kit (Code C112-02-AB,

Vazyme, Nanjing, China) to obtain recombinant plasmids
pDR-argFsgRNA. The argI (Gene ID: 12203901), speF (Gene
ID: 945297) and prob (Gene ID: 56457565) genes of B.
amyloliquefaciens were knocked out using the above method
to construct different engineered strains. The constructed
recombinant plasmids were verified by colony PCR and sanger
sequencing.

Transformation Method of B.
amyloliquefaciens
The transformation of wild-type B. amyloliquefaciens to B.
amyloliquefaciens NB was performed using a modified high-
osmolarity electroporation method (Sha et al., 2019). An
overnight culture of B. amyloliquefaciens was diluted 100-fold
in fresh medium (LB broth containing 0.5 M sorbitol) to prepare
electrocompetent cells. When the OD600 of the culture reached
0.5, the NB cells were harvested by centrifugation at 4°C and
8,000 rpm for 10 min. After four washes in ice-cold
electroporation medium (0.5 M sorbitol, 0.5 M mannitol, and
10% glycerol), the electrocompetent cells were suspended at a cell
density of 1 × 1010 colony-forming units/mL.

Analysis of Cell Growth, Glutamate Levels,
ATP Levels, and L-Ornithine Content
The optical density of a sample was measured to determine cell
growth. The OD600 of the diluted sample was measured using a
spectrophotometer. The glutamate level was measured using
Glutamate Content Assay Kit (Code MS 1906, Shanghai,
China) from Shanghai Suoqiao Biological Co., Ltd. The
detection principle of the kit is that the enzyme reagent can
specifically recognize glutamate substrate from a mixture and
catalyze it to produce a colored product, and the reaction product
has a maximum absorption peak at a wavelength of 570 nm. The
ATP content was determined using the ATP content kit
(phosphomolybdic acid colorimetry) (Code G0815W, Suzhou,
China) purchased from Suzhou Grace Biotechnology Co., Ltd.
The creatine kinase in the kit can catalyze the ATP reaction with
creatine to produce creatine phosphate, which is detected by the
phosphomolybdic acid colorimetric method. Therefore, the ATP
content can be calculated based on themaximum absorption peak
of the reaction product at 700 nm. The L-ornithine content was
detected through Chinard’s L-ornithine measurement method.
Specifically, 6 mol/L H3PO4-glacial acetic acid (1/3, v/v) was used
to prepare a 25 mg/ml ninhydrin solution as the coloring
solution. After the coloring solution reacted with L-ornithine
in a water bath at 100°C for 60 min, the absorption peak was
measured at 510 nm (Shu et al., 2018a).

RESULTS

Feasibility Analysis of L-Ornithine
Production by B. amyloliquefaciens NB
In an earlier study, we found that B. amyloliquefaciens NB can
efficiently use inulin to synthesize PGA and has a highly-efficient
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tricarboxylic acid cycle metabolic flux and glutamate synthesis
ability (Qiu et al., 2020a; Sha et al., 2020b). Therefore, we
speculate that this strain may be optimal for synthesizing
glutamate derivatives (L-ornithine). First, the polyglutamate
synthase pgsBCA of B. amyloliquefaciens NB was knocked out
to prevent the synthesis of γ-PGA from glutamate and release
ATP for the synthesis of γ-PGA. After pgsBCA was knocked out,
the colony morphology of B. amyloliquefaciensNB changed from
wet to rough and almost no γ-PGA was detected in the
fermentation broth of B. amyloliquefaciens NB (ΔpgsBCA), but
0.43 g/L of L-ornithine was obtained (Almost no L-ornithine was
present in the fermentation broth of the original strain)
(Supplementary Figures S1, S2). In addition, compared with
B. amyloliquefaciens NB, the intracellular glutamate and ATP
levels of B. amyloliquefaciensNB (ΔpgsBCA) increased by 7 times
and 4.5 times, respectively (Figure 1). By blocking the synthesis of
γ-PGA, the intracellular glutamate and ATP content of B.
amyloliquefaciens NB (ΔpgsBCA) were increased to 531 μg/g
and 3.2 μmol/g, respectively. In addition, the growth of B.
amyloliquefaciens NB was also improved, and its OD600

increased from 3.2 to 4.3. These results demonstrated that B.
amyloliquefaciens NB has certain advantages as an L-ornithine-
producing strain. However, glutamate represents a critical node
in many important metabolic pathways, and it is an essential
intermediate of many products. For example, glutamate is a
precursor of proline, L-ornithine, and arginine (Jiang et al.,
2021; Tran et al., 2021). Therefore, achieving efficient
glutamate conversion to L-ornithin in B. amyloliquefaciens is a
fundamental challenge for obtaining a high-efficiency strain.

Modular Optimization of Metabolic
Pathways to Enhance L-Ornithine Synthesis
Optimizing the L-ornithine synthesis pathway involves multiple
metabolic pathways: the L-ornithine degradation pathway, the
precursor competition pathway, and the L-ornithine synthesis
pathway. These need to be coordinated to prompt the synthesis
L-ornithine from glutamate. We divided these pathways into
three modules, namely, module one (L-ornithine catabolism),
module two (precursor competition), and module three
(L-ornithine synthesis) (Figure 2A).

As a precursor, L-ornithine could be converted into citrulline,
putrescine, and other substances in the cell. For module 1, the
argF and argI genes encoding L-ornithine carbamoyltransferase
(Sander et al., 2019). were first knocked out to block the
catabolism of L-ornithine to citrulline, thereby obtaining
strains B. amyloliquefaciens NBO1 and NBO2. The
fermentation results showed that blocking these two genes
promoted the accumulation of L-ornithine; the L-ornithine
titers of the NBO1 and NBO2 strains reached 1.97 g/L and
1.95 g/L, respectively. In addition, the speF gene, encoding
L-ornithine decarboxylase (Bao et al., 2021), was knocked out
to block the catabolism of L-ornithine to putrescine in B.
amyloliquefaciens NBO3 [with argF and argI genes deleted in
B. amyloliquefaciens NB (ΔpgsBCA)], thereby obtaining the B.
amyloliquefaciens strain NBO4. The L-ornithine titer of NBO4
was further increased to 3.51 g/L (Figure 2B).

Glutamate is essential for L-ornithine synthesis and is a key
starting material for other metabolic pathways (Xu et al., 2019).
Therefore, the metabolic flow of glutamate directly affects the
synthesis efficiency of L-ornithine. For module 2, the prob-
encoded glutamate 5-kinase was knocked out to block proline
synthesis, which competes with L-ornithine synthesis for the
precursor glutamate. B. amyloliquefaciens NBO5 and NBO6
were obtained by knocking out the prob gene (ID: 56457565)
in B. amyloliquefaciens NBO3 and NBO4, respectively. The
results showed that the deletion of glutamate 5-kinase
produced the most significant increase in the titer of
L-ornithine. The titer of L-ornithine in B. amyloliquefaciens
NBO5 and NBO6 reached 4.64 and 5.26 g/L, respectively
(Figure 2B).

Previous studies have reported that the L-ornithine synthase
cluster is an important factor limiting the efficient synthesis of
L-ornithine. For example, the rate-limiting steps in the
L-ornithine synthesis pathways of C. glutamicum and E. coli
are N-acetylglutamate synthase encoded by argA and
N-acetylglutamate kinase encoded by argB, respectively
(Yoshida et al., 1979; Rajagopal et al., 1998). Higher yields can
be obtained by overexpressing related genes using high-copy
plasmid vectors, etc. Therefore, it is imperative to study the
expression of L-ornithine synthase for efficient L-ornithine
synthesis. For module 3, we studied the effects of the
following enzymes on L-ornithine synthesis: amino-acid
N-acetyltransferase (ArgA), acetylglutamate kinase (ArgB),
N-acetyl-gamma-glutamyl-phosphate reductase (ArgC),
acetylornithine aminotransferase (ArgD), and acetylornithine
deacetylase (ArgE). These enzymes were expressed in strain B.

FIGURE 1 | The lack of polyglutamate synthase (pgsBCA) improves
glutamate and ATP concentrations and growth. Biomass and glutamate and
ATP concentrations for B. amyloliquefaciens NB, B. amyloliquefaciens
(ΔpgsBCA),B. amyloliquefaciens (ΔpgsA),B. amyloliquefaciens (ΔpgsB),
and B. amyloliquefaciens (ΔpgsC) in shake flasks at 24 h. All data were the
average of three independent studies with standard deviations. The ** and *
indicate p < 0.01 and 0.05 relative to the control strain B. amyloliquefaciens
NB, respectively.
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amyloliquefaciens NBO6, respectively, resulting in engineering
strains B. amyloliquefaciens NBO7, NBO8, NBO9, NBO10, and
NBO11. The fermentation results of five recombinant strains and
the control strain (B. amyloliquefaciens NBO6) showed that the
overexpression of ArgA and ArgE contributed to L-ornithine
synthesis. Subsequently, we co-overexpressed ArgA and ArgE
in B. amyloliquefaciens NBO6 and found that the titer of
L-ornithine of NBO12 was further improved, reaching 7.26 g/
L. However, co-overexpression of ArgA, ArgB, ArgC, ArgD and
ArgE in B. amyloliquefaciens NBO6 did not significantly improve
L-ornithine production, and the production of B.
amyloliquefaciens NBO13 was lower than that of NBO12.
Overall, by optimizing the three modules, the production of
L-ornithine synthesized by B. amyloliquefaciens using inulin as

a substrate was increased almost 17-fold from 0.43 to 7.26 g/L
(Figure 2C).

Screening the L-Ornithine Transporter to
Enhance the Extracellular Accumulation of
L-Ornithine
Products accumulated in the cell cause feedback inhibition on the
activity of critical enzymes, which can have detrimental effects on
cell growth (Luo et al., 2018). Therefore, accelerating the
extracellular transport efficiency of L-ornithine is very
important to enhance the extracellular accumulation of
L-ornithine and alleviate its feedback inhibition on the
synthesis pathway. First, the gene lysE (encoding the

FIGURE 2 | Effect of the L-ornithine synthesis module on putrescine production. (A) Schematic overview of L-ornithine catabolism pathway, precursor competition
pathway, and synthesis pathways. The main pathway of L-ornithine catabolism is catalyzed by L-ornithine carbamoyltransferase and L-ornithine decarboxylase.
Glutamate is a key starting material for L-ornithine synthesis. Blocking proline synthesis improves the supply of the precursor glutamate for L-ornithine synthesis. Some
key genes in the L-ornithine synthesis pathway included amino-acid N-acetyltransferase (ArgA), acetylglutamate kinase (ArgB), N-acetyl-gamma-glutamyl-
phosphate reductase (ArgC), acetylornithine aminotransferase (ArgD), and acetylornithine deacetylase (ArgE). G6P: Glucose-6-Phosphate; F6P: Frucose-6- Phosphate;
GAP: Glyceraldedyde-3-phosphate; 1,3BPG: 1,3-Bisphospho-glyerate; 3 PG: 3-phosphoglycerate; PEP: Phosphoenolpyruvate (B) The L-ornithine titers of the
recombinant strains lacking argF, argI, speF, and prob. All data were the average of three independent studies with standard deviations. The ** and * indicate p < 0.01
and 0.05 relative to the control strain B. amyloliquefaciens NB (ΔpgsBCA), respectively. (C) Overexpression of the L-ornithine synthase gene in B. amyloliquefaciens
NBO6. “+” indicates that the relevant gene is overexpressed in the strain; “-” indicates that the relevant gene is not overexpressed in the strain. All data were the average
of three independent studies with standard deviations. The ** and * indicate p < 0.01 and 0.05 relative to the control strain B. amyloliquefaciens NBO6, respectively. Co-
expression of genes with noticeable effect to further improve the fermentation effect.
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L-ornithine transporter) from different strains (E. coli, C.
glutamicum, B. subtilis, and B. amyloliquefaciens) was
overexpressed in NBO6 to screen high-efficiency transporters.
The results indicated that L-ornithine production of the strains
expressing the transporter was improved at different levels
compared to the control strains (Figure 3). Among them, the
overexpression of lysE from B. amyloliquefaciens (BA.lysE)
resulted in a significant increase in L-ornithine titer and
biomass. The titer of L-ornithine increased by 30% compared
with NBO6, reaching 6.83 g/L. Subsequently, the lysE from B.
amyloliquefaciens was further overexpressed in B.
amyloliquefaciens NBO12 to enhance L-ornithine production,
resulting in B. amyloliquefaciens NBO18. The L-ornithine titer
of B. amyloliquefaciens NBO18 reached 8.6 g/L, representing a
20% increase compared with B. amyloliquefaciens NBO12
(Figure 3).

Optimization of the Fermentation Process
to Further Improve L-Ornithine Synthesis
The fermentation process and medium components are critical
for strain growth and for the synthesis of the desired products
(Luo et al., 2020). Therefore, it is essential to optimize the
fermentation process and medium composition to further
enhance the accumulation of L-ornithine. First, the inoculum
volume, liquid volume, temperature, and pH of the B.
amyloliquefaciens NBO18 strain were optimized. The
fermentation results showed that the inoculum volume, liquid
volume, temperature, and pH were 5%, 10%, 32°C, and 7.0,
respectively (Supplementary Figure S3). In addition, the

composition of the fermentation medium was further
optimized by combining single factor and response surface
experiments (Supplementary Figure S3), and the best carbon
source, nitrogen source, and metal ions were determined, which
were 120 g/L of inulin, 60 g/L of peptone, and 0.4 g/L of MgSO4,
respectively. The titer of L-ornithine of B. amyloliquefaciens
NBO18 under optimal fermentation conditions reached 12.6 g/
L, representing a 31.7% increase (Figure 4).

Maximizing L-Ornithine Production in a 7.5 L
Fermenter
To maximize L-ornithine production by B. amyloliquefaciens
NBO18, we cultured NBO18 in 7.5 L batch bioreactors (BioFlo
115, New Brunswick Scientific, United States) based on the
optimized fermentation conditions above, resulting in titers of
14.5 g/L L-ornithine (Figure 5A). To further improve L-ornithine
production, 20 g/L of the precursor sodium glutamate was added
to L-ornithine batch fermentation, and 19.3 g/L of L-ornithine
was obtained (Figure 5B). However, the efficiency of sodium
glutamate conversion into L-ornithine was very low, which may
explain why the high concentration of sodium glutamate had a
negative effect on strain metabolism. Thus, the sodium glutamate
feeding strategy was adopted, and sodium glutamate was added to
the fermenter at a constant flow rate of 0.5 ml/min during a
fermentation period of 24–48 h (the final supplement amount of
sodium glutamate was about 20 g/L). Finally, the titer of
L-ornithine produced by B. amyloliquefaciens NBO18 reached
31.3 g/L, and the yield of L-ornithine was 0.22 g/g (L-ornithine/
(inulin + glutamate)) (Figure 5C).

DISCUSSION

Using non-grain raw materials to synthesize biochemical
products is very difficult due to the inefficiency of their bio-
utilization. Although much work has been done to solve this
issue, the current efficiency of synthesizing biochemical products
from non-grain raw materials is lower than that of synthesizing
biochemical products from food raw material substrates such as
glucose (Qiu et al., 2019a; Becker and Wittmann, 2019). Here, we
systematically studied the biosynthesis of L-ornithine by B.
amyloliquefaciens using non-grain food materials. First, we
demonstrated the feasibility of fermenting L-ornithine from
Jerusalem artichoke by analyzing intracellular glutamate and
ATP levels. Then, modular engineering and carrier
engineering were applied to prompt high levels of intracellular
precursor glutamate conversion into L-ornithine. This enabled B.
amyloliquefaciens to efficiently produce L-ornithine from
Jerusalem artichoke without glutamate supplementation.
Combining these strategies with an optimized fermentation
process, we successfully achieved a final titer of 31.3 g/L
L-ornithine. We anticipate that these strategies should be
widely applicable in the microbial synthesis of value-added
glutamate derivatives by B. amyloliquefaciens using non-grain
food materials.

FIGURE 3 | The expression of lysE increases L-ornithine synthesis and
cell growth. The effect of the overexpression of four transporter genes on
L-ornithine production and cell growth. Four L-ornithine transporters from
different sources were screened, namely, E. coli, C. glutamicum, B.
subtilis, and B. amyloliquefaciens. All data were the average of three
independent studies with standard deviations. The ** and * indicate p < 0.01
and 0.05 relative to the control strainB. amyloliquefaciensNBO6, respectively.
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To our knowledge, this is the first report of the use of non-
grain food materials to produce L-ornithine using B.
amyloliquefaciens. In previous studies, a small amount of
L-ornithine was synthesized by model strains (E. coli, C.
glutamicum) via fermentation of food raw materials
(glucose and starch) (Lee and Cho, 2006; Wu et al., 2020).
Compared with these model strains, B. amyloliquefaciensNB is
advantageous since it serves as a cell factory for L-ornithine
synthesis. We found that the intracellular glutamate content of
B. amyloliquefaciens was significantly increased several times
by blocking the PGA synthesis pathway. This demonstrates
that the strain has an efficient glutamate synthesis flux and
provides a sufficient precursor supply for L-ornithine
synthesis. In addition, we compared the effects of different
carbon sources on L-ornithine synthesis and found that inulin
as a non-grain raw material was the dominant carbon source
for L-ornithine synthesis compared with glucose, fructose, and
other carbon sources. Overall, these results demonstrated that
B. amyloliquefaciens could be optimal for the synthesis of
glutamate derivatives from non-grain inulin. However, the

synthesis of L-ornithine from inulin in this study requires a
large amount of peptone and glutamate supplementation,
which leads to an increase in the cost of producing
L-ornithine. Therefore, it is necessary to rationally regulate
the nitrogen metabolism pathway of B. amyloliquefaciens to
improve its utilization efficiency of cheap nitrogen sources in
the future.

Coordinated optimization of multiple pathways is essential
for constructing efficient cell factories (Gong et al., 2020; Zhou
et al., 2021). Most studies on the construction of L-ornithine
cell factories thus far have focused on enhancing L-ornithine
synthesis pathways but rarely on regulating the overall
L-ornithine synthesis pathway (Shu et al., 2018b; Zhang
et al., 2018). Although implementing these strategies
improved L-ornithine production, local regulation of the
metabolic pathway will cause an imbalance of the metabolic
network limiting target product production (Wu et al., 2020).
In this study, we systematically investigated and coordinated
the optimization of the L-ornithine degradation pathway,
precursor competing pathway, L-ornithine synthesis

FIGURE 4 | The effect of different fermentation conditions on L-ornithine production and response surface optimization results. Three-factor and three-level
response surface optimization for three major components (inulin, peptone, and MgSO4) was done. (A) The response surface plot showed the effects of MgSO4 and
peptone on l-ornithine production. (B) The response surface plot showed the effects of inulin and peptone on L-ornithine production. (C) The response surface plot
showed the effects of inulin and MgSO4 on L-ornithine production.
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pathway and L-ornithine transport pathway. This enabled the
production of a strain that efficiently utilized inulin to
synthesize L-ornithine. In addition, the L-ornithine
fermentation process was systematically optimized to
further improve L-ornithine synthesis efficiency. Finally, the
titer of L-ornithine increased from 0.43 to 31.3 g/L. These
results demonstrate that systematically optimizing the
metabolic network of strains is invaluable for efficient
synthesis of target products. In addition, the strategies
employed in this study could prove useful for constructing
high-efficiency cell factories of glutamate and its related
products.

Efficient utilization of non-grain raw materials is a crucial
challenge, hampering efficient synthesis of target products by
microbial strains (Kamimura et al., 2019). Surprisingly, we found
that the utilization efficiency of inulin by microorganisms was
significantly higher than that of other non-grain materials such as
cellulose, hemicellulose, and lignin (Shu et al., 2018b; Cai et al.,
2021). This may be because B. amyloliquefaciens NB has a highly
active inulin degrading enzyme, enabling efficient inulin
degradation into fermentable monosaccharides (glucose and
fructose) (Qiu et al., 2019a). Therefore, the inulin utilization
module pathway from B. amyloliquefaciensNB could be designed

in model microbial cells to achieve efficient synthesis of target
products using inulin non-food raw materials. Nonetheless, the
conversion rate of L-ornithine synthesized by B.
amyloliquefaciens from non-grain raw materials was lower
than that of a model strain using food grain as the raw
material and a theoretical conversion rate (Sheng et al., 2021).
The main reason may be that the mechanism for efficient inulin
utilization remains unclear. For example, key factors affecting
strain metabolism and growth remain unclear. Furthermore, the
mechanism for coordinated utilization of fructose and glucose
from inulin has not been elucidated. Therefore, the effects of these
factors on strain metabolism should be further analyzed.
Moreover, the conversion rate of inulin into target products
requires improvement in future studies, since this will play a
vital role in the utilization efficiency of other complex carbon
sources.
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Time profile of fed-batch L-ornithine fermentation in a 7.5 L fermenter. Fermentation conditions are as follows: the working volume is 3.5-L, the stirring rate is 400 rpm,
the volume air per volume is 1 vvm, and the inoculation size is 6%.
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