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Abstract: Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have
gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and
several additional beneficial activities. The health-promoting effects noted in animal models of
various non-communicable diseases explain the growing interest in these molecules. In particular,
in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However,
despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP)
is less clear and necessitates revision of available literature. Therefore, the present review analyzes
the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating
lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-
term interventions. To this end, PubMed was used for article search. The search terms included
polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical
examination of the trials published to date illustrates certain benefits on blood lipids along with co-
morbidities in participant’s health status. However, inconsistent results document significant research
gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability
during supplementation. This underlines the need for further efforts in order to elucidate and support
a potential role of PLPs in fighting DLP.

Keywords: polyphenols; dyslipidemia; lipoproteins; nutrition; oxidative stress; inflammation; micro-
biota; metabolic syndrome; type 2 diabetes

1. Introduction

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mor-
tality in the world. It represents a major concern for global health, and its prevalence
as of 2017 is estimated to be around 423 million cases with 18 million deaths [1]. Not
surprisingly, its crippling effects on both the healthcare infrastructure and the underlying
population are significant, with an appraised annual cost of 600 billion dollars [2,3]. While
the causes and risk factors for CVD are complex and multifaceted, lipid disorders such
as dyslipidemias (DLP) are clearly associated with its pathological onset and are thus a
leading focus of interest for clinicians in primary and secondary prevention. However,
DLP management is intricate, and the understanding of the underlying mechanisms is
critical for the development of more appropriate innovative therapies.

The Mediterranean diet has garnered considerable attention in the past decades given
its beneficial impacts on cardiometabolic and cardiovascular health [4,5]. Indeed, Mediter-
ranean diet intake acts on both healthy individuals and subjects with cardiovascular risk
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factors, resulting in favorable clinical outcomes and more particularly in improvement
of lipid disorders. This positive impact may be due to its high polyphenolic content,
derived from vegetables, grapes and olive oil. For example, olive oil brings out cardio-
protective effects due the presence of a myriad of polyphenolic constituents, including
phenolic acids (e.g., caffeic, syringic acids), flavonoids (e.g., apigenin, luteolin), secoiridoids
(e.g., oleuropein) and lignin (tyrosol, hydroxytyrosol) [6]. These results have warranted
widespread recommendations for the Mediterranean diet with respect to CVD prevention
and management [4].

The purpose of this critical review is first to provide a comprehensive summary and
update on lipid disorders and PLPs features. In a second step, we will emphasize the
major roles of PLPs on both primary and secondary prevention, and discuss the potential
mechanisms contributing to their various actions. Third, we will examine the use of PLPs
as therapeutic agents while identifying new perspectives for future research.

2. Dyslipidemia
2.1. Definition of Dyslipidemia and Related Biomarkers

DLP is described as abnormal levels of circulating lipids, presenting a high risk for
CVD development [7]. Its etiology can be primary (genetic) or secondary [diet, drugs,
chronic diseases and metabolic disorders, including obesity, metabolic syndrome (MetS)
and type 2 diabetes (T2D)] [8]. To define DLP, clinicians usually rely on rapid fasting
lipid profile, which encompasses triglycerides (TG), total cholesterol (TC), high-density
lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) and non-
HDL-C. Oftentimes, further evaluation of additional lipoprotein particles is necessary to get
an accurate diagnosis, requiring more time and expertise. They include chylomicron (CM),
CM remnants, very-low-density lipoprotein (VLDL), small and dense LDL and Lp(a) [9,10].
Apolipoproteins (Apo), the structural components of lipoprotein particles, are also very
informative for diagnosis, and in particular Apos (A1 and B-100), the major moieties of
HDL and LDL, respectively. DLP, detrimental to human health, is identified by excessive
concentration of TG, TC, VLDL, LDL-C, non-HDL-C, Lp(a), CM and CM-remnants, along
with decreased levels of HDL-C. Moreover, the inadequate association of lipids (TG, free
cholesterol, cholesteryl ester and phospholipids) with Apos (A-I, A-II, A-IV, B-48, B-100,
C-II, C-III, E) disrupt the normal composition of the blood lipoproteins, which creates a
shift towards an atherogenic lipoprotein phenotype, in essence a hallmark of DLP, and
ultimately contributes to atherosclerosis [11].

2.2. Chylomicron Formation and Postprandial Dyslipidemia

One of the major functions of the small intestine is the transport of alimentary fat in the
form of CM. Following the digestive phase involving bile acids and pancreatic lipase, the
lipolytic products are absorbed by the enterocyte where they undergo lipid esterification
along with the synthesis and post translational modification of different Apos, followed
by the packaging of lipid and Apo components into lipoprotein particles [12–16]. Three
key proteins should be given particular prominence: Apo B-48, microsomal triglyceride
transport protein (MTTP) and Sar-1b (a GTPase protein) [17–21]. MTTP shuttles TG,
cholesteryl ester and phospholipids to Apo B-48 in the endoplasmic reticulum, allowing
packaging of CM particles, which are then exported to the Golgi for maturation under
the control of Sar-1b. CMs are targeted to the basolateral site of the enterocyte in order
to enter blood via the lymphatic duct. In the systemic circulation, lipoprotein lipase
(LPL) hydrolyzes CM-TG in order to provide peripheral tissues with fatty acids (FA)s.
Thereafter, CM remnants are mostly incorporated into the liver through Apo E recognition
by hepatocyte receptors (Figure 1) [22].
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Figure 1. Lipid absorption, excretion and transport by the gut–liver axis. Intestinal lipids contained in diet and in biliary
acids (originating from the liver and delivered into intestinal lumen through the bile duct) are absorbed by the small
intestine following digestion and uptake by protein transporters: Niemann-Pick-C1-like-1 (NPC1L1), scavenger receptor
B-1 (SR-B1) and cluster of differentiation-36 (CD36). In the enterocyte, lipids and apolipoproteins (Apo) are assembled
into chylomicrons (CMs), a process requiring the essential proteins Apo B-48, microsomal triglyceride transport protein
(MTTP) and Sar1b-GTPpase. Subsequently, CM are secreted into the peripheral circulation where their triglyceride (TG)
components undergo lipolysis by lipoprotein lipase (LPL) after activation by Apo C-II. The resulting CM remnants are
internalized by the liver following recognition by the specific low-density lipoprotein-like receptor protein (LRP). For
their part, very-low-density lipoproteins (VLDLs) are assembled in the liver and released into the circulation to release
fatty acids for peripheral tissues after hydrolysis by LPL.VLDL remnants or intermediate-density lipoprotein (IDL) can
be taken up by liver receptors or be further metabolized into low-density lipoproteins (LDL) for cholesterol delivery in
peripheral tissues through interaction with their LDL receptor (LDLR). On their side, high-density lipoproteins (HDL) are
derived from the intestine and liver with the involvement of ATP-binding cassette transporter A1 (ABCA1) and Apo A-I.
HDL confers atheroprotection via the process of reverse cholesterol transport whereby excess intracellular cholesterol is
transported to the liver by HDL particles. Full arrows represent lipoprotein metabolism. Dotted arrows represent lipid
movement. Boxed enzymes and receptors in green are associated with reduction of cholesterolemia, whereas red boxes are
associated with increase in cholesterolemia. Some images in this figure were obtained and modified from Servier Medical
Art (https://smart.servier.com).

Mounting evidence underlines the link between increased intestinal CM production
in response to Western diet and atherosclerosis [23,24]. Indeed, raised levels of CM and
their remnants correlate to intima media thickness and accelerated atherogenic process in
MetS, insulin resistance (IR) and T2D conditions [25–27]. The chylomicronemia syndrome
may also result from a deficiency in LPL, Apo CII or its associated proteins, leading to
autosomal recessive disorder Type I hyperlipoproteinemia (HLP) [8,28]. Additional factors
contributing to DLP from molecular aberrations of LPL and CM-remnant receptors or
consequently to polymorphisms of LPL, Apo E, Apo B and MTTP [29–34].

2.3. Intestinal Cholesterol Transporters and Relation to Dyslipidemia

As dietary cholesterol (CHOL) intake contributes to plasma CHOL levels, which are
associated with excessive CHOL deposition in the arterial intima, much attention has
been paid to intestinal CHOL transporters [35]. The absorption of CHOL by enterocytes
is controlled by (i) CHOL uptake at the apical site by Niemann-Pick-C1-like-1 (NPC1L1),
scavenger receptor B-1 (SR-B1) and cluster of differentiation-36 (CD36) [36–38]; (ii) CHOL

https://smart.servier.com
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uptake at the basolateral site by the regulatory system composed of LDL receptor (LDLR)
and proprotein convertase subtilisin/kexin type 9 (PCSK9); (iii) CHOL excretion at the
apical site by the heterodimer of ATP-binding cassette transporters G5/G8; (iv) CHOL
output at the basolateral site by ATP-binding cassette transporter A1 (ABCA1), which
transfers cellular CHOL to lipid-poor Apo A-1 for nascent HDL formation; and (v) the trans-
intestinal CHOL excretion pathway which significantly enhances neutral sterol excretion
in humans (Figure 1). Noteworthy, important intra-enterocyte proteins, including acyl-
CoA: cholesterol O-acyltransferase 2 (catalyzing the esterification of CHOL with FA) and
hydroxylmethylglutaryl-CoA reductase (the rate-limiting enzyme in CHOL biosynthesis)
are highly involved in intestinal CHOL absorption [35].

As reviewed above, the small intestine displays absorptive and excretory functions
to modulate CHOL fluxes across the intestine, thereby favoring body CHOL homeostasis.
Increased CHOL uptake (in response to upregulation of NPC1L1, SR-B1, CD36 and LDLR)
or decreased CHOL excretion (due to downregulation of ABCA1, ATP-binding cassette
transporter G5/G8 and trans-intestinal CHOL excretion) can influence pathogenesis of
hypercholesterolemia, DLP and atherosclerosis [39–43]. Additionally, the transporters
mediating intestinal CHOL absorption may act as determinants of Apo B-containing
atherogenic lipoproteins [44,45].

2.4. VLDL Metabolism and Relation to Dyslipidemia

Similarly to CM assembly by the enterocyte, VLDL formation in the hepatocyte
involves MTTP and Sar1b, while Apo B-100 becomes the major protein component [46].
After entering the bloodstream, VLDL-TG are hydrolyzed by LPL, thus releasing FA. VLDL-
remnants, or more specifically intermediate-density lipoprotein, can either by recycled back
into the liver or undergo further lipolysis to be converted into LDL particles for CHOL
delivery to peripheral tissues via LDLR-Apo B-100 interaction (Figure 1).

Defects or deletion of LDLR or ApoB100 genes result in abnormally low uptake of LDL by
various organs, particularly the liver. Consequently, there is a steep accumulation of circulating
LDL-C, a condition known as familial hypercholesterolemia (FH), which is associated with
aggravated risk of LDL deposition in the vessel wall and atherosclerosis occurrence. Indeed,
FH is characterized by an autosomal dominant pattern of inheritance and can result in
heterozygosity (2- to 3-fold increase in circulating LDL-C) or more serious homozygotic form
(3- to 6-fold LDL-C elevation). Homozygous patients develop atherosclerosis and stenosis
(e.g., coronary artery disease, calcifications in the aortic root and ascending aorta, aortic
regurgitation, and even death) during the first two decades of life.

Another causative gene in FH encodes PCSK9, which targets LDLR for degradation.
Mutations or polymorphisms of PCSK9 are a common cause of FH, where gain-of-function
PCSK9 mutations can cause familial autosomal dominant hypercholesterolemia. Moreover,
rare mutations in LDLR adapter protein 1, ApoE p.Leu167del, or lysosomal acid lipase genes
can mimic FH (Table 1) [8,28,47,48].

Table 1. Classification of primary hyperlipoproteinemia.

Type Name Molecular
Defect

Lipoprotein
Elevated Clinical Features Incidence

1 Familial
Hyperchylomicronemia LPL, Apo C-II CM

Juvenile or early adulthood
onset;

Eruptive xanthomas;
Lipemia retinalis;

Pancreatitis;
Hepatosplenomegaly;

Dyspnea;
Lymphadenopathy;

Neurologic dysfunction

1:1,000,000
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Table 1. Cont.

Type Name Molecular
Defect

Lipoprotein
Elevated Clinical Features Incidence

2a Familial
Hypercholesterolemia

a. LDLR
b. Apo B-100

c. PCSK9
LDL

Onset at all ages;
Tendon xanthomas,

Arthralgia;
Xanthelasmas;
Corneal arcus

a. 1:500
b. <1:1000

c. 1:1,000,000

2b Combined HLP Polygenetic LDL
VLDL CVD 1:50–1:200

3 Dysbetalipoproteinemia Apo E IDL
CM-remnants

Palmar xanthomas;
CVD 1:1000–1:5000

4 Primary or simple
hypertriglyceridemia Unknown VLDL

Adult onset;
Eruptive xanthomas;
Hepatosplenomegaly;

Hyperglycemia;
Hyperuricemia

1:50–1:100

5 Mixed
hypertriglyceridemia Unknown CM

VLDL

Eruptive xanthomas;
Pancreatitis;

CVD
Rare

Adapted from [8,28]. CM, chylomicron; CVD, cardiovascular disease; FH, familial hypercholesterolemia; HLP, hyperlipoproteinemia; IDL,
intermediate-density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LPL, lipoprotein lipase; PCSK9,
proprotein convertase subtilisin/kexin type 9; VLDL, very-low-density lipoprotein.

2.5. Additional Congenital Types of Primary Hyperlipoproteinemia

Apo E constitutes an important component of CM- and VLDL-remnants and is also a
ligand for their receptor-mediated hepatic uptake. Apo E deficiency or genetic variants may
lead to familial Type III HLP. Apo E2 (substitution of cysteine in the normal Apo E3 variant
for arginine at residue 158) interacts poorly with LDLR and LDLR-related protein, thereby
DLP and an increased risk for atherosclerosis [28].

Type IV HLP is characterized by fasting hypertriglyceridemia due to a genetic autoso-
mal dominant defect that increases VLDL secretion, raising the risk of abnormal glucose
tolerance, athero-eruptive xanthoma, pancreatitis and CVD. Obesity, MetS, T2D, hypopitu-
itarism, contraceptive steroids and glycogen storage disease I are secondary causes that
can all trigger the development of Type IV HLP [8].

Lastly, type V HLP, also known as combined/mixed hypertriglyceridemia, is charac-
terized by increased amounts of plasma CM and VLDL and decreased LDL and HDL after
overnight fasting. In these conditions, TG levels are considerably elevated and enhance
the risk of acute pancreatitis. Some patients exhibit high TC concentrations that can be
accounted for increased VLDL [28]. Complete assessment of patients with Type V HLP
also involves family sampling to discern the presence of familial Type V. In addition to pri-
mary Type V, secondary Type V has been noted and its development involves a multitude
of metabolic derangements, including low TG clearance and/or their increased output
aggravated by obesity, IR, T2D, alcohol intake, or the use of some hormones [8].

2.6. HDL Metabolism
2.6.1. HDL Synthesis and Functions

The liver and intestine constitute two important sites for the formation of new HDL
particles (Figure 1). The crucial step for HDL biogenesis depends essentially on ABCA1.
Genetic mutations or overexpression of ABCA1 result in diminished or raised circulating
levels of HDL-C, respectively [47–49]. In addition to the contribution of hepatic and
intestinal nascent HDL biogenesis, lipolysis of TG-rich lipoproteins (CM and VLDL) by
LPL is another important source of HDL production, with mutual exchange of lipids
through the action of cholesteryl ester transfer protein (Figure 2) [50,51].
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Figure 2. Interaction and lipid exchanges amidst circulating lipoproteins. As very low-density lipoprotein (VLDL) and
chylomicron (CM) are secreted by liver and gut, respectively, lipolysis by lipoprotein lipase (LPL) releases fatty acids for
peripheral tissues. VLDL- and CM-remnants are captured by the liver following recognition of their apolipoprotein (Apo)
E content by low-density lipoprotein-like receptor protein (LRP). A small proportion of intermediate-density lipoprotein
(IDL) particles can be directly taken by the liver (via LRP) while circulating IDL-triglyceride (TG)s are degraded by LPL to
provide low-density lipoprotein (LDL) particles. The latter are the major carriers of free cholesterol (FC) and cholesteryl
ester (CE), which are delivered to peripheral tissues after LDL uptake via LDL receptors (LDLR). Peripheral efflux of FC and
phospholipids (PLs) mediated by ATP-binding cassette transporter (ABCA1) towards lipid poor high-density lipoprotein
(HDL) represents the first step for reverse cholesterol transport. Esterification of FC in HDLs by lecithin-cholesterol
acyltransferase (LCAT) promotes HDL maturation and size. On the other hand, CE can also be exchanged for TG via
cholesteryl ester transfer protein (CETP) with TG-rich lipoproteins (e.g., VLDL and CM) or LDL. At this stage, HDLs transfer
their CE content to the liver via scavenger receptor B-1 (SR-B1) involvement. The reverse cholesterol transport process ends
by the hepatic conversion of cholesterol into bile acids, which represents the only route of cholesterol elimination from the
human body. Full arrows indicate lipoprotein metabolism. Dotted arrows indicate lipid movement. Green-boxed enzymes
or receptors are associated with HDL metabolism, whereas red-boxed enzymes or receptors are linked with remaining
lipoproteins. Some images in this figure were obtained and modified from Servier Medical Art (https://smart.servier.com).

The formation of CHOL-poor nascent HDL particles is achieved via the assembly
of Apo A-1 and cellular lipids (mainly CHOL and phospholipids), a reaction catalyzed
by ABCA1 [52,53]. The nascent discoidal HDL is progressively filled up in the blood
circulation with CHOL transferred from peripheral tissues by ABCA1 and subsequently
esterified to cholesteryl ester by lecithin cholesteryl ester transfer protein (LCAT) [54].
Filling with cholesteryl ester turns nascent HDL from a discoidal form into a spherical
shape, and into larger HDL3 and much larger HDL2 particles. At this stage, HDL-C
is removed by hepatic SR-B1, completing the reverse cholesterol transport process and
ultimately ensuring that excess peripheral tissue CHOL is deposited in the liver for bile
acids conversion [55–57]. The importance of HDL in protecting against CVD is attributed
not only to its role in reverse cholesterol transport but also to its ability to act as an
antioxidant, anti-inflammatory, anti-thrombotic, pro-vasodilatory and anti-apoptotic agent
(Figure 3) [38,58–61].

https://smart.servier.com


Nutrients 2021, 13, 672 7 of 42Nutrients 2021, 13, x FOR PEER REVIEW 7 of 36 
 

 

 

Figure 3. Properties of native and oxidized HDL with their impact on LDL particles. Excessive oxidative stress (OxS) 

and/or inflammation may transform circulating normal low-density lipoprotein (LDL) and high-density lipoprotein 

(HDL) particles into oxidized LDL (oxLDL) and oxidized HDL (oxHDL). Modified LDL and HDL may stay longer in the 

bloodstream given their impaired interaction with their specific receptors low-density lipoprotein receptor and scavenger 

receptor B-1 (SR-B1), respectively. Their diminished clearance contributes to the onset of atherosclerosis. Primary or sec-

ondary dyslipidemia leading to elevated levels of LDL exacerbate this problem, especially after transfer of oxidized lipids 

from oxLDL to oxHDL via cholesteryl-ester transfer protein (CETP). Beneficial apolipoprotein (Apo) A-1 or paraoxonase 

(PON)1 actions promote antioxidant and anti-inflammatory protection, which prevent lipid peroxidation magnification. 

Besides, accumulation of oxHDL is accompanied with aldo-keto reductase (AKR) activity alterations and loss of beneficial 

actions. ABCA1, ATP-binding cassette A1; LCAT, lecithin-cholesterol acyltransferase; RCT, reverse cholesterol transport. 

Some images in this figure were obtained and modified from Servier Medical Art (https://smart.servier.com). 

2.6.2. HDL-Related Disorders 

Deficiency of HDL-C (hypoalphalipoproteinemia) can be a result of genetic defects 

of ABCA1, LCAT and ApoA1, which leads to Tangier disease, Fish-eye or Familial LCAT 

deficiency disease, and ApoAI deficiency or ApoA1 variants [62]. Furthermore, genetic de-

ficiency of cholesteryl ester transfer protein is characterized by markedly elevated levels 

of HDL-C while being associated with reduced atherosclerosis [63]. 

2.7. Treatment of Dyslipidemia 

Depending on initial risk assessment, management of DLP primarily lies in preven-

tion, and thus mostly consist of a therapeutic lifestyle approach where nutrition plays a 

key role [10]. However, if therapeutic goals cannot be reached through lifestyle, or in the 

event of a primary subtype of HLP, drug therapy or extracorporeal treatment is initiated 

(Table 2). Presently, the available medical arsenal for DLP mainly focuses on reducing 

LDL-C and non-HDL-C levels, but may act on Apo B, TG and HDL-C as well. Statins are 

the preferred choice for LDL-C lowering and are routinely prescribed as primary and sec-

ondary treatments [9,10]. If therapeutic goals still cannot be reached or if use of statins is 

contraindicated, secondary options typically include bile acid sequestrants, NPC1L1 in-

hibitors and PCSK9 antibodies [8–10,64–69]. 

As a first line of treatment, nutraceuticals with beneficial cardiometabolic properties 

such as PLPs are an interesting avenue in primary and secondary prevention of DLP, 

MetS, IR and atherosclerosis. General lack of undesired effects may make these phyto-

chemicals particularly attractive and thus further warrants interest [70,71]. 

  

↓ LDL clearance
↑ Monocyte adhesion
↑ Plaque build-up
↑ Atherosclerosis

CETP-mediated
transfer of 
oxidized lipids

• ApoA1 and PON1 
reduction of oxidized
lipids (antioxidant 
protection)

• HDL remodeling
• ↓ Inflammatory

response of 
macophages

Environmental stress
↑ Inflammation, OxS

↓ RCT
↓ LCAT, SR-B1 and 
ABCA1 activity
↑ AKR

LDL
LDL

oxLDL

HDL

oxHDL

Figure 3. Properties of native and oxidized HDL with their impact on LDL particles. Excessive oxidative stress (OxS) and/or
inflammation may transform circulating normal low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles
into oxidized LDL (oxLDL) and oxidized HDL (oxHDL). Modified LDL and HDL may stay longer in the bloodstream
given their impaired interaction with their specific receptors low-density lipoprotein receptor and scavenger receptor
B-1 (SR-B1), respectively. Their diminished clearance contributes to the onset of atherosclerosis. Primary or secondary
dyslipidemia leading to elevated levels of LDL exacerbate this problem, especially after transfer of oxidized lipids from
oxLDL to oxHDL via cholesteryl-ester transfer protein (CETP). Beneficial apolipoprotein (Apo) A-1 or paraoxonase (PON)1
actions promote antioxidant and anti-inflammatory protection, which prevent lipid peroxidation magnification. Besides,
accumulation of oxHDL is accompanied with aldo-keto reductase (AKR) activity alterations and loss of beneficial actions.
ABCA1, ATP-binding cassette A1; LCAT, lecithin-cholesterol acyltransferase; RCT, reverse cholesterol transport. Some
images in this figure were obtained and modified from Servier Medical Art (https://smart.servier.com).

2.6.2. HDL-Related Disorders

Deficiency of HDL-C (hypoalphalipoproteinemia) can be a result of genetic defects
of ABCA1, LCAT and ApoA1, which leads to Tangier disease, Fish-eye or Familial LCAT
deficiency disease, and ApoAI deficiency or ApoA1 variants [62]. Furthermore, genetic
deficiency of cholesteryl ester transfer protein is characterized by markedly elevated levels
of HDL-C while being associated with reduced atherosclerosis [63].

2.7. Treatment of Dyslipidemia

Depending on initial risk assessment, management of DLP primarily lies in prevention,
and thus mostly consist of a therapeutic lifestyle approach where nutrition plays a key
role [10]. However, if therapeutic goals cannot be reached through lifestyle, or in the
event of a primary subtype of HLP, drug therapy or extracorporeal treatment is initiated
(Table 2). Presently, the available medical arsenal for DLP mainly focuses on reducing
LDL-C and non-HDL-C levels, but may act on Apo B, TG and HDL-C as well. Statins
are the preferred choice for LDL-C lowering and are routinely prescribed as primary and
secondary treatments [9,10]. If therapeutic goals still cannot be reached or if use of statins
is contraindicated, secondary options typically include bile acid sequestrants, NPC1L1
inhibitors and PCSK9 antibodies [8–10,64–69].

As a first line of treatment, nutraceuticals with beneficial cardiometabolic properties
such as PLPs are an interesting avenue in primary and secondary prevention of DLP, MetS,
IR and atherosclerosis. General lack of undesired effects may make these phytochemicals
particularly attractive and thus further warrants interest [70,71].

https://smart.servier.com
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Table 2. Conventional treatments for dyslipidemia.

Treatment Underlying
Mechanism

Lipid Profile Variation (%)
Indication CI

Possible Adverse Effects ReferenceTG Non-HDL-C LDL-C HDL-C
Pharmacological therapies

Statins HMG-CoA-R
inhibitors ↓7–30 ↓15–51 ↓18–55 ↑5–15 First line treatment

CI: Possible drug-drug interaction (3A4
inhibitors), pre-existent hepatic disease,
end-stage kidney failure, heart failure
(>class I on NYHA scale), pregnancy

and/or breast-feeding.
PAE: hepatic toxicity, myopathy,

rhabdomyolysis, acute renal failure.

[9,10,64–66]

Bile acid
sequestrants

Cholesterol
chelation in gut’s

lumen
↑0–10 ↓4–16 ↓15–30 ↑3–5

Adjunct with statins
or first line treatment

if statins not
recommended

PAE: GI symptoms, reduced
effectiveness of other medications,

increase in TG
[9,10,66]

Fibrates

PPARαagonist
(VLDL secretion
inhibition, LPL

induction)

↓20–50 ↓5–19 ↓5–↑20 ↑10–20 HyperTG CI: Not recommended with statins [9,10,66,67]

NPC1L1 inhibitors
Cholesterol
absorption
inhibitor

↓5–11 ↓14–19 ↓13–20 ↑3–5

Adjunct with statins
or first line treatment

if statins not
recommended

CI: Presence of an underlying hepatic
disease [9,10,66,67]

PCSK9
inhibitors

Inhibition of LDLR
degradation ↓50

Adjunct with statins
or first line treatment
if statins intolerance

Injection site reactions [10,66,71]

Mipomersen Inhibition of Apo B
synthesis ↓25

HyperTG
related to acute

pancreatitis
PAE: Hepatic steatosis [64,65]

Lomitapide Inhibition of MTTP
in liver and gut ↓50

HyperTG
related to acute

pancreatitis
PAE: GI symptoms, hepatic steatosis [64,65]

Non-pharmacological therapies

Niacine

Increased
expression/
activity of

adipose LPL

↓20–50 ↓8–23 ↓5–25 ↑15–35 HyperTG CI: Not recommended with statins [9,10,66,67]
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Table 2. Cont.

Treatment Underlying
Mechanism

Lipid Profile Variation (%)
Indication CI

Possible Adverse Effects ReferenceTG Non-HDL-C LDL-C HDL-C
Pharmacological therapies

Omega-3 fatty
acids PPARα agonist ↓19–44 ↓5–14 ↓6–↑25 1 ↓5–↑7 HyperTG CI: Fish allergy [9,66,67]

Dietary
fibers

Delayed/
reduced

cholesterol
absorption

↓3–5 Primary
prevention PAE: GI symptoms [72,73]

Monacolin HMG-CoA-R
inhibitor ↓0–20 Primary

prevention
PAE: safety issues regarding presence of

contaminants [73]

Phytosterols
Cholesterol
absorption
inhibitor

↓4–9 ↓7–10 Primary
prevention [66,74,75]

1 No LDL-C increase if omega-3 supplements contain exclusively eicosapentaenoic acid (no docosahexaenoic acid). CI, contraindication; DLP, dyslipidemia; GI, gastro-intestinal; HDL-C, high-density
lipoprotein-cholesterol; HyperTG, hypertriglyceridemia; LDL, low-density lipoprotein; LDL-C, low-density lipoprotein-cholesterol; LDLR, low-density lipoprotein receptor; LPL, lipoprotein lipase; MTTP,
microsomal triglyceride transport protein; NPC1L1, Niemann-Pick-C1-like-1; PAE, possible adverse effects; PCSK9, proprotein convertase subtilisin/kexin type 9; PPARα, peroxisome proliferator-activated
receptor alpha; TG, triglycerides; VLDL, very low-density lipoprotein.3.
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3. Polyphenols and Metabolic Benefits
3.1. Polyphenol Background

PLPs represent a vast heterogenous class of phytochemicals. To date, more than 8000
compounds have been identified [70,76]. They are synthesized in plants as abundant
secondary metabolites, which act as a powerful innate immunity agent, promoting both
protection and survival [77]. Growing evidence underlines beneficial health properties of
these natural polyphenolic compounds that work best for both prevention and therapy of
multiple diseases (Figure 4). Their basic structure is represented by a benzene ring attached
to one or more hydroxyl groups, thus forming the basic molecule upon which are grafted
additional units, in association with organic acids and carbohydrates, to produce large
polymers. PLPs are most commonly divided into two main families: flavonoids and non-
flavonoids. The former is composed of diverse subgroups, including flavones, flavonols,
flavan-3-ols, isoflavones, flavanones and anthocyanidins, whereas non-flavonoids regroup
phenolic acids, lignans and stilbenes (Figure 5) [74,75,78].

Figure 4. Potential health benefits of dietary polyphenols in chronic diseases. CVD, cardiovascular
disease; OxS, oxidative stress. Some images in this figure were obtained and modified from Servier
Medical Art (https://smart.servier.com).

3.2. Regulation of Oxidative Stress, a Component Affecting Metabolic Syndrome, by Polyphenols

Oxidative stress (OxS) arises when cellular antioxidant defense is exceeded by the
overproduction of reactive oxygen species (ROS). The multitude of free radicals like su-
peroxide anions, hydroxyl, peroxyl radicals, alkoxyl radicals and hydrogen peroxides
threaten cellular integrity and homeostasis [79]. OxS persistence due to diverse mecha-
nisms (e.g., mitochondrial respiratory chain, uncontrolled arachidonic acid cascade and
NADPH oxidase, a membrane-bound enzymatic complex) adversely affects lipids, proteins
and DNA nucleic acids, which ultimately leads to disruption of intracellular signaling, loss
of physiological function, and cellular death [80,81]. As cell organelles are generally rich in
iron, the Fenton’s reaction uses this transition metal to promote ample hydroxyl radical
synthesis and biological damage [82]. Fortunately, inter- and intra-cellular antioxidant
enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase and glutathione
reductase) scavenge ROS and succeed in preventing OxS damage [80].

https://smart.servier.com
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Figure 5. Classification of polyphenols.

PLPs, owing to their chemical structure and ROS scavenging properties, have com-
monly been identified as direct antioxidants. Their properties have been extensively
documented over the years, mainly through numerous in vitro studies [83–85]. Never-
theless, a common criticism is that the experimental model too heavily relies on elevated
concentrations of unaltered PLPs, which may not accurately reflect in vivo conditions.
Indeed, low bioavailability, chemical modification during digestion in the gut lumen (i.e.,
deglycosylation), post-absorption in the liver (methyl, glucuronide and sulfate conjuga-
tion), dubious bioaccessibility, and short biological half-life render such experimental high
dosage unrealistic, and even create a rift between in vitro and in vivo experimental condi-
tions by a factor of 103–106 [75]. Besides, in vitro models cannot account for the complex
interaction of PLPs with the gut microbiota and resulting metabolites [75,76,83,84,86–88].
However, specific PLPs have garnered interest owing to their high bioavailability and
consequently relatively high plasmatic concentrations. Prime examples, such as resveratrol
or combined flavonoids and stilbene from red grapes, have shown clinical evidence of
direct amelioration of redox imbalance by either restoring α-tocopherol levels or otherwise
preventing its degradation by initial ROS first encounter (Figure 6) [85,89].
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Figure 6. Antioxidant protection and metabolic actions of polyphenol supplementation. Polyphenols (PLPs) may protect
against oxidative stress (OxS) through either direct or indirect antioxidant mechanisms. In the former, PLPs can scavenge
and neutralize ROS before the occurrence of oxidative damages to lipids, proteins and DNA. Moreover, PLPs have also
the capacity to promote protection by regenerating additional exogenous antioxidants such as tocopherol and ascorbic
acid. Solubilization and transport of PLPs by lipoproteins such as chylomicron or high-density lipoprotein/low-density
lipoprotein particles may specifically prevent OxS derived from dyslipidemia (DLP) and cardiometabolic complications,
notably atherosclerosis. Indirectly, PLPs stimulate endogenous antioxidants, including the regulatory KEAP-ARE-NRF2
pathway, in order to enhance the synthesis of phase 2 cytoprotective enzymes (e.g., γ-glutamylcysteine synthetase, glu-
tathione peroxidase, glutathione reductase, glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, thioredoxin,
thioredoxin reductase, catalase and superoxide dismutase). Furthermore, PLPs can stimulate the AMPK/SIRT1/PGC-1α
pathway for prevention of mitochondrial dysfunction. AMPK, AMP-activated protein kinase; ARE, Antioxidant response
element, KEAP, Kelch-like ECH-associated protein; NR-F2, nuclear factor erythroid-derived 2-like 2; PGC1-α, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; ROS, reactive oxygen species; SIRT1, sirtuin 1.

Several groups have documented the antioxidant ability of PLPs against OxS-induced
damages either in chronic non-communicable diseases such as obesity, MetS, non-alcoholic
fatty liver disease, T2D and CVD. A close association has been noted between obesity (the
grimmest and most predominant public health threat worldwide) and OxS, which is char-
acterized by NADPH oxidase upregulation and antioxidant enzyme downregulation [90].
High FA and glucose concentrations could account for these abnormalities, which are likely
exacerbated by mitochondrial ROS formation [90–92]. PLPs were shown to fight OxS-
antioxidant imbalance and avoid free radical injury, operating through direct or indirect
antioxidant mechanisms of action (Figure 6). For example, supplementation of epigallocate-
chin gallate molecules, derived from green tea, not only served as singlet oxygen quenchers
and enhanced endogenous antioxidant defenses but also mitigated hepatic lipid peroxida-
tion and protein nitration while attenuating obesity-triggered steatosis through lowering
hepatic and adipose tissue lipogenesis [93,94]. Moreover, it appeared in high-fat-induced
obese rats that the advantageous impact of green tea PLP on body weight was produced
via regulation of obesity-related anorectic genes, and anti-inflammation and antioxidant
capacity [95]. For their part, nonflavonoid PLPs (e.g., resveratrol) inhibited oxygen-free
radical formation by impeding NADPH oxidase-associated ROS production [96,97], a
very important finding since elevated OxS is chiefly implicated in the pathogenesis of
hypertension, DLP and CVD [98,99]. Resveratrol-mediated antioxidant upregulation and
OxS lessening stimulated endothelial NO, while preventing inflammation and platelet
aggregation [100,101]. Noteworthy, kelch-like ECH associated protein 1 and nuclear factor
erythroid 2-related factor 2 system was the central cyto-protective mechanism for the
decline of OxS elicited by PLPs (Figure 6) [102].
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While long-lasting production of ROS induces strong IR, PLP antioxidants reduce
ROS levels and exert glucose-lowering effects through amelioration of insulin sensitivity
in humans and animal models of T2D [103–107]. In fact, OxS neutralization in various
systems such as the muscle, adipose tissue and liver by PLPs contribute to the improvement
of metabolic abnormalities [104]. Polyphenolic antioxidants may also serve to temper high
blood pressure. For example, resveratrol prevented the development of hypertension and
significantly lowered blood pressure in spontaneously hypertensive rats, possibly through
the inhibition of Giα overexpression and other upstream signaling molecules [108,109].

DLP occurs very often in metabolic disorders and is associated with elevated
OxS [110–113]. Available evidence has shown the susceptibility of lipids and lipopro-
teins, LDL in particular, to generate ROS [114,115]. Various studies documented high
circulating levels of oxidized-LDL in MetS and T2D, as well as in FH [116,117]. Notably,
PLPs such as curcumin exhibit hypolipidemic actions via various mechanisms while de-
creasing lipid peroxidation in lipoproteins. Specifically, PLPs have the potential to reduce
circulatory CHOL and lipid peroxides, while increasing HDL-C in both animal models and
clinical trial studies [118,119].

3.3. Regulation of Inflammation in Cardiometabolic Disorders by Polyphenols

As is the case for OxS, inflammatory processes are highly necessary for immunosurveil-
lance and host defense since they respond to infectious agents, clear out necrotic cells and
debris, and heal injuries and tissue damage [120]. However, if harmful triggers are persis-
tent, inflammation can turn against healthy tissues, which become damaged and are even
destroyed, thereby resulting in metabolic disorders and atherosclerosis [121]. Sustained
low-grade inflammation predisposes to MetS components in view of raised levels of inflam-
matory cytokines, along with reduced concentrations of anti-inflammatory adiponectin [122].
This chronic inflammatory state could affect vascular and endothelial functions via nitric
oxide lowering and ROS elevation [123]. Noteworthy, interactive relationship between
OxS and inflammation constitutes the driving force for the severity of cardiometabolic
complications and CVD [124]. Their interplay activates immune cell responses; recruits
leukocytes, chemokines and adhesion molecules; and triggers vascular dysfunction via
the activation of NADPH oxidase, xanthine oxidase and mitochondrial ROS overproduc-
tion. Collectively, these events contribute to both vascular and functional abnormalities,
notably atherosclerosis progression and thrombus formation [125,126]. Furthermore, the
simultaneous rise in inflammatory and oxidative status induces pathogenic mechanisms, fa-
voring atherogenic lipoprotein production, oxLDL formation, atherogenic Apo B-containing
lipoprotein retention in sub-endothelium, and HDL dysfunction [127–129].

On the other hand, down-regulation of pro-inflammatory cell signaling modulators,
such as the nuclear factor-κB, the activated protein-1 and the mitogen activated protein
kinases along with upregulation of nuclear factor-κB cytoplasmic inhibitor IκB, have
been proposed as potential mechanisms of action of PLPs [130]. Further, PLPs may op-
erate through inhibition of the arachidonic cascade and derivative eicosanoids [130,131].
Eicosanoids serve a modulating drive to the physiological inflammatory response, and
consequently several anti-inflammatory drugs operate by limiting and/or inhibiting their
production [132]. PLPs may block cellular release of arachidonic acid and/or inhibit the
enzymes implicated in the cyclooxygenase pathway [130,131].

3.4. Polyphenols Counteract Cardiometabolic Complications by Regulating the Gut Microbiota

The gut microbiota has emerged in recent years as a novel and key player for metabolic
diseases. Indeed, dysbiosis is associated with impaired gut integrity, local and systemic
inflammation, OxS, reduced satiety, increased adiposity and ectopic lipid deposition [133].
On the other hand, healthy diets can favorably alter the composition of intestinal bacteria,
which in turn promotes energy balance and body weight control, thereby reducing the
risk of developing cardiometabolic complications [134]. In such cases, bacteria increase
the production of short-chain FAs, such as acetate, propionate and butyrate, acting as
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signaling molecules and resulting in “energy harvest”. For example, butyrate provides a
desirable energy source for colonocytes in the gut, improves mucus function via increased
mucin production, strengthens gut barrier defense integrity via the promotion of tight
junction proteins and stimulates gastrointestinal peptide secretion for improved insulin
secretion and satiety [135–137]. Further, commensal bacterial colonization in the gut could
either limit the invasion of nefarious species or halt their spread, therefore limiting the
local production of pathogenic metabolites such as LPS and gut immunity overstimulation
leading to metabolic endotoxemia and inflammation [138,139].

The polymeric fraction of PLP, indigestible and unabsorbable in the proximal intestine,
interacts with colonic microflora, thereby increasing production of beneficial metabolites
such as short-chain FAs and stimulating their advantageous effects (Figure 7). Animal
models challenged with PLPs exhibit a high production of beneficial bacterial population
such as Akkermansia municiphilia sp. with a significant amelioration of inflammatory
markers, gut permeability and insulin sensitivity [135,140–142]. Further, safeguard of
a metabolically healthy gut–liver axis via microbiota reconfiguration may present an
interesting avenue in the lipid-lowering potential of PLPs.

Figure 7. Protection against inflammation and microbiota dysbiosis by polyphenols. Polyphenols (PLP) included in
diet may be composed of a wide range of molecules, from monomers to polymers. While the smaller mono-/di- and
trimers can be directly absorbed in the proximal intestine, polymers need to continue their transit to undergo catabolism
by microbiota in the colon. Commensal bacteria and their metabolites promote a wide variety of beneficial metabolic
outcomes for local epithelial cells. Advantageous actions include improvement of gut integrity and production of both
mucus and of gastrointestinal peptides. In addition, control over microbiota dysbiosis adverts the formation of nefarious
metabolites such as bacterial lipopolysaccharide (LPS), thereby enhancing anti-inflammatory protection, and limiting further
environmental stressors such as oxidative stress and lipid metabolism dysregulation. GLP-1, glucagon-like peptide 1; PYY,
peptide YY; SCFA, short-chain fatty acids. Some images in this figure were obtained and modified from Servier Medical Art
(https://smart.servier.com).

https://smart.servier.com
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4. Methods

The available literature regarding polyphenol challenge on lipid profile in humans has
been searched and analyzed. Electronic database Medline (PUBMED) was used for article
research. The following keywords were employed: “polyphenols”, “lipids”, “triglycerides”,
“cholesterol”, “LDL-C” and /or “HDL-C”. In order to be considered eligible, clinical trials
had to comprise at least one parameter of this lipid profile, challenged by PLP intake and
with the indication of lipid levels at baseline and following intervention. No discrimination
was made regarding publication date, number or sex of participants enrolled. We excluded
trials focusing on other pathologies. We also rejected meta-analyses, reviews and animal
studies. Thus, 49 published clinical trials corresponding to our selection criteria were
retained and thoroughly analyzed.

5. Polyphenol Supplementation in Humans—Intervention Trials

Recently, interest in dietary PLPs for human health has led to a great deal of research,
especially in the cardiometabolic field. The following sections of this review particularly
cover in vivo clinical studies, with a special focus on the potential of PLP to treat various
types of human DLP.

5.1. Chronic Intake Interventions

Trials lasting more than a single time point (2 weeks to a whole year) were considered
as a chronic intake/supplementation of PLP. The clinical status of the anthropometric and
biochemical markers of participants enrolled, in essence their cardiometabolic state and
overall level of risk, may severely impact their responsiveness to treatment and therefore
account for the extensive amount of variability in clinical trials [136]. Further, since DLP is
a pathology not only associated with the MetS, but which serves as a defining risk factor
for diagnosis as well, the qualitative and quantitative assessment of other risk factors at
play (namely abdominal obesity, systolic high blood pressure and IR) could thereby better
reflect the initial metabolic state of participants enrolled. This could in turn potentially
provide a better indication for the preventive use of PLP supplementation.

5.1.1. Impact of Polyphenols on Healthy Participants

The hypothesis of the first set of studies was that the chronic consumption of PLP-
rich nutrients would maintain or improve the lipid profile of healthy participants while
ensuring safety and lack of side effects. In total, 15 clinical trials are summarized in Table 3.
Subjects were between the ages of 26 and 42, with a mean age of 34. The most relevant
lipid findings in response to PLP indicate a decrease in TG in 8/12, TC in 7/12 and LDL-C
in 8/11 along with an increase in HDL-C in 6/10 studies. The other clinical trials showed
opposite trends. Although side effects have not been reported by the different groups, the
results do not provide a clear picture of the favorable effect of PLPs on lipid and lipoprotein
parameters in healthy individuals. The inconsistency may stem from the study design,
huge PLPs concentration (45.3–3589 mg/day), intake duration (14–168 days), and matrix
(Table 3). Importantly, food matrix represents one of the major limiting factor affecting
PLP bioavailability and subsequent gastrointestinal absorption [84]. Further studies are
certainly warranted to investigate the preventive actions of PLP in healthy individuals.
Above all, efforts are needed in order to distinguish the specific effects of PLPs versus those
of the many pro-health components (e.g., vitamins, fibers, functional food products, and
minerals) present in fruits, vegetables and plants. This is a central aspect for understanding
the ultimate contribution of PLPs, which will provide a cost-effective and safe alternative
for the prevention of lipid disorders.
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Table 3. Clinical trials evaluating lipid/lipoprotein status of healthy participants in response to PLP supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLP) 2

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O. (%) TG TC LDL-C HDL-C

Red grape
(anthocyanidins,

quercetin, myricetin)
640 Diet (drink) Bid 14 P 15 (7) 34.4 ± 3.3 10 ↑19% ↓6% * ↓13% * ↑16% * [89]

Potato
(anthocyanidins) 288 Diet (whole

food) Die 14 CO 14 (8) 33.5 ± 2.9 0 ↓11% * ↑9% ↓11% * NV [137]

Shampion apple
(quercetin,

epicatechin) + pectin
75 Diet (apple

pomace) Die 28 CO 23 (14) 36.2 ± 3.7 32 ↓11% ↓5% * ↓10% * NV [143]

Shampion apple
(Procyanidin,

Epicatechin) + pectin
239 Diet (whole

apple) Die 28 CO 23 (14) 36.2 ± 3.7 32 ↓7% * ↓7% * ↓8% * ↓6% [143]

Shampion apple
(Procyanidin,

chlorogenic acid)
145

Diet
(cloudy

apple juice)
Die 28 CO 23 (14) 36.2 ± 3.7 32 ↑1% ↓3% * ↓4% * NV [143]

Shampion apple
(Procyanidin,

chlorogenic acid)
108 Diet (clear

apple juice) Die 28 CO 23 (14) 36.2 ± 3.7 32 ↑4% ↑2% * ↑6% * ↓1% [143]

Yerba mate tea
(green or roasted)
(cholorogenic acid,
4,5-dicaffeolquinic
acid, gallocatechin)

3589 Diet (drink) Tid 40 P 15 (14) 42.0 ± 3.2 11 NV ↓3% * ↓7% * ↑2% [144]

Yerba mate tea
(green or roasted)
(cholorogenic acid,
4,5-dicaffeolquinic
acid, gallocatechin)

3589 Diet (drink) Tid 20 P 15 (14) 42.0 ± 3.2 11 ↑13% ↓2% ↓9% * ↑4% [144]

Olive leaf extract
(oleuropein) 167 Liquid

supplement Bid 42 CO 60 (0) 45.3 ± 1.6 2 ↓12% * ↓6% * ↓6% * ↓4% [145]

Chocolate (flavanol,
epicatechin) + fibers 45.3 Diet (drink) Bid 28 CO 24 (13) 27.0 ± 4.8 12 ↓2% ↑4% ↑1% ↑16% * [146]

Resveratrol 150 Capsule Die 30 CO 15 (12) 38.2 ± 2.1 18 ↓1% ↑2% ↑2% ↑1% [85]
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Table 3. Cont.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLP) 2

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O. (%) TG TC LDL-C HDL-C

Resveratrol
(+300mg Orlistat die) 300 Capsule Tid 168 P 24 (21) 40.9 ± 1.6 48 ↓7% N/A N/A N/A [147]

Resveratrol 300 Capsule Tid 168 P 15 (12) 33.7 ± 2.0 48 ↑10% N/A N/A N/A [147]
Resveratrol 500 Capsule Die 30 CO 49 (42) 35.9 ± 1.6 0 ↓0.4% * NV N/A ↓1% [148]

Coffee
(hydroxycinnamic

acids,
methylxanthines)

510.6 Diet (drink) Tid 56 CO 25 (15) 26.2 ± 1.4 4 NV N/A N/A ↑4% [149]

1 Change as percentage of baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP challenge. * indicates significant variation (p < 0.05). 2 As specified by the
authors in the case of a non-purified extracts. 3 Values represent mean ± standard error of the mean. Bid, twice a day; CO, cross-over intervention; Die, daily; D.-O., drop-out rate; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP, polyphenol; S.D., Study design; TC, total cholesterol; TG, triglycerides; Tid, thrice a day.
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5.1.2. Impact of Polyphenols on Dyslipidemia

As there presently lacks any studies examining PLP challenge on any primary sub-
types of DLP, the following sections address clinical interventions including participants
presenting any subtype of secondary DLP. To this end, it was important to consider the base-
line lipid profile, which had one of the following criteria: hypertriglyceridemia (>1.7 mM),
hypercholesterolemia (>5.2 mM), elevated LDL-C (>3.4 mM) and/or low levels of HDL-C
(<1 mM for men/1.3 mM for women) [10,150]. We then analyzed whether study partic-
ipants with high CVD risk were more likely to benefit from PLP challenge. Importantly,
studies were further separated based on the number of co-morbidities accompanying DLP,
which ranges from one to three (Tables 4–6), and by including the CVD risk based on the
Framingham risk score. The latter was chosen since it takes into account the age, the levels
of TC and HDL-C, systolic blood pressure and presence of T2D.

Impact of Polyphenols on Patients with a Single Dyslipidemia Component

In the 15 of clinical trial studies listed with a single component of DLP (Table 4), an
improvement is noted in TG (n = 10), TC (n = 8) and HDL-C (n = 11) in response to PLP
treatment in the majority of clinical trials. However, mixed results were observed in LDL-C.
The variability of the findings may be due to the divergences in the study design involving PLP
type, the matrix (as method of delivery) and dosage (0.05–2148 mg/d), as well as trial length
(15–56 days), number of patients (20–184) and gender (number of women limited to 0–21).

Impact of Polyphenols on Patients with Two Dyslipidemia Components

Intriguingly, only 8 studies are available in this DLP category involving two mor-
bidities (Table 5). Despite the limited number, it is possible to observe an improvement
in TG (6/8), TC (5/8), LDL-C (5/8) and HDL-C (6/8). We can observe a great variability
in the dose of PLPs (40–1500 mg/day), number of patients (n = 8–43), age of subjects
(42–62 years), duration of the trial (14–77 days), matrix and gender.

Impact of Polyphenols on Patients with Three Dyslipidemia Components

The majority of trials in this category of patients showed an improvement of TG (8/10),
TC (8/10, LDL-C (8/10) and HDL-C (6/9) in response to PLPs (Table 6). Noteworthy, in this
category of DLP with three morbidity factors, two studies using resveratrol yielded poor re-
sults. Findings of a few studies were controversial as revealed in a meta-analysis conducted
by Zhang et al. who found that resveratrol supplementation significantly increased total-
and LDL-C concentrations [151]. Nevertheless, we expected hypocholesterolemic effects of
resveratrol given positive findings in mice, including CHOL lowering and atherosclerosis
protection via enhanced activity of peroxisome proliferator-activated receptor α [152],
improvement of the endothelial activity [153], suppression of platelet aggregation [154],
and reduction of blood pressure [155].
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Table 4. Clinical studies evaluating lipid/lipoprotein status of dyslipidemia participants with a single morbidity in response to polyphenol supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLPs) 2

Dosage
(mg/Day) Matrix

Intake
Repar-
tition

Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Coffee
(hydroxycinnamic

acids,
methylxanthines)

510.6 Diet
(drink) Tid 56 CO 27 (17) 33.7 ±

1.8 4
√

0.4 ↓20% * N/A N/A ↓1% [149]

Virgin olive oil
(lignans) 2.9 Diet Die 21 CO 33 (14) 55.2 ±

1.8 15
√

9.5 ↓6% ↓5% ↑1% NV [156]

Enriched virgin
olive oil

(hydroxytyrosol
derivatives,

lignans,
flavonoids)

12.1 Diet Die 21 CO 33 (14) 55.2 ±
1.8 15

√
9.5 ↑3% ↓4% NV ↑2% [156]

Enriched virgin
olive oil

(hydroxytyrosol
derivatives,

lignans)

12.6 Diet Die 21 CO 33 (14) 55.2 ±
1.8 15

√
9.5 ↑3% ↓4% ↓8% * ↓1% [156]

Olive oil (not
specified) 0.05 Diet Die 21 CO 182 (0) 33.3 ±

0.8 8
√

1.9 ↓6% NV ↑1% ↑2% * [157]

Olive Oil (not
specified) 3.6 Diet Die 21 CO 184 (0) 33.3 ±

0.8 8
√

1.9 ↓4% NV ↑1% ↑3% * [157]

Olive Oil (not
specified) 8.1 Diet die 21 CO 183 (0) 33.3 ±

0.8 8
√

1.9 ↓5% NV ↑2% ↑4% * [157]

Pine Bark
(flavonoids) 150 Capsule Die 42 CO 25 (15) 30.0 ±

1.5 0
√

1.7 ↑2% ↓2% ↓7% * ↑11% * [158]
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Table 4. Cont.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLPs) 2

Dosage
(mg/Day) Matrix

Intake
Repar-
tition

Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Cocoa (epicatechin,
catechin,

procyanidin)
282 Diet

(drink) Bid 28 P 37 (21) 49.9 ±
1.3 0

√
5.5 ↓7% ↓3% ↓5% * ↑9% * [159]

Cocoa (epicatechin,
catechin,

procyanidin)
211 Diet

(drink) Bid 28 P 32 (18) 49.9 ±
1.3 0

√
5.4 ↓2% ↓2% ↓4% * ↑7% * [159]

Cocoa (epicatechin,
catechin,

procyanidin)
141 Diet

(drink) Bid 28 P 31 (18) 49.9 ±
1.3 0

√
5.5 NV ↓3%

* ↓5% * ↑5% * [159]

Chocolate
(flavanol,

epicatechin) +
fibers

45.3 Diet
(drink) Bid 28 CO 20 (11) 30.0 ±

6.2 12
√

2.0 ↑1% ↑2% NV ↑12% * [146]

Dark chocolate
(not specified) 2148 Diet Die 15 CO 92 (34) 45.0 ±

1.1 40
√

5.9 ↓8% ↑2% ↑4% ↑5% * [160]

Dealcoholized red
wine (not
specified)

1000 Diet
(drink) Die 42 P 15 (15) 57.6 ±

1.3 0
√

6.3 ↓2% ↓1% NV ↓5% [86]

Mate Tea
(chlorogenic acid) 107 Diet

(drink) Die 15 CO 92 (34) 45.0 ±
1.1 40

√
5.9 ↓3% ↑1% ↑3% ↑1% * [160]

1 Change as percentage of baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP challenge. * indicates significant variation (p < 0.05). 2 As specified by the
authors in the case of a non-purified extracts. 3 Values represent mean ± standard error of the mean. Bid, twice a day; CO, cross-over intervention; Die, daily; D.-O., drop-out rate; FRS, Framingham risk score;
HDL-C, high-density lipoprotein cholesterol; IR, insulin resistance; LDL-C, low-density lipoprotein cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP, polyphenol; SBP, systolic blood
pressure; S.D., Study design; TC, total cholesterol; TG, triglycerides; Tid, thrice a day.
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Table 5. Clinical studies evaluating lipid/lipoprotein status of dyslipidemia participants with two morbidities in response to polyphenol supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLPs) 2

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL- C HDL-C

Carob (not
specified)

+7.2 g insoluble
fibers

40 Capsule Bid 30 P 43 (22) 42.9 ±
9.5 9

√ √
6.6 ↓23% * ↓18% * ↓23% * ↑6% * [161]

Red grape
(anthocyanidins,

quercetin,
myricetin)

640 Juice Bid 14 P 26 (13) 62.0 ±
3.4 10

√ √
12.8 ↓8% ↓11% * ↓18% * ↑13% * [89]

Red wine (not
specified) 1000 Diet

(drink) Die 42 P 14 (14) 58.4 ±
1.3 0

√ √
7.3 ↑17% NV ↓8% * ↑17% * [86]

Catechins,
theaflavins 224.4 Capsule Die 77 P 31 (11) 50.1 ±

0.5 0
√ √

7.0 ↓13% ↓1% * ↓2% * ↑3% [162]

Theaflavins 77.5 Capsule Die 77 P 34 (12) 47.5 ±
1.0 0

√ √
7.0 ↑7% ↓3% * ↓7% * ↑2% [162]

Resveratrol 1500 Capsule Bid 14 CO 8 (0) 45.8 ±
3.1 0

√ √
6.7 ↓20% N/A N/A N/A [163]

Resveratrol 150 Capsule Die 30 CO 18 (11) 50.4 ±
2.0 18

√ √
5.4 ↓8% ↓4% ↑1% ↑3% [85]

Cranberry
(proanthocyanidins,

anthocyani-
dins)

346 Diet
(drink) Bid 56 P 29 (15) 76.6 ±

1.6 12
√ √

4.7 ↓8% NV ↑1% ↓3% [164]

1 Change as percentage of baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP challenge. * indicates significant variation (p < 0.05). 2 As specified by the
authors in the case of a non-purified extracts. 3 Values represent mean ± standard error of the mean. Bid, twice a day; CO, cross-over intervention; Die, daily; D.-O., drop-out rate; FRS, Framingham risk score;
HDL-C, high-density lipoprotein cholesterol; IR, insulin resistance; LDL-C, low-density lipoprotein cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP, polyphenol; SBP, systolic blood
pressure; S.D., Study design; TC, total cholesterol; TG, triglycerides.
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Table 6. Clinical studies evaluating lipid/lipoprotein status of dyslipidemia participants with three morbidities in response to polyphenol supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLPs) 2

Dosage
(mg/Day) Matrix

Intake
Repar-
tition

Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Bergamot PLP
(neoeriocitrin,

naringin,
neohesperidin) (+

statin)

1000 Capsule Die 30 P 15
(N/A) N/A 0

√ √ √
>20 ↓36% * ↓38% * ↓53% * ↑37% * [165]

Bergamot PLP
(neoeriocitrin,

naringin,
neohesperidin)

1000 Capsule Die 30 P 15
(N/A) N/A 0

√ √ √
>20 ↓31% * ↓31% * ↓41% * ↑18% * [165]

Amla (Indian
gooseberry) (not

specified)
350 Capsule Bid 84 P 49 (27) 40.7 ±

1.6 0
√ √ √

5.5 ↓34% * ↓24% * ↓20% * ↓10% * [166]

Chokeberry
(anthocyanidins) 772 Diet

(drink) Die 28 P 23 (11) 47.5 ±
1.5 0

√ √ √
6.7 ↓19% * ↓4% ↓7% ↓1% [167]

Yerba mate tea
(green or roasted)

(cholorogenic
acid, 4,5-

dicaffeolquinic
acid,

gallocatechin)

3589 Diet
(drink) Tid 20 P 57 (34) 45.8 ±

1.6 12
√ √ √

3.9 ↓3% ↓3% ↓8% * ↑4% * [144]

Yerba mate tea
(green or roasted)

(cholorogenic
acid, 4,5-

dicaffeolquinic
acid,

gallocatechin)

3589 Diet
(drink) Tid 40 P 57 (34) 45.8 ±

1.6 12
√ √ √

3.9 ↓3% ↓5% * ↓9% * ↑3% [144]
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Table 6. Cont.

Polyphenols Protocol Participants Variation of Lipid Profile 1

ReferenceDietary Source
(Main PLPs) 2

Dosage
(mg/Day) Matrix

Intake
Repar-
tition

Length S.D.

(Days)
n

(Female)
Age 3

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Whole red grape
(not specified) +

2.7 g of fibers
63 Diet 5x/day 56 P 22 (18) 50.5 ±

1.5 0
√ √ √

9.5 ↓1% ↓9% * ↓15% * ↓6% [168]

Whole white
grape (not

specified) + 5.3 g
of fibers

58 Diet 5x/day 56 P 24 (18) 50.6 ±
1.3 0

√ √ √
7.1 ↓4% ↓8% * ↓10% * ↓7% [168]

Resveratrol 500 Capsule Bid 30 P 24 (12) 58.5 ±
3.4 0

√ √ √
12.8 ↑20% ↑5% * ↑5% ↓2% [169]

Resveratrol 3000 Capsule Bid 56 P 10 (0) 48.8 ±
1.7 0

√ √ √
18.4 ↑31% ↑2% ↑9% NV [170]

1 Change as percentage of baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP challenge. * indicates significant variation. 2 As specified by the authors in
the case of a non-purified extracts. 3 Values represent mean ± standard error of the mean. Bid, twice a day; CO, cross-over intervention; Die, daily; D.-O., drop-out rate; FRS, Framingham risk score; HDL-C,
high-density lipoprotein cholesterol; IR, insulin resistance; LDL-C, low-density lipoprotein cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP, polyphenol; SBP, systolic blood pressure;
S.D., Study design; TC, total cholesterol; TG, triglycerides; Tid, thrice a day.
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5.1.3. Impact of Polyphenols on Metabolic Syndrome and Type 2 Diabetes

As the MetS is viewed as one of the most challenging health problems of our century,
numerous scientists and clinicians are actively seeking effective drugs to reduce severity-
associated co-morbidities, including T2D and CVD. Currently, the treatment of the MetS
is based on multiple pharmacological agents directed against each of its components.
Although lifestyle modification remains an interesting approach, many groups attempt
to uncover novel effective nutraceuticals to alleviate its severity and development of
cardiometabolic complications. Dietary PLPs have often been proposed as a powerful tool
to fight the pathophysiological complexity related to both T2D and CVD. The goal in this
following section is to determine whether PLPs may tackle T2D and CVD according to
available clinical evidence.

Surprisingly, only 14 clinical trials have been conducted on the modulation of the
lipid profile associated-MetS patients as a function of dietary PLPs. As noted in Table 7.
About two thirds of these trials showed an improvement in TG, TC and LDL-C in response
to PLPs supplementation, whereas a negative effect was observed on HDL-C. The large
variability of the data could not recapitulate the results obtained in in vitro and preclinical
investigations [171–176]. The discrepancy is likely due to the variation in the dose of PLPs
(150–3000 mg/d), length of the studies (21–56 days), number of participants (10–68), female-
male ratios (0–1) and food matrix. Therefore, future research is needed before supporting
a potential role of PLPs in reducing lipid concentrations. The same holds true for HDL-C
in view of its PLP-promoting increase reported by the work of various groups. Ultimately,
PLP effectiveness demonstration in ameliorating DLP would be helpful towards integrating
them in MetS treatment.

Although the number of clinical trials (n = 7) remains limited in investigating diabetic
DLP in response to supplementation of PLPs, findings are more meaningful in T2D (Table 8)
compared to MetS (Table 7). The majority of studies described their reducing effect on TG
(13–42%), TC (2–12%) and LDL-C (1–15%), as well as their increasing effect on HDL-C (1–11%).
Only resveratrol failed to alleviate diabetic DLP [177]. Diversity in length of supplementation
(56–183 days) and delivery through capsules could account for the differences noted in PLPs
effects. Long-term studies involving a large cohort of subjects together with careful diet
control are needed in order to confirm the potential effect of PLPs on MetS and T2D in
humans, without, of course, leaving aside genetic differences between populations.
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Table 7. Clinical studies evaluating lipid/lipoprotein status of participants with metabolic syndrome 1 in response to polyphenol supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 2

ReferenceDietary Source
(Main PLPs) 3

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D.

(Days)
n

(Female)
Age 4

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Eckonia cava
(not specified) 144 Diet

(drink) Bid 84 P 32 (21) 40.2 ±
10.1 0

√ √ √ √
3.8 ↓8% ↓9% * ↓14% * ↑13% * [178]

Eckonia cava
(not specified) 72 Diet

(drink) Bid 84 P 33 (22) 40.6 ±
9.3 0

√ √ √ √
3.8 ↓3% ↓7% * ↓10% * ↑9% [178]

Grape
(flavanols, an-
thocyanidins)

195 Diet
(drink) Bid 28 CO 20 (8) 53.5 ±

1.4 0
√ √ √ √

9.6 ↓22% * ↓4% NV ↓1% [179]

PLP (various) 2776 Diet Tid 56 P 20 (11) 53.0 ±
1.2 9

√ √ √
7.7 ↓15% * ↓5% ↓6% ↓6% * [180]

PLP (various) +
omega-3 2667 Diet Tid 56 P 19 (11) 55.0 ±

1.2 9
√ √ √

5.4 ↓12% * ↓1% ↓5% ↓8% * [180]

Cranberry
(proanthocyanidins,

anthocyani-
dins)

458 Diet
(drink) Bid 56 P 15 (15) 52.0 ±

1.1 3
√ √ √

8.6 ↑4% ↓3% ↓4% ↓3% [181]

Cranberry and
strawberries

(phenolic acids,
pro-

anthocyanidins)

333

Liquid
sup-
ple-

ment

Die 42 P 20 (11) 57.0 ±
1.0 9

√ √ √ √
9.1 ↓10% ↓2% NV ↑1% [182]

Red wine
(catechin,

epicatechin,
gallic acid)

798 Diet
(drink) Die 28 CO 67 (0) 60.0 ±

1.0 8
√ √ √ √

>30 ↑2% ↓1% ↓4% ↑7% * [183]

Dealcoholized
wine

(catechin,
epicatechin,
gallic acid)

733 Diet
(drink) Die 28 CO 67 (0) 60.0 ±

1.0 8
√ √ √ √

>30 ↓2% ↓4% ↓2% NV [183]

Pomegranate
(not specified) 119.1 Diet

(drink) die 365 P 66 (29) 65.9 ±
1.4 34

√ √ √
24.5 ↓9% * ↑1% ↑6% ↑11% * [184]
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Table 7. Cont.

Polyphenols Protocol Participants Variation of Lipid Profile 2

ReferenceDietary Source
(Main PLPs) 3

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D.

(Days)
n

(Female)
Age 4

(Years)
D.-O.
(%) ↑LDL-C ↑TG ↓HDL-C Obesity IR ↑SBP FRS

(%) TG TC LDL-C HDL-C

Onion
(quercetin) 162 Capsule Tid 21 CO 68 (34) 47.4 ±

1.5 3
√ √ √ √

9.3 ↑1% ↓1% ↓1% ↓2% [185]

Quercetin 150 Capsule Tid 56 CO 19 (0) 59.5 ±
1.4 0

√ √ √
13.3 ↑31% ↑5% * ↑3% ↓2% * [186]

Quercetin 150 Capsule Tid 56 CO 30 (0) 59.4 ±
0.9 0

√ √ √ √
15.6 ↑4% ↑2% ↑2% ↓1% * [186]

Resveratrol 150 Capsule Die 30 CO 11 (0) 52.5 ±
2.1 0

√ √
11.2 ↑13% * N/A N/A N/A [187]

1 Baseline characteristics of participants include 3 or more of the following parameters in order to be associated with the metabolic syndrome: abdominal obesity (BMI > 30 kg ×m−2 and/or WC > 102 cm
(male)/88 cm (female)), hypertension (SBP > 130 mmHg), insulin resistance presenting as elevated fasting blood glucose (>5.5 mM), hyperTG (>1.7 mM) and low HDL-c (<1 mM (male)/1.3 mM (female)). 2

Change as a percentage from baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP challenge. * indicates significant variation (p < 0.05). 3 As specified by
the authors in the case of a non-purified extracts. 4 Values represent mean ± standard error of the mean. Bid, twice a day; BMI, body mass index; CO, cross-over intervention; Die, daily; D.-O., drop-out rate; FRS,
Framingham risk score; HDL-C, high-density lipoprotein-cholesterol; IR, insulin resistance; LDL-C, low-density lipoprotein-cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP,
polyphenol; SBP, Systolic blood pressure; S.D., study design TC, total cholesterol; TG, triglycerides; Tid, thrice a day.
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Table 8. Clinical studies evaluating lipid/lipoprotein status of participants with type 2 diabetes 1 in response to polyphenol supplementation.

Polyphenols Protocol Participants Variation of Lipid Profile 2

ReferenceDietary Source
(Main PLP) 3

Dosage
(mg/Day) Matrix Intake

Repartition
Length S.D

(Days)
n

(Female)
Age 4

(Years)
D.-O. (%) TG TC LDL-C HDL-C

Black soybean
(proanthocyanidin,
isoflavone) (+120
mg fenofibrate)
(+70 mg fibers)

538 Capsule Die 56 P 7 (3) 57.4 ± 4.3 N/A ↓42% * ↓6% ↓15% * ↑11% [188]

Black soybean
(proanthocyanidin,

isoflavone) (+70
mg fibers)

538 Capsule Die 56 P 18 (6) 56.7 ± 2.7 N/A ↓13% ↑2% ↓1% ↑2% [188]

Chlorogenic acid 1200 Capsule Tid 84 P 14 (14) 43.0 ± 1.7 13 ↓19% * ↓4% * ↓17% * ↑6% [189]
Curcuminoid 70 Capsule Die 56 P 37 (20) 46.4 ± 1.7 7 ↓13% * ↓12% * ↓11% ↑5% [190]

Grapefruit, green
tea, black carrot

and guarana seed
extract (no

information
provided)

370 Capsule Bid 84 P 8 (4) 40.7 ± 0.7 0 ↓14% * ↓9% * ↓10% * ↑9% * [191]

Resveratrol 40 Capsule Die 183 P 59 (25) 64.9 ± 1.1 7 ↑1% ↑5% ↑7% ↑1% [177]
Resveratrol 500 Capsule Die 183 P 62 (23) 65.0 ± 0.9 7 ↑21% * ↑6% * ↑6% NV [177]
1 As specified in inclusion criteria of study population or subgroup. 2 Change as a percentage of the baseline. Up and down arrows indicate lipid/lipoprotein increase and decrease, respectively, following PLP
challenge. * indicates significant variation (p < 0.05). 3 As specified by the authors in the case of a non-purified extracts. 4 Values represent mean ± standard error of the mean. Bid, twice a day; Die, daily;
D.-O., drop-out rate; CO, cross-over intervention; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; N/A, not available; NV, no variation; P, parallel intervention; PLP,
polyphenol; S.D., study design; TC, total cholesterol; TG, triglycerides; Tid, thrice a day.
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5.2. Postprandial Interventions

As we postulated that chronic intake of PLPs over an extended period of time could
ameliorate lipidemia, we similarly investigated their postprandial potential through acute
intake studies. The studies summarized in Table 9 comprised a high-fat challenge, alter-
natively referred to as an oral lipid tolerance test. This was administered to participants
either following a period of chronic intake of PLPs (14–56 days) or alternatively at a single
time point with no prior chronic intake. Reduction of TG is the most frequent benefi-
cial outcome reported (↓5–39%) although improvements in TC, LDL-C and HDL-C were
noted. Absence or negative variation of lipidemia was reported in 6 studies. These were
all acute postprandial challenges without prior chronic intake and were made of either
healthy [192–194] or DLP participants [195,196]. High-fat meal composition (both in terms
of energy density and fat) and intervention length, following ingestion, adds even greater
heterogeneity to these trials. This issue originates from the fact that there is no standardized
universally accepted oral lipid tolerance test. Indeed, challenges can differ based on fat
content (5–140 g), macronutrient composition and time of measurement following ingestion
(2–10 h) [197–199]. As a reference, an expert panel in 2011 recommended for the sake of
standardization and repeatability that an oral lipid tolerance test should consist of an
8-hour fast followed by a high-fat meal comprising 75 g of fat with a single measurement
of TG after 4 hours [200].

In all trials, the composition of the high-fat meal displayed moderate amounts of
lipids (ranging from 25 to 60 g) with sparse information on fat saturation and additional
macronutrients. Interestingly, nearly half of the included studies were closely part of a
chronic supplementation protocol, which provides more beneficial effects towards lowering
of postprandial TG and OxS. However, it should be noted that participants had either
baseline DLP, MetS or T2D background, whereas the remaining trials (with no adjunct
chronic intake) generally aimed at investigating healthy participants. Nevertheless, the
composition of supplemented PLPs was not reported. However, in some cases, when
composition was rigorously described, PLP metabolites such as quercetin dehydrate and
resveratrol were found to significantly prevent the rise of postprandial TG or Apo B-48/100
production rates [163,186].

Postprandial trials also tend to address OxS, inflammation, glucose intolerance and IR. In
their study, Farràs et al. [192] reported that PLPs from olive oil increased the gene expression
of circulating white blood cell biomarkers in association with DLP, OxS and inflammation.

5.3. Matrix and Methods of Delivery

Regarding optimal polyphenoclic challenge, there is an extreme heterogeneity in
study design and there appears to be a lack of consensus regarding their most favorable
administration in human interventions. Indeed, there is a notable absence of studies
comparing the preferable matrix for supplementation (i.e., whole food, liquid supplement
or purified capsule), dosage or repartition throughout the day (e.g., die, bid, tid, with or
without meal, etc.).

Since evidence suggests that the hypolipidemic actions of PLPs may initially come into
play in the gut either through nutritional or bile acid chelation, and inhibition of pancreatic
lipase, thereby limiting lipid absorption, polyphenolic supplementation should ideally be
done in clinical trials during meal intakes for optimal effect such as in the case of other
nutritional binders [204]. Nevertheless, this precaution is rarely addressed in clinical trials
centered on DLP, where instructions are instead focused on patient adherence rather than
on the cum cibum (cc) potential of PLPs. Consequently, polyphenolic intake is usually
once to twice a day and is less commonly extended to thrice a day. The only circumstance
under which PLPs are systematically administered with food intake is in the case where
their source derives from the entire diet regimen. These are the studies that systematically
present the greatest benefits on lipid/lipoprotein status.
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Table 9. Clinical studies evaluating the effect of polyphenols on postprandial dyslipidemia.

Polyphenol Length of Chronic
Intake (Days;
If Available) 1

Composition of High-Fat
Meal

Length of
Challenge

(Hours)

Participants
N (Female); Baseline

Characteristics

Reported Effects Reference

Dietary Source Dosage (mg) Matrix Energy (kcal) Fat (g)

Quercetin
dihydrates 150 Capsule 56 N/A 60 8

19 (0)
MetS, ApoE3
homozygotes

↓11% * of AUC
0–4 h—TG vs

placebo; No effect
overall on other
lipid parameters,

glucose and
insulin levels.

[186]

Quercetin
dihydrates 150 Capsule 56 N/A 60 8

30 (0)
MetS, ApoE3/E4

heterozygotes

↓11% * AUC 0–4
h—TG vs placebo;
No effect overall

on other lipid
parameters,
glucose and

insulin levels.

[186]

Tea, coffee,
chocolate, fruits,

olive oil
2903 Diet 21 1000 N/A 6 20 (11)

MetS

↓39% * AUC 0–6
h—TG vs baseline;
↓39% * AUC 0–6

h—VLDL-TG
↓90% * AUC 0–6

h—VLDL-TC
↓81% * AUC 0–6

h—Apo B-48;
No effect on CM

composition.

[180]

Resveratrol 1500 Capsule 14 N/A 49% 10 8 (0) DLP

↓22% * Apo B-48
and ↓27% *
ApoB100

production rates;
No effect on
plasma TG,

TRL-TG, glucose
and insulin levels.

[163]



Nutrients 2021, 13, 672 30 of 42

Table 9. Cont.

Polyphenol Length of Chronic
Intake (Days;
if Available) 1

Composition of High-Fat
Meal

Length of
Challenge

(Hours)

Participants
N (Female); Baseline

Characteristics

Reported Effects Reference

Dietary Source Dosage (mg) Matrix Energy (kcal) Fat (g)

Strawberry 338 Liquid
supplement 42 960 31 6 24 (14) DLP

↓5% * TG, ↓4% *
TC, ↓4% * LDL-C
↓3% * HDL-C
↓48% oxLDL vs

placebo.

[201]

Strawberry 338 Liquid
supplement 0 960 31 6 24 (14) DLP

↓3% * TG; ↑1% *
LDL-C; ↓1% *

HDL-C; ↓115% *
oxLDL vs placebo;
No effect on TC.

[201]

Cocoa 960 Liquid
supplement 0 766 50 6 18 (14) T2D

↑2% * HDL-C;
↑overall insulin

levels * vs placebo;
No effect overall

on other lipid
parameters and
glucose levels.

[202]

Red wine (no
alcohol) 880 Liquid

supplement 0 N/A 25 7 17 (17) DLP

No effect on TG,
Apo B-48 and

insulin levels vs
placebo.

[196]

Olive oil 8 Diet 0 N/A 27 5 13 (6) Healthy

↑15% * TG; ↓9% *
oxLDL; ↓7% *

glucose vs
baseline; no other

effect on lipid,
OxS or

inflammation
parameters.

[192]
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Table 9. Cont.

Polyphenol Length of Chronic
Intake (Days;
if Available) 1

Composition of High-Fat
Meal

Length of
Challenge

(Hours)

Participants
N (Female); Baseline

Characteristics

Reported Effects Reference

Dietary Source Dosage (mg) Matrix Energy (kcal) Fat (g)

Olive oil 26 Diet 0 N/A 27 5 13 (6) Healthy

↑24% * TG; ↓7% *
oxLDL; ↓6% *

glucose vs
baseline; no other

effect on lipid,
OxS or

inflammation
parameters.

[192]

Pomegranate 652–948 Liquid
supplement 0 N/A 50 2 19 (0) Healthy

No effect overall
on lipid

parameters.
[195]

Red wine 561 Diet 0 N/A 26 3 12 (6) Healthy

↑15% * TG ↓lipid
hydroperoxides *,

oxyCHOLs *,
7-ketoCHOL *

and 7-β-
hydroxyCHOL *

vs placebo.

[203]

Strawberry 196 Powder 0 N/A 50 4 30 (13) DLP

No effect overall
on TG, glucose,
insulin and OxS

levels.

[193]

Coffee 600 Liquid
supplement 0 N/A 30 6 13 (0) Healthy

No effect overall
on TG, TC,

glucose, insulin,
OxS and

inflammation
levels.

[194]

1 If not available, this implies that the reported trial did not include chronic intake. * Indicates significant variation (p < 0.05). AUC, area under the curve; DLP, dyslipidemia; HDL-C, high-density lipoprotein-
cholesterol; LDL-C, low-density lipoprotein-cholesterol; MetS, metabolic syndrome; N/A, not available; oxLDL, oxidized low-density lipoprotein; OxS, oxidative stress; PLP, polyphenol; TC, total cholesterol; TG,
triglycerides; TRL, triglyceride-rich lipoprotein; VLDL-TC, very low-density lipoprotein total cholesterol; VLDL-TG, very low-density lipoprotein triglycerides.
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5.4. Dosage

A recurring and puzzling problem in clinical trials is that high polyphenolic doses (e.g.,
>500 mg/day) are not necessarily associated with a better outcome on lipid
profile [177,178,185,188]. A recent review on polyphenolic consumption showed that popula-
tions with either a 1170 or 2632 mg/day intake reduced atherosclerosis risk and T2D-related
events, respectively [205]. However, mounting evidence points that flavonoids and their
subclasses could have a decreasing linear dose-response effect on lipidemia, most notably
between the 100–400 mg/day intake [206]. As these conclusions are drawn from prospective
studies with whole foods instead of isolated supplements in randomized controlled trials,
caution is warranted as the suggested hypolipidemic effects cannot be exclusively attributed
to PLPs.

Nevertheless, this suggests that aside from dosage, there may be other factors at
play which could mitigate polyphenolic intervention, such as qualitative composition,
bioavailability and method of delivery. This complexity is reflected by the lack of solid
advice regarding daily intake. As opposed to other nutraceuticals, there presently lacks any
form of official recommendation for PLPs in terms of blood lipid management [73]. Our
showings demonstrate that no single intake of any given PLP convincingly ameliorates
blood lipids. Rather, a combination of PLP, reflective of a more natural, unprocessed
intake of foods, appears to be the most important criteria. This highlights the importance
for future studies to properly assess not only composition of supplements used, by the
bioavailability of PLP as well. For now, the closest official nutritional recommendation
available stems from the European Food Safety Authority, which in 2012 certified PLPs
from olives and olive-derived products as safe-warranting normal HDL-C blood levels
and limiting LDL oxidation [207]. In a similar panel, the European Food Safety Authority
also concluded that flavanols from cocoa origin were beneficial to endothelium-dependent
vasodilatation and recommended a 200 mg/day intake in order to achieve desirable
effects [208]. Concomitantly, the USDA considers anthocyanidins as the most potent
antioxidants amongst flavonoids to prevent LDL oxidation, without, however, specifying a
particular dose or intake recommendations [79,209].

6. Conclusions and Future Perspectives

Evidence-based knowledge has been stated herein regarding the effectiveness and
indications of PLP-based phytochemicals. Surprisingly, there is currently a research gap
relating to the challenge of PLP on primary DLPs in humans. Regarding DLP as a sec-
ondary, cardiometabolic complication, lipid-lowering activity of PLPs has been reported
in various clinical studies, which we thoroughly and critically examined and analyzed in
order to determine whether PLPs have the potential to treat or ameliorate lipid metabolism.
Generally, the majority of clinical investigations showed an advantage in treating hyper-
triglyceridemia and hypercholesterolemia, whether in healthy participants or subjects with
one, two and three disturbed lipid/lipoprotein components, or in MetS, T2D and postpran-
dial DLP in response to PLP intake. Despite these promising findings, the review clearly
exhibited an invariable or opposite trend as was the case for resveratrol. In these instances,
the low study power and sample size may explain the conflicting data. Additionally, the
inconsistency may stem from the PLP type, vast concentration range and intake duration,
as well as the whole study design. More particularly, matrix represents a great challenge
for PLP studies since the presence of non-polyphenolic constituents in fruits and vegetables
may interfere with the pharmacological responses to PLP phytocomplex. The future of
collection evidence as to the efficacy of PLPs in preventing or curtailing dyslipidemic risk
factors entails the achievement of rigorously clinical trials with a well-defined design,
stringent enrollment criteria, optimum dose and well-characterized PLPs formulations
along with specific alimentary regimen, anticipated endpoints and extended follow-ups.
Only then can we reach the goals of clinical PLP use in DLP without potentially being
biased by a number of factors.
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MTTP Microsomal triglyceride transport protein
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ROS Reactive oxygen species
SR-B1 Scavenger receptor B-1
TC Total cholesterol
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T2D Type 2 diabetes
VLDL Very-low-density lipoprotein
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