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Lung Transplantation Advanced Prediction Tool: 
Determining Recipient’s Outcome for a Certain 
Donor
Farhan Zafar, MD,1,4 Md Monir Hossain, PhD,2,4 Yin Zhang, MS,2 Alia Dani, MD, MPH,1 Marc Schecter, MD,5  
Don Hayes Jr, MD,3,4 Maurizio Macaluso, MD, DrPH,2,4 Christopher Towe, MD,3,4 and David L.S. Morales, MD1,4

Lung transplantation (LTx) faces a suboptimal organ 
allocation scheme, with long waiting times and high 

waiting list mortality for transplant candidates. Although 
the lung allocation score (LAS) stratifies recipient risk and 
contributes to lowering waiting time, mortality remains 
15% for adult and 22% for pediatric patients awaiting 
LTx.1 On the other hand, only 20% of all multiorgan 
donors are utilized for LTx in the United States, compared 
with 50% in European countries.2,3 An important factor 
contributing to the apparent shortage of organs in the 
United States is the usage of nonstandardized and often 

stringent donor selection criteria: Over 15 different char-
acteristics that vary between centers are considered while 
selecting donors.4

The role of each of these characteristics and their com-
bined effect is largely unknown. Other solid organ trans-
plant groups have successfully devised comprehensive 
donor risk stratification systems based on the combined 
impact of these characteristics to standardize their match-
ing process.5 For example, the kidney donor profile index, 
adapted by the United Network for Organ Sharing (UNOS) 
in 2014, resulted in increased utilization of organs, and 
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web-based tool was developed for clinical use. Results. A derivation cohort (n = 10 660) informed the model with 13-recipi-
ent, 4-donor, and 2-transplant variables. Adjusted risk scores were computed for every transplant and grouped into 3 clusters. 
Model-estimated survival probabilities were similar to the observed in the validation cohort (n = 4464) for all clusters. The mortality 
increases for medium- and high-risk groups was similar in both derivation and validation cohorts (C statistics for 1-, 5-, and 10-y 
survival were 0.67, 0.64, and 0.72, respectively). The web-based application estimated 1-, 5-, 10-y survival and half-life for low- 
(92%, 73%, 52%; 10.5 y), medium- (89%, 62%, 38%; 7.3 y), and high-risk clusters (85%, 52%, 26%; 5.2 y). Conclusions. 
Advanced methods incorporating machine/deep learning led to a risk scoring model (including recipient, donor, and transplant 
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increased transplant rates for the most difficult-to-match 
patients, reaching up to 6-fold in some cases, with better 
or at least similar early graft survival.6-9 There is a need for 
a similar tool to quantify the risk for LTx and allow better 
and more standardized recipient-donor matching.

There is increasing evidence from the LTx community, 
and from other solid organ transplantation, that high-risk 
donors can be matched to certain recipients without com-
promising outcomes while increasing organ utilization 
rate. However, this does not hold true for all cohorts of 
recipients.10-16 An allocation system based on recipient, 
donor, and transplant characteristics rather than just recip-
ient characteristics may optimize both clinical outcomes 
and organ utilization nonetheless. A recently introduced 
mortality after lung transplantation score does incorporate 
both donor and recipient factors and improves upon other 
risk scores but is limited by use of short-term survival.17

Our aim is to take initial steps to developing a LTx allo-
cation system that focuses on increasing utilization but also 
the number of years alive with a transplant for the whole 
community maximize benefit from a limited donor pool. 
We took advantage of new statistical methodologies and 
the incorporation of machine and deep learning into pre-
diction models to develop an objective risk scoring model 
that includes recipient, donor, and transplant factors. For 
demonstrating an wider applicability of the proposed risk 
scoring model, a web-based clinical tool that can predict 
the median survival time and the 1-, 5-, and 10-y survival 
probabilites of possible recipient-donor matches was also 
developed.

MATERIALS AND METHODS
All UNOS patients who received a double LTx between 
January 2005 and March 2020 and were aged ≥12 y at 
transplant were eligible for analysis. This age cutoff was 
used because a similar allocation system and LAS are appli-
cable to candidates ≥12 y. Patients who received retrans-
plantations, those who had other solid organ transplant 
simultaneously or had missing posttransplant survival 
status were excluded. Details of how the recipient, donor, 
and transplant variables were selected, and the methods to 
assign a risk score are provided in the Supplement (SDC, 
http://links.lww.com/TP/C396).

The categories for the variables were formed using prior 
published work (age and estimated glomerular filtration 
rate [eGFR]) and clinical relevant cutoffs (Karnofsky 
Performance Status and eGFR). Missing data were 
imputed for records with only a single missing data point, 
whereas records with multiple missing data points were 
excluded. Imputation of missing data for recipient and 
donor variables was conducted separately using the recipi-
ent and donor characteristics, respectively, assuming that 
the data was missing at random, that is, that data missing-
ness can be fully explained by the observed information.18 
The Supplement (SDC, http://links.lww.com/TP/C396) 
contains the illustration of the imputation methods. The 
survival distributions for the included and not included 
recipients in the study were examined to ensure that both 
groups had similar patterns.

Once the adjusted total risk scores were derived, our 
goal was to group the total score vector into distinct 
clusters with homogeneous survival risks. Using the 

expectation-maximization clustering algorithm, total 
scores were grouped into 3 groups: low, medium, and high 
risk.19 The optimum number of clusters was determined 
using the Silhouette score. For each recipient-donor match, 
we computed the probability of belonging to each cluster 
and assigned the recipient-donor match to the cluster with 
the largest probability.

We calculated model-based short-, medium-, and long-
term survival probabilities and their 95% confidence inter-
val (CI) for each risk group in the validation cohort data 
and compared them with the observed percentages. We 
also compared the derivation and validation cohorts by 
examining the Kaplan-Meier (KM) survival curves of each 
risk group and by computing the hazard ratios between 
risk groups. All statistical analyses were conducted using 
SAS version 9.4 (SAS Institute, Cary, NC) and R version 
3.5.0 (R Core Team, 2018). The glmnet (V2. 0-18), an R 
package was used to perform the variable selection analy-
ses. Institutional Review Board was obtained, and patient 
consent was waived.

According to algorithms discussed above, a web-based 
tool was designed to make predictions on long-term (1, 5, 
and 10 y) survival probabilities and half-life for any given 
recipient-donor match. The goal was to provide a tool to 
make an informed decision for the recipients at the time 
of transplant.

RESULTS
A total of 19 263 eligible double LTxs were performed 

in the study period, and 15 124 were included in the anal-
ysis. Cohort selection is detailed in Figure  1. Details on 
missing data and imputation results are presented in the 
Supplement (SDC; http://links.lww.com/TP/C396).

The study cohort was randomly subdivided into a 
derivation cohort of 10 660 (70%) cases and a validation 
cohort of 4464 (30%). Continuous recipient, donor, and 
transplant data for the derivation and validation cohorts 
were summarized as median with interquartile range 
(IQR) and discrete data as percentage with frequency. 
Nonparametric tests (Mann-Whitney U test) were used for 
testing the difference between 2 medians, and χ2 test for 
testing differences between 2 proportions. The comparison 
between derivation and validation cohorts for each of the 
recipient, donor, and transplant characteristics is presented 
in Table 1.

All recipient, donor, and transplant variables with 
categorical levels reported in Table  1 are included in 3 
competing models: Cox-Lasso regression model, Cox 
regression with backward elimination, and random for-
est Cox. The optimal lambda (0.011) in Cox-Lasso was 
within the range of minimum mean crossvalidated error 
and 1 SE of the minimum and assigned to a value to ensure 
a balance between model over-fitting and simplicity. We 
observed less predictive ability with the validation cohort 
of the other 2 methods, Cox regression with backward 
elimination and random forest Cox, compared with Cox-
Lasso. Specifically, we observed that the 95% CI for the 
survival probability for the medium- and high-risk groups 
was overlapping using the other 2 methods. In Table S1 
(SDC, http://links.lww.com/TP/C396), we provide the list 
of variables selected by each of these methods. Overall, the 
Cox-Lasso provided a more clinically interpretable list of 
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variables. The variables included in the model were divided 
into recipient-, donor-, and transplant-specific variables. 
The recipient variables were age, race, body mass index, 
initial and end LAS, diagnosis, Karnofsky Performance 
Status, eGFR, albumin, tobacco, steroid, extracorporeal 
mechanical oxygenation (ECMO), and ventilator. The 
donor variables were age, race, tobacco, and diabetes, and 
the transplant-related variables included cytomegalovirus 
mismatch and ischemia time (6 h). The regression coef-
ficient estimates of all these variables with 95% CIs are 
reported in Table 2.

Model Validation
Given the covariate levels of each recipient, the adjusted 

total risk score was computed for every recipient and 
Figure  2A shows its density plot. The median of the 
adjusted total score was 42 (IQR, 31–55). The median sur-
vival time with 95% CI for each adjusted total risk score 
using the Cox regression model is plotted in Figure 2B. We 
also examined the model’s prediction ability by using the 
adjusted total risk score for short-, medium-, and long-term 
survival. The C statistics for the mortality of 1, 5, and 10 y 
were 0.67, 0.64, and 0.72, respectively. These values were 
acquired from logistic regression models wherein binary 
indicators were used for 1-, 5-, and 10-y mortality as out-
comes and adjusted total risk score as the only covariate.

The adjusted total scores were grouped into 3 clus-
ters by using the expectation-maximization algorithm 
(Figure 3). The median (IQR) of the adjusted total score 
was 15 (10–19) in the low-risk cluster, 39 (33–44) in 
the medium-risk cluster, and 61 (56–68) in the high-risk 
cluster. The distribution of cases by risk group was very 
similar for derivation and validation cohorts (Table  3). 

The observed survival rates by risk group in the valida-
tion cohort were within the model estimated 95% CIs, 
indicating that the model fit was good. The only exception 
was for 1-y survival in the high-risk group. For each risk 
group, the KM survival curves from the derivation cohort 
with 95% CIs (solid line with shaded area in Figure 4) and 
from the validation cohort (dotted line with shaded area in 
Figure 4) indicated that good validation criteria were met. 
The P values from the log rank tests for the similarity of 
2 KM curves in low-, medium-, and high-risk groups are 
0.42, 0.98, and 0.78, respectively. Again, the similarities in 
hazard ratio estimates between derivation and validation 
cohorts (Table 3 and Figure 5A and B) provide evidence in 
support of the Cox-Lasso model.

To make this Lung Transplantation Advanced Prediction 
Tool (LAPT) readily available for clinicians, a webpage 
was developed in Hypertext Markup Language with 
LAPT presented in the form of a simple calculator (link: 
https://lungscore.research.cchmc.org/96b53228-f7b6-
4cb0-bbdf-59bf733d7056). Users can enter recipient, 
donor, and transplant information to learn the predicted 
1-, 5-, 10- y survival, risk classification and associated sur-
vival and half-life prediction, an example highlighted in 
Figures 6 and 7.

DISCUSSION
Presently, the lung allocation system is recipient centric 

depending mainly on the LAS score, which is derived from 
recipient characteristics. Matches are made based on LAS 
and on individual programs’ perception of how differ-
ent donor and transplant characteristics may or may not 
affect their patient’s outcome. However, a complimentary 
tool developed using machine learning algorithms (MLAs) 

FIGURE 1. Flow diagram on final cohort selection. PSTATUS, patient status; PTIME, patient time, referring to post transplant survival 
status and time; TX, transplantation.

https://lungscore.research.cchmc.org/96b53228-f7b6-4cb0-bbdf-59bf733d7056
https://lungscore.research.cchmc.org/96b53228-f7b6-4cb0-bbdf-59bf733d7056
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TABLE 1.

Comparison of recipient, donor, and transplant characteristics by derivation and validation cohorts using the recipient, 
donor, and transplant characteristics available in UNOS national data set

Characteristic table of validation and derivation cohorts

Characteristics type/measures Validation Derivation Pa

Recipient characteristics
 Age median, y 57 [46–63] 57 [45–63] 0.5284
 Age groups   0.0509
  12–29 10.7% (478) 11.4% (1215)  
  30–49 19.6% (876) 19.8% (2112)  
  50–59 30.1% (1343) 27.7% (2953)  
  60–64 20.0% (893) 20.7% (2209)  
  ≥65 19.6% (874) 20.4% (2171)  
 Sex   0.1377
  Female 41.4% (1847) 42.7% (4550)  
  Male 58.6% (2617) 57.3% (6110)  
 Race/ethnicity   0.9404
  White 79.7% (3557) 79.5% (8470)  
  Black 10.3% (462) 10.4% (1106)  
  Hispanic 7.3% (327) 7.6% (810)  
  Other 2.6% (118) 2.6% (274)  
 Body mass index, kg/m2 25.3 [21.2–28.7] 25.0 [21.1–28.6] 0.0624
 Diagnosis   0.3287
  Obstructive lung disease 28.2% (1259) 28.5% (3034)  
  Pulmonary vascular disease 4.9% (217) 5.1% (544)  
  Cystic fibrosis 16.3% (729) 17.3% (1842)  
  Restrictive lung disease 50.6% (2259) 49.2% (5240)  
 Initial LAS 37.3 [33.6–44.8] 37.1 [33.6–44.5] 0.8107
 End LAS 41.6 [35.3–55.2] 41.1 [35.3–55.5] 0.8387
 Functional status (KPS)   0.6286
  <30 15.2% (678) 14.9% (1592)  
  30–59 42.4% (1893) 43.3% (4611)  
  ≥60 42.4% (1893) 41.8% (4457)  
 eGFR, mL/min/1.73 m2 101 [81–126] 101 [80–126] 0.6204
 Albumin, g/dL 3.90 [3.50–4.30] 3.90 [3.50–4.30] 0.2174
 Tobacco use   0.3375
  No 45.2% (2016) 46.0% (4905)  
  Yes 54.8% (2448) 54.0% (5755)  
 Recent infection   0.5090
  No 86.0% (3840) 85.6% (9126)  
  Yes 14.0% (624) 14.4% (1534)  
 Steroid use   0.3542
  No 55.3% (2468) 56.1% (5981)  
  Yes 44.7% (1996) 43.9% (4679)  
 ECMO pretransplant   0.4078
  No 94.6% (4222) 94.9% (10 117)  
  Yes 5.4% (242) 5.1% (543)  
 Ventilation pretransplant   0.4287
  No 93.6% (4179) 93.3% (9942)  
  Yes 6.4% (285) 6.7% (718)  
 CMV   0.5739
  Negative 45.9% (2047) 45.4% (4835)  
  Positive 54.1% (2417) 54.6% (5825)  
Donor characteristics
 Age median, y 32 [22–46] 32 [22–46] 0.6643
 Age groups   0.6811
  <50 80.7% (3604) 81.0% (8637)  
  ≥50 19.3% (860) 19.0% (2023)  
 Sex   0.4475
  Female 40.1% (1789) 40.7% (4343)  
  Male 59.9% (2675) 59.3% (6317)  
 Race/ethnicity   0.0266
  Other 82.5% (3685) 81.0% (8636)  
  Black 17.5% (779) 19.0% (2024)  

Continued next page
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 Body mass index, kg/m2 25.2 [22.3–29.0] 25.3 [22.4–29.0] 0.7808
 Tobacco use   0.7566
  No 92.0% (4106) 92.1% (9821)  
  Yes 8.0% (358) 7.9% (839)  
 Hypertension   0.5446
  No 76.8% (3430) 76.4% (8142)  
  Yes 23.2% (1034) 23.6% (2518)  
 Diabetes   0.2819
  No 93.1% (4155) 92.6% (9869)  
  Yes 6.9% (309) 7.4% (791)  
 Bronchoscopy abnormal   0.5901
  No 73.0% (3257) 73.4% (7823)  
  Yes 27.0% (1207) 26.6% (2837)  
 Chest X-ray abnormal   0.2028
  No 41.1% (1834) 42.2% (4499)  
  Yes 58.9% (2630) 57.8% (6161)  
 HIV   0.7476
  No 82.4% (3680) 82.7% (8811)  
  Yes 17.6% (784) 17.3% (1849)  
 Recent infection   0.6463
  No 31.1% (1388) 31.5% (3355)  
  Yes 68.9% (3076) 68.5% (7305)  
 Pao

2
/FiO2 ratio   0.4060

  <200 1.4% (64) 1.4% (150)  
  200–299 6.7% (301) 6.7% (713)  
  300–399 25.6% (1143) 26.9% (2872)  
  ≥400 66.2% (2956) 65.0% (6925)  
 PEEP   0.3321
  ≤5 81.1% (3620) 81.8% (8716)  
  >5 18.9% (844) 18.2% (1944)  
 Adjusted tidal volume   0.7469
  ≤8 26.9% (1199) 27.0% (2875)  
  8–12 65.5% (2922) 65.7% (7004)  
  >12 7.7% (343) 7.3% (781)  
 Arterial blood pH 7.42 [7.38–7.46] 7.42 [7.38–7.46] 0.0476
 Arterial blood −HCO

3
23.8 [21.5–26.2] 23.7 [21.2–26.3] 0.2028

 Deceased donor cause of death   0.9791
  Other 67.8% (3025) 67.8% (7226)  
  Cerebrovascular/stroke 32.2% (1439) 32.2% (3434)  
 Circumstance of death   0.6812
  Other 82.7% (3690) 82.4% (8782)  
  MVA 17.3% (774) 17.6% (1878)  
 Mechanism of death   0.5583
  Other 67.3% (3006) 66.8% (7126)  
  Intracranial hemorrhage/stroke 32.7% (1458) 33.2% (3534)  
 CMV   0.6287
  Negative 37.6% (1679) 37.2% (3965)  
  Positive 62.4% (2785) 62.8% (6695)  
Transplantation characteristics
 Ischemic time median, h 5.48 [4.55, 6.52] 5.48 [4.53, 6.52] 0.7511
 Ischemic time groups   0.9940
  <6 h 63.3% (2824) 63.3% (6743)  
  ≥6 h 36.7% (1640) 36.7% (3917)  
aContinuous data were compared using Wilcoxon rank-sum test and were reported as median [interquartile range]. Categorical variables were compared using χ2 analysis and are reported as % (n).
CMV, cytomegalovirus; ECMO, extracorporeal mechanical oxygenation; eGFR, estimated glomerular filtration rate; KPS, Karnofsky Performance Status; LAS, lung allocation score; MVA, motor vehicle 
accident; PEEP, positive end-expiratory pressure; UNOS, United Network for Organ Sharing.

TABLE 1. (Continued)

Characteristic table of validation and derivation cohorts

Characteristics type/measures Validation Derivation Pa

that matches recipient and donor, based on their respec-
tive risk factors, and includes transplant-related factors to 
optimize the best pairing is not far-reaching. In fact, the 
use of machine learning compared with other methods, is 

more effective and efficient at detecting hidden patterns in 
large data sets.20 MLAs are being used in other solid organ 
transplants. A new allocation system for kidney transplant 
was proposed, with different combination of variables 
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TABLE 2.

Estimation of regression coefficients with 95% CIs from the Cox-Lasso regression using derivation cohort

Lung TX

Cox-Lasso

 95% CI

Variable names Labels Coefficients Lower Upper

Recipient variables
 Age, y 12–30 0   

30–50 −0.2817 −0.3537 −0.2275
50–60 −0.1037 −0.1764 −0.0773
60–65 0   
≥65 0.1811 0.1798 0.3008

 Race White 0   
Black 0.0150 0.0093 0.1913
Hispanic 0   
Other 0   

 BMI, kg/m2 <18.5 0   
18.5–30 −0.0874 −0.2185 −0.0526
≥30 0   

 Diagnosis groups Obstructive pulmonary disease 0   
Pulmonary vascular disease 0.0108 0.0178 0.2821
Cystic fibrosis −0.0254 −0.1921 −0.0044
Restrictive pulmonary disease 0   

 LAS <50 0   
50–75 0.0348 −0.0074 0.1781
≥75 0   

 End LAS <50 0   
50–75 0   
≥75 0.0179 −0.0487 0.1341

 KPS <30 0   
30–60 0   
≥60 −0.0654 −0.2152 −0.0408

 eGFR, mL/min ≤50 0   
<50 0.1726 0.1092 0.4406

 Albumin, g/dL <3.4 0   
≥3.4 −0.0350 −0.1921 −0.0143

 Tobacco use Yes 0.0305 0.0197 0.1552
 Steroid Yes 0.0105 0.0029 0.1036
 ECMO pretransplant Yes 0.0148 −0.0358 0.2377
 Ventilator pretransplant Yes 0.0660 −0.0311 0.2106
Donor variables
 Age, y <50 0   

≥50 0.0778 0.0261 0.1837
 Race Other 0   

Black 0.0378 0.0229 0.1746
 Tobacco use Yes 0.0289 0.0166 0.2057

No 0   
 Diabetes Yes 0.0053 0.0018 0.1958

No 0   
TX variables
 CMV mismatch Yes 0.0316 0.0270 0.1356

No 0   
 Ischemia time <6 0   

≥6 0.0506 0.0303 0.1444

BMI, body mass index; CI, confidence interval; CMV, cytomegalovirus; ECMO, extracorporeal mechanical oxygenation; eGFR, estimated glomerular filtration rate; KPS, Karnofsky Performance Status; 
LAS, lung allocation score; TX, transplantation.
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FIGURE 2. Adjusted total scores from Cox-Lasso model using the derivation cohort. A, Distribution of adjusted total score. B, Median 
survival time with 95% confidence interval (CI) for each adjusted total risk score using the Cox regression model.

FIGURE 3. The grouping of adjusted total scores in 3 clusters from expectation-maximization (EM) clustering algorithm.

used for 2 separate age groupings based on coefficients 
from an ensemble of statistical methods, including the 
Lasso models.21 MLAs were also used in the liver trans-
plantation field in an Australian study predicting early 
graft rejection.22 Another study reported that the compila-
tion of liver recipient and donor factors provided better 
3-mo prediction of graft survival compared with using iso-
lated donor and recipient factors for matching.23

In the LTx field, MLAs are still not widely utilized, and 
LAS continues to be the main factor used to determine 
transplant urgency. Nevertheless, majority of patients 
listed for LTx fall under a narrow range of LAS values, 

with only 17% having a score greater than 50 in 2018.24 
Therefore, using LAS alone does not account for the heter-
ogeneity of recipients. Furthermore, donor factors should 
be accounted for, and some clinicians have proposed 
matching based on donor and recipient factors, employ-
ing beyond the usual donor factors of ABO and height 
compatibility. Evidence supporting matching on age has 
been reported that corroborate our finding of age as a 
major influence on both donor and recipient scores.25,26 
Subsequently, Hall et al concluded that although donor-to-
recipient age matching was not an independent risk factor, 
it should still be included when considering the totality of 
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donor and recipient characteristics.27 This suggests that 
organs should not be refused based on advanced donor 

age alone. These studies support our purpose of looking at 
the interplay of all factors for every patient.

TABLE 3.

Validation results for checking the adequacy of Cox-Lasso model derived from the derivation cohort when applied to 
validation cohort

Optimal model results Low risk Medium risk High risk

No. of recipients
 Derivation, n (%) 1581 (14.8%) 5799 (54.4%) 3280 (30.8%)
 Validation, n (%) 664 (14.9%) 2465 (55.2%) 1335 (29.9%)
 Total, n (%) 2245 (14.8%) 8264 (54.6%) 4615 (30.5%)
Mortality rates (validation cohort)
 1 y
  Model estimated 91.4% (90.0%–92.7%) 87.9% (86.8%–89.0%) 83.7% (82.1%–85.3%)
  Observed 91.4% 89.0% 81.6%
 5 y
  Model estimated 71.3% (67.8%–75.0%) 61.6% (59.5%–63.8%) 51.3% (48.3%–54.5%)
  Observed 70.6% 61.3% 52.6%
 10 y
  Model estimated 51.9% (46.9%–57.3%) 39.1% (36.0%–42.4%) 27.4% (24.0%–31.4%)
  Observed 54.7% 38.3% 27.6%
Hazard ratio: (95% CI); P
Derivation Reference 1.55 (1.39-1.72); P < 0.0001 2.12 (1.90-2.37); P < 0.0001

 Ref 1.37 (1.28-1.47); P < 0.0001
Validation Reference 1.43 (1.22-1.68); P < 0.0001 1.97 (1.67-2.33); P < 0.0001

 Ref 1.38 (1.24-1.53); P < 0.0001

CI, confidence interval.

FIGURE 4. Kaplan-Meier (KM) curves from derivation cohort (solid line with 95% confidence intervals [CIs] in shaded area) and from 
validation cohort (dotted line) for high-, medium-, and low-risk groups.
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Other risk factors have also been considered like 
cytomegalovirus mismatch and ECMO use. Previous 
studies have suggested that donor and recipient cytomeg-
alovirus mismatch increases the risk of mortality in LTx 
patients.28,29 Similar results were reported in our model 
in which cytomegalovirus mismatch was found to be a 

significant risk factor. Similar pattern was also seen when 
considering ECMO use. In fact, prolonged waitlist times 
have prompted more ECMO use as a bridge to LTx, and 
ECMO was found to be a significant risk factor that 
affects posttransplantation survival. Therefore, includ-
ing ECMO use into the risk score prediction is essential 

FIGURE 5. Survival probability comparisons among risk groups. A, Hazard ratio estimates with pairwise risk group comparisons for 
derivation cohort, and the survival probability with 95% confidence intervals (CIs) for each risk group. B, Hazard ratio estimates with 
pairwise risk group comparisons for validation cohorts and the survival probability with 95% CIs for each risk group.

FIGURE 6. Web application example (screenshot) Example 1: A 55-y-old Black female patient diagnosed with obstructive lung disease 
(COPD) with low estimated glomerular filtration rate (eGFR; <50 mL/min) receiving lungs from a Black donor aged <50 y, nonsmoker, 
and does not have diabetes. Transplant had a good ischemia time (<6 h). The patient has a 59.6% chance of falling in the high-risk level 
group with an expected half-life of 5.2 y. BMI, body mass index; CMV, cytomegalovirus; eGFR, estimated glomerular filtration rate; KPS, 
Karnofsky Performance Status; LAS, lung allocation score; TX, transplantation.
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in this new era of LTx. We do acknowledge that we were 
unable to discern between veno-venous (VV) and veno-
arterial ECMO use, which may affect posttransplant sur-
vival differently and that recent use of ECMO, especially 
VV-ECMO, to improve transplant candidacy rather than 
an emergent life-saving therapy, is not factored into the 
model. However, the advantage of the current statisti-
cal strategies is that the different use of ECMO may be 
accounted for indirectly by analyzing so many variables of 
the donor/transplant/recipient continuum. Patients placed 
on VV-ECMO to improve candidacy will be quite differ-
ent than those placed on emergently or for extracorporeal 
cardiopulmonary resuscitation.

Findings from previously reported risk prediction mod-
els also support the claim of needing to include donor, 
recipient, and transplant factors into the lung allocation 
decision-making. The mortality after lung transplantation 
score showed good predictive strength (C statistic = 0.65)  
and incorporated both recipient and donor characteristics 
but only predicted 1-y posttransplant mortality.17 Another 
example is the Minnesota-donor-lung quality index, which 
included 17 recipient- and donor-related risk factors and 
had a high ability to predict donor utilization (area under 
the curve = 0.76). However, variable selection in that study 

was restricted to those 17 risk factors subjectively chosen 
based on a survey score provided by surgeons, in contrast 
to the statistical methods employed for variable selection 
in our study.30 Another model is by Oto and colleagues 
that showed poor correlation coefficient for 1-y mortality  
(r = 0.23) even though it correlated with early posttrans-
plant outcomes and was externally validated. In addition, 
the model used a small sample (n = 87) from a single center 
and employed only 5 donor variables.31 All 3 models pre-
dicted early posttransplant outcomes and did not account 
for long-term outcomes. Our results indicated modest 
area under the curves for 1-, 5-, and 10-y mortality for the 
adjusted total risk score even though the LAPT was devel-
oped to account for long-term survival outcome.

Although not proven, this study and others suggest an 
alternative hypothetical scenario. Potentially reallocating 
low-risk donors to low-risk candidates or to whatever can-
didate cohort that would have the largest positive affect 
(increasing the number of transplants and the number of 
y alive with a transplant) for the whole community must 
be studied. The present system focuses on getting to trans-
plant primarily, which clinically is not the goal for the 
whole community. The goal should be to ensure the best 
transplant matches that will result in the largest positive 

FIGURE 7. Example 2: Thirteen-year-old White male diagnosed with cystic fibrosis, with good organ function (kidney, liver, not on 
ventilator or extracorporeal mechanical oxygenation [ECMO] support) receiving lungs from a donor who is <50 y, nonsmoker, and no 
diabetes. Transplant was characterized with prolonged ischemia time (>6 h). Patient has 85.4% chance of being in the medium-risk 
level with an expected half-life of 7.3 y. BMI, body mass index; CMV, cytomegalovirus; eGFR, estimated glomerular filtration rate; KPS, 
Karnofsky Performance Status; LAS, lung allocation score; TX, transplantation.
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affect. Having a very ill patient, which we can objectively 
predict will have a poor result to transplant, use an ideal 
donor organ is not necessarily a good outcome if a less 
ideal donor organ could have been used with no significant 
predicted effect on their survival. This is especially true if 
that ideal donor organ could now be used for a recipi-
ent in whom the predicted survival would significantly 
increase in comparison to their survival had they received 
the less ideal donor organ. Supporting evidence for this 
approach can be found in liver transplantation wherein 
it was demonstrated that for a given recipient with sev-
eral potential donors, predicted graft outcomes did not 
change with recipient characteristics, yet varied based on 
donor variables.32 Similarly, Buescher et al33 proposes a 
benefit-based allocation to achieve excellent long-term 
outcomes and increase total life-years saved per year from 
liver transplantation. The model in this study helps organ-
ize the risk factors and determine those with the highest 
impact on posttransplant outcomes, therefore, predicting 
survival in a more advanced way to what has been previ-
ously described, using an easy-to-use comprehensive risk 
scoring tool by means of a validated methodology.17,25,34-36

In this study, MLAs were used to impute variables 
with missing data. The variable selection was done using 
Cox-Lasso model, which was compared with the random 
forest Cox approach and Cox regression models with 
backward elimination and was found to have a better 
prediction. We speculate that the reason is that the Cox-
Lasso method applies shrinkage to the variables that have 
minimal impact on the model, whereas the random forest 
Cox machine learning method does not. LASSO regres-
sion methods are also known to be tolerant methods for 
dealing with multicollinearity. This is a novel first step in 
the LTx field, further MLAs will be used and compared in 
future iterations of this model.

Using the LAPT, clinicians can predict median survival 
of patients for any risk score (Figure 2B) as well as belong-
ing to 1 of the 3 different risk groups. The risk group was 
extensively validated using out-of-sample validation data 
(Table 3 and Figure 4), allowing further to calculate pre-
dicted median survival and 1-, 5-, and 10-y survival chance 
within same risk group. The advantage of using the risk 
groups in the validation process is that it allowed enough 
subjects in each risk group. Validating individual risk scores 
may not be feasible since for some scores there may not be 
enough validation samples. The categorization of patients 
is often useful for the prediction tool to be practical. A 
tool that provides personalized risk prediction for each 
patient donor organ match is ideal but presently, enough 
data do not exist to create it. To approach this ideal tool, 
median survival time with 95% CI was predicted for each 
individual score (Figure 2B). It is worth noting, however, 
that patients can differ greatly, and this gradation cannot 
be caught with the limited variables available, therefore 
we consider this study as an important first step toward a 
more precise and advanced prediction tool.

Strengths and Limitations

This study analyzed donor organs that were accepted. 
Further work is needed to determine if this system has 
a role in assessing lungs that were declined. The UNOS 
data set captures many key transplant-related variables, 

however, it is still limited in collecting some center-level 
donor information (especially specific bronchoscopy find-
ings) and, therefore, precludes a granular analysis of such 
data. Also, the tool cannot be externally validated using 
internationally available registries because it was derived 
from variables available in UNOS that might not be col-
lected in other countries (eg, LAS). Validating a US-based 
score in another registry is not uncommon and was done 
for the kidney donor profile index score for example in 
a European cohort.37 Therefore, a more comprehensive 
score is needed to be available for clinicians worldwide. 
In addition, even though the tool can predict the risk score 
of patients, there are patients who fall into the outlier val-
ues in the intermediate risk group, which could potentially 
have a similar outcome to either the low- or the high-risk 
groups.

To our knowledge, this is the first attempt at matching 
donor-to-recipient and predicting posttransplant long-
term outcomes in LTx using state-of-the-art statistical and 
machine learning methods. We studied a nationally repre-
sentative sample of LTx recipients in the contemporary era. 
The relatively large sample size allowed for examination 
of characteristics that are not widely available and thus 
have been rarely, if ever, used in the analysis of the UNOS 
database. Imputation of variables was very conservative 
in this study and was only employed to 1 datapoint per 
record. Therefore, there was less interference in the data 
and stronger predictability. Also, this study aimed to find 
a model that would better predict overall rather than 
short-term survival alone. This deviates from the current 
system that predominantly aims at increasing the trans-
plants number. Prediction models should not focus solely 
on decreasing the number of recipients on the waitlist but 
optimizing their posttransplant outcomes as well. A system 
that focuses on increasing the number of years alive with 
a transplant for the whole community would maximize 
benefit from a limited donor pool. This may mean at times 
that the most ill patients getting transplanted first is not 
done. This is also consistent with the growing literature on 
the use of mechanical assistance to make patients better 
transplant candidates (eg, good end-organ function, not 
mechanically ventilated, paralyzed, etc) and the perils of 
limping into transplant.

In conclusion, LAPT is a scoring system that incorpo-
rates donor-, recipient-, and transplant-related factors and 
could enable matching that goes beyond the stratification 
of donor versus recipient characteristics. The tool is practi-
cal, easy to interpret, and can be widely used by clinicians, 
in addition to LAS, for the predictability of short- and long-
term survival outcomes. Although this current scoring sys-
tem is a significant step forward, a more precise model that 
provides best coupling for each individual recipient and 
donor organ in real-time rather than in cohorts is a contin-
ued focus of our efforts. We hope this tool is an initial step 
in contributing to a lung allocation system that can maxi-
mize utilization of organs and posttransplant outcomes for 
the overall community.
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