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Abstract

The development of human induced pluripotent stem cells (hiPSCs) has made possible patient-

specific modeling across the spectrum of human disease. Here we discuss recent advances in 

psychiatric genomics and post-mortem studies that provide critical insights concerning cell type 

composition and sample size that should be considered when designing hiPSC-based studies of 

complex genetic disease. We review recent hiPSC-based models of SZ, in light of our new 

understanding of critical power limitations in the design of hiPSC-based studies of complex 

genetic disorders. Three possible solutions are a movement towards genetically stratified cohorts 

of rare variant patients, application of CRISPR technologies to engineer isogenic neural cells to 

study the impact of common variants, and integration of advanced genetics and hiPSC-based 

datasets in future studies. Overall, we emphasize that to advance the reproducibility and relevance 

of hiPSC-based studies, stem cell biologists must contemplate statistical and biological 

considerations that are already well accepted in the field of genetics. We conclude with a 

discussion of the hypothesis of biological convergence of disease - through molecular, cellular, 

circuit and patient level phenotypes - and how this might emerge through hiPSC-based studies.
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I. Introduction

We are each unique, comprised of distinct genetic, epigenetic and environmental risk factors 

that predispose us to some diseases and confer resilience to others. As expanding genetic 

studies increasingly demonstrate that both rare variants of large impact and common variants 

of small effect contribute to a variety of neuropsychiatric disorders, it becomes increasingly 

critical that we unravel how these risk factors interact within and between the diverse cell 

types populating the brain. While mouse models are uniquely suited for demonstrating how 

altered function of single gene products contribute to aberrant neuronal function or behavior, 

genetic studies of penetrance and complex gene interactions are extremely difficult to 

address using inbred mouse lines. Similarly, the challenges of human post-mortem tissue, 

coupled with the inability to conduct in vivo functional validations, has to date left us with a 

very limited understanding of how rare and common variants impact gene expression or 

cellular function in patients. By developing human induced pluripotent stem cell (hiPSC)-

based models for the study of predisposition to neurological disease, stem cell scientists 

have established a new approach by which to systematically test the impact of causal 

variants in human cells1–3.

While familial mutations in a fraction of cases result in neurological diseases from autism 

spectrum disorder (ASD)4 to Alzheimer’s disease (AD)5, a large majority of the patient 

population is designated idiopathic, arising from unknown genetic risk factor(s). Well 

established for schizophrenia (SZ)6 and increasingly accepted across the breadth of 

neuropsychiatric disease, is the model that a combination of rare and common variants 

contributes to disease with differing frequencies and penetrance, with highly penetrant rare 

variants being particularly relevant for diseases with major fitness consequences7. Although 

the hiPSC-based models discussed herein are specifically applied to SZ, the tools and 

insights acquired are being rapidly and concurrently applied to other neuropsychiatric 

disorders.

II. Advances in psychiatric genomics

Genetic and environmental effects together contribute to neuropsychiatric disease risk8 

(Figure 1). Genetic epidemiology, including twin studies9, provides substantial evidence that 

inherited and de novo genetic variants contribute substantially to disease liability (well-

reviewed across SZ10, bipolar disorder (BD)11, ASD12, intellectual disability (ID)13, 

obsessive-compulsive disorder (OCD)14, depression15 and attention-deficit hyperactivity 

disorder (ADHD)16). The current model posits that multiple types of genetic risk influence a 

continuum of behavioral and developmental traits, the severe tail of which results in 

neuropsychiatric disease17.

Rare variants associated with SZ currently include sixteen high confidence large copy 

number variations (CNVs) that are enriched for genes associated with synaptic function, and 

frequently shared with other neurodevelopmental disorders18. Unlike whole-exome 

sequencing studies for ASD19, 20 and intellectual disability21 that have identified a series of 

rare coding mutations enriched for synaptic genes, transcription factors and chromatin 

modifiers, similar studies for SZ have implied a role for functional gene sets such as voltage-

Hoffman et al. Page 2

Mol Psychiatry. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gated calcium channels, ARC-associated scaffold and N-methyl-D-aspartate receptor 

(NMDAR)22–24 but not yet conclusively identified specific genes. Although there is pathway 

level genetic convergence across neuropsychiatric diseases, it seems that the spatiotemporal 

activity of the precise genes involved reflects the specific phenotypes; for example, de novo 
mutations in ID are enriched for fetal cortex genes, ASD for fetal cortex, cerebellum, and 

striatum genes, and SZ for adolescent cortex genes25. Moreover, while missense mutations 

in neuronal development genes contribute to ID, ASD or SZ, loss-of-function mutations, 

particularly in chromatin genes, bias towards ID and ASD25. In summary, although there is 

substantial convergence at the pathway level of rare mutations across neuropsychiatric 

disease, clinical presentation reflects the precise gene(s) involved, timing of developmental 

expression of the affected gene(s) and type of mutation.

Common variation assessed by genome-wide association studies (GWAS) of single 

nucleotide polymorphisms (SNPs) have identified a growing list of risk loci significantly 

associated with SZ26, BD27 and ASD28, which together account for most of the genetic risk 

for these disorders. Risk loci identified by GWAS are enriched for neuronal genes29, 30 and 

show substantial overlap between these disorders27, 31. In SZ, these risk loci map to genes 

expressed in pyramidal excitatory neurons and a subset of GABAergic interneurons, 

substantially less to progenitor or glial cells29, 30. Transcriptomic profiling of post-mortem 

brain tissue supports this shared molecular neuropathology, demonstrating that the degree of 

shared transcriptional dysregulation strongly correlates to the observed common variant 

overlap across psychiatric disorders32.

While disease associated loci still explain only a small fraction of the predicted genetic 

liability to psychiatric disease, the “missing heritability” is now believed to largely reside 

amongst the common variants with effect sizes well below genome-wide statistical 

significance33. Taken to the fullest extent, a proposed “omnigenic” model suggests that gene 

regulatory networks are sufficiently interconnected such that all genes expressed in disease-

relevant cells are liable to affect the functions of core disease-related genes34.

Overall, highly penetrant rare mutations tend to confer risk of neurodevelopmental disorders 

with earlier onset, while more common variants with much lower effect sizes contribute risk 

towards later onset disorders (reviewed in35). Different types of risk factors can interact; a 

higher polygenic risk score is thought to increase disease risk in carriers of rare mutations, 

suggesting cumulative effects between both types of variants36, 37. Although variants differ 

in penetrance and prevalence across the spectrum of neurodevelopmental disorders, there is 

a growing consensus that genetic risk will converge not only between psychiatric disorders, 

but also between common and rare variants within disorders - focused on genes expressed 

during fetal cortical development38–40 and converging on common pathways such as 

synaptic function18, 22, 23, 41 and epigenetic processes41, 42. In ASD, a shared functional 

signal between common and rare variants was detected after accounting for the different 

effect sizes of the genes involved43. Critically, this is not a literal overlap in risk genes or 

pathways; rather, functions weakly associated with common variants tend to show stronger 

effects in rare variants43. The role of effect size on these functional consequences, the degree 

of overlap of genetic risk and precise neural cell type(s) impacted by this growing list of 

disease-associated mutations remains unclear. Throughout this review we will consider the 
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extent to which in vitro stem cell-derived populations can model the impact of different 

perturbations on these causal genes on cellular and molecular neural phenotypes. The 

ultimate goal of psychiatric genetics is to study the impact of patient-specific mutations, 

facilitating a transition into precision psychiatry8 and personalized medicine44.

III. Findings from recent hiPSC-based models of SZ

Although typically diagnosed in late adolescence, SZ reflects abnormal neurodevelopmental 

processes that begin years before the onset of symptoms (reviewed45). We and others have 

shown that hiPSC-derived neurons most resemble fetal brain tissue46–48, indicating that 

these models are most appropriate for studying aspects of disease predisposition rather than 

the disease state itself. (This may be changing, as recent studies have shown that long-term 

organoid culture can yield cells more similar to neonatal tissue49, novel media formulations 

can improve the maturity50 and genetic strategies can accelerate the aging3, 51 of hiPSC-

derived neurons, facilitating studies of adult-onset diseases). hiPSC-based models have great 

potential to help unravel the functional impact of the risk loci identified by genetic studies. 

Idiopathic cohorts capture all of the risk elements, known and unknown, that contribute to 

disease in any specific patient, whereas genetic cohorts (whether recruited on the basis of a 

shared genetic mutation (discussed in more detail in section VI) or engineered on isogenic 

backgrounds (discussed in section VII) provide the opportunity to test the impact of a 

defined genetic variant shared by a subset of patients.

Early hiPSC-based studies of SZ focused primarily on idiopathic patient collections, largely 

reflecting the availability of patient-derived fibroblasts during this period2, 52, 53. More 

recently, there has been a transition to more defined cohorts, in an attempt to reduce the 

heterogeneity between patients. Despite the obvious limitations in these early studies with 

respect to limited cohort size and heterogeneous neuronal populations, there was a striking 

convergence of findings across both idiopathic and genetic cohorts. These shared findings 

include aberrant migration/cell polarity (idiopathic48, 22q11.2 deletion54, CNTNAP255, and 

15q11.2 microdeletion56 patients), proliferation (DISC157, 58) and WNT signaling 

(idiopathic59 and DISC158) in hiPSC-derived neural progenitor cells (NPCs). Moreover, 

three groups, across independently reprogrammed and characterized idiopathic SZ cohorts, 

reported increased oxidative stress48, 52, 53 and perturbed responses to environmental 

stressors48, 60 in patient-derived NPCs. Moreover, patient-derived neurons exhibit decreased 

neurite outgrowth (idiopathic2 and 22q11.2 deletion54), synaptic maturation (idiopathic2, 53; 

DISC161, and 15q11.2 microdeletion56 patients) and activity (idiopathic62; CNTNAP263), 

and DISC161) and altered neurotransmitter release (idiopathic64, and DISC161). Global gene 

expression studies confirmed aberrant expression of synaptic genes (idiopathic2, DISC161, 

22q11.2 deletion65, queried differential microRNA expression (idiopathic66 and 22q11.2 

deletion67) and demonstrated blunted activity-dependent changes of gene expression 

(idiopathic68). A limited number of studies further explored cell type specific effects, 

focusing specifically on hippocampal neurons62, 69 or astrocytes70. Taken together, these 

reports mirror findings in postmortem pathological studies (reviewed in71) and animal 

models (reviewed in72) and provide a convincing proof-of-concept demonstration that at 

least some of the cellular and molecular factors underlying SZ are conserved between hiPSC 
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cohorts, suggesting that, at least in vitro, the myriad genetic mechanisms contributing to SZ 

predisposition may manifest through a more limited number of cellular outcomes.

It remains unclear to what extent hiPSC-based studies are sufficiently powered to discover 

the shared molecular mechanism(s) driving phenotypic differences in patient neural cells. 

Nonetheless, our recent discovery-based approach combining RNA, microRNA and protein 

analyses found microRNA-9 (miR-9) to be significantly downregulated in a subset of 

idiopathic SZ NPCs, a finding that was corroborated in a second hiPSC cohort derived from 

ten childhood-onset-SZ (COS) patients and ten unrelated controls66. Overexpression of 

miR-9 ameliorated a migration deficit in SZ NPCs, whereas knockdown partially 

phenocopied aberrant migration in control NPCs66. Concurrently, a gene-set enrichment 

analysis of the largest SZ GWAS to date26 found an enrichment of predicted miR-9 targets 

among SZ-associated genes73, demonstrating a remarkable convergence of independent 

hiPSC- and genetics-based discovery approaches.

Even within idiopathic hiPSC cohorts, there is a recent effort to focus on patients with 

shared clinical features such as age of onset, endophenotypes (ie. neurophysiological, 

biochemical, endocrinological, neuroanatomical, cognitive, or neuropsychological features), 

or pharmacological response, with the expectation that this may reduce inter-individual 

variation in vitro. In SZ, COS patients represent a subset of adult onset SZ patients defined 

by onset and severity, with no genetic or clinical differences to chronic poor outcome adult 

onset SZ74; although we have twice applied a COS cohort to replicate findings in our 

original idiopathic cohort66, 75, we have no evidence of exaggerated and/or less 

heterogeneous phenotypes in hiPSC-derived COS neurons, relative to adult-onset SZ 

neurons. In ASD, two recent studies have now focused specifically on cases with increased 

head size (macrocephaly) and poorer clinical outcomes76, 77. Although their differentiation 

paradigms differed substantially and cohort sizes were small (four76 and eight77 ASD 

patients), both reported perturbations in synaptogenesis (increased76 and decreased77), 

GABAergic differentiation (increased76 and decreased77) and FOXG1 expression 

(increased76, 77). Given that these macrocephaly-ASD hiPSC studies were not directly 

contrasted to a more general idiopathic cohort, one cannot say whether this experimental 

strategy reduced patient heterogeneity or improved disease signal. This issue is better 

resolved in a fourth hiPSC-based cohort, this one comparing three BD patients with known 

clinical lithium responsiveness and three with known nonresponsiveness78. Here, while 

hiPSC neurons from all BD patients showed evidence of hyperactive neuronal firing, the 

phenotype was selectively reversed by lithium treatment only in neurons derived from 

lithium-responsive BD patients78, consistent with a genetic mechanism underlying clinical 

lithium response79. A similar pharmacological patient stratification is frequently proposed 

for SZ; while it has not been fully explored to date, one study examined a pair of 

monozygotic twin cases with treatment-resistant SZ in which one twin responded well to 

clozapine treatment and the other twin did not, finding subtle gene expression differences 

between (untreated) twin neurons80 but failing to ask if the patient-derived neurons differed 

in response to clozapine treatment. Overall, we posit that only for those endophenotypes 

with substantial heritability (ie. cognition81, 82 and neuroticism83, 84) or treatment responses 

with clear pharmacogenomic evidence85 will cohort heterogeneity be even modestly reduced 

through this strategy.
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IV. Lessons from case-control SZ post-mortem analyses

Understanding the natural variation in gene expression between control brains, between 

individuals and across development, is an important first-step before conducting case-control 

analyses. Towards this, the GTEx project integrates genetic and transcriptomic data across 

brain regions in the same subjects86 while the BrainSpan project characterizes gene 

expression levels across multiple brain regions during human development87, 88. Large-scale 

multi-site studies have now established post-mortem brain collections with a comprehensive 

analysis of the genome, epigenome89 and transcriptome90–92 of hundreds of 

neuropsychiatric disorder patients and controls across multiple brain regions (reviewed in93).

Post-mortem gene expression studies (and meta-analyses) have identified subtle 

abnormalities in multiple brain regions and neural cell types, but the results have been 

inconsistent (reviewed in94), likely reflecting the small sample sizes involved in the primary 

cohorts as well as difficulties in accounting for important covariates or accurately combining 

datasets that were generated at different sites via divergent methods. In addition to the 

frequently discussed confounds of drug/alcohol abuse, anti-psychotic treatment, cause of 

death, post-mortem interval and RNA quality, some of this confusion also reflects a failure 

to account for cellular composition in postmortem brain tissue95; for example, any loss of 

neurons (or glia) associated with disease progression could result in many false positives due 

solely to this changing composition. Moreover, cell-type specific perturbations are 

frequently missed in tissue level analyses (reviewed93); for example, genes related to 

mitochondrial function and ubiquitin-proteasome functions seem to be perturbed in SZ in 

layer 3 and 5 pyramidal neurons, respectively96. Until case-control single cell datasets are 

available, integrating control single cell data into the analysis of case-control comparisons of 

heterogeneous cell populations will improve compensation for variable cell type 

composition97 and resolution of cell-type specific effects98.

With dramatically expanded sample sizes, consistency of recent results has improved 

(reviewed94.) While the CommonMind Consortium (CMC) RNA sequencing (RNA-seq) 

evaluation of prefrontal cortex (PFC) brain tissue from 537 individuals concluded that 

current post-mortem studies are dramatically underpowered to detect differential expression 

directly attributable to SZ risk variants, others hope that this is an overly pessimistic 

interpretation99. In fact, when variation due to degradation of post-mortem RNA99 was 

accounted for in the LIBR RNA-seq analysis of 495 post-mortem brains, they identified 237 

genes significantly associated with SZ that implicated synaptic processes, were strongly 

regulated in early development, and replicated in the CMC dataset92. Finally, a large cross-

disorder meta-analysis of 715 brain samples across five major neuropsychiatric disorders 

identified shared down-regulation of neuronal gene networks in ASD, SZ, and bipolar 

disorder (BD), and up-regulation of astrocyte networks in ASD and SZ32.

Postmortem studies can be further refined by incorporating genetic data, both from the 

individual from whom the tissue was obtained as well as the GWAS for the disease being 

studied. With a sufficiently large cohort, common variants that regulate gene expression can 

be identified. These expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level of one or more genes; 
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they are now understood to vary between cell types and conditions (well reviewed100). 

eQTLs can be integrated with GWAS data to identify genes whose expression levels are 

associated with disease. One such analysis linked SNX19 and NMRAL1 to SZ, noting that 

the genes identified were not generally the nearest annotated gene to the top associated 

GWAS SNP. The CMC estimated that ~20% of SZ GWAS loci have eQTLs that could 

regulate gene expression, and for five demonstrated that perturbing gene expression can have 

effects on neurodevelopment in vivo and/or in vitro91. A more refined analysis, considering 

both cellular and temporal contexts, determined that conditional eQTLs are widespread and 

revised the estimate of SZ GWAS loci with eQTLs to ~37%101. A third group, with a revised 

analytical strategy that incorporated additional post-mortem brain samples across 

development, concluded that 42.5% of SZ GWAS variants have eQTLs that converge on 

gene regulation92. A similar strategy substitutes open chromatin state for gene 

expression102; an enrichment of neuronal open chromatin regions at SZ GWAS loci was 

subsequently confirmed in hiPSC-derived neurons103. SZ GWAS risk loci are more likely to 

present expression differences during the fetal-postnatal developmental transition, with a 

specific enrichment for both dopaminergic and glutamatergic synapse pathways92. Given 

recent progress in other fields, it is likely that further integration of GWAS and eQTL data to 

generate a SZ transcriptional risk score will better predict disease risk that using a polygenic 

risk score alone104.

V. Understanding critical power limitations in the design of hiPSC-based 

studies of complex genetic disorders

Given the limitations of small sample size and intra-donor variation, future hiPSC-based 

studies should be designed to maximize statistical power. One critical issue is the tradeoff 

between increasing the number total donors versus increasing the number of independent 

hiPSC clones per donor. In general, the best way to maximize effective sample size, while 

controlling the false positive rate, is to use one hiPSC line per donor and increase the 

number of donors, rather than using multiple replicate clones from a smaller set of 

donors97, 105. We suggest that future hiPSC-based studies of SZ (and other diseases) will 

achieve the greatest benefit by focusing on three strategies: increasing the total number of 

individuals, reducing inter-donor heterogeneity (by focusing on patients with shared genetic 

variants) and optimizing neuronal protocols to decrease cellular heterogeneity (and thus 

decreasing intra-donor variation).

Overall, the issues of sample heterogeneity and statistical power are to a large extent shared 

between post-mortem and hiPSC-based studies; for example, both approaches are equally 

impacted by the polygenic nature of SZ and genetic heterogeneity between individuals. 

Unlike the confounds of post-mortem studies discussed above, hiPSC-based studies are 

impacted by variation in reprogramming (ie. reprogramming method and batch, technician, 

hiPSC culture) and neuronal differentiation (ie. reagent batch as well as more stochastic 

experimental effects affecting cell type composition) efficiencies between hiPSC lines 

derived from both the same (intra-individual) and different (inter-individual) donors. The 

fraction of expression variation attributable to each of these factors can be quantified using 
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the variancePartition software106. Previous applications have specifically revealed impact of 

donor, cell type composition and technical artifacts97, 106–108

While it was recently estimated that ~28,500 subjects are required for an adequately 

powered post-mortem case/control study91, it is unclear whether more or fewer subjects 

would be necessary for an equivalently powered hiPSC-based cohort. It is simply too early 

to state with confidence which set of post-mortem and hiPSC specific confounding variables 

have a greater impact on the observed donor effect in gene expression studies; however, the 

ability to computationally account for RNA quality92 and cell-type composition97 will 

improve our ability to resolve biological signals moving forward. Critically, recent efforts 

have spurred the establishment of larger NextGen Consortium hiPSC-based studies 

(discussed below), from which it is now possible to estimate overall sources of variance and 

observed donor effects in hiPSC-based studies. Both genetic109–112 and epigenetic113–116 

errors occur during the reprogramming process. Donor cell type117, 118 and age119 can 

further influence the genome and epigenome of hiPSCs. Moreover, batch effects are 

seemingly unavoidable in both the reprogramming and differentiation processes. In 

aggregate, these processes underlie “intra-individual variation”, the subtle differences in 

gene expression and propensity towards neural differentiation between independent hiPSC 

lines generated from a given donor. Traditionally, stem cell biologists have attempted to 

account for these effects by including multiple hiPSCs (up to three) per donor; critically, for 

complex genetic disorders, we instead propose here that it is more important to power 

experiments to explore inter- rather than intra-individual variation. For a fixed budget, it is 

nearly always advisable to add additional donors rather than generate and validate additional 

hiPSC clones for any given individual (https://gabrielhoffman.shinyapps.io/

design_ips_study)97.

Practical limits of cohort size may mean that studies are inadequately powered at the present 

time for this highly polygenic disorder. Stochastic differences in the differentiation process 

can result in dramatic differences in cell type composition that can negatively impact 

analysis. Moreover, the dynamic nature of gene expression means that such differences in 

cell type composition, neuronal density or other culture conditions can lead to differences in 

neuronal activity and other physiological events that impact RNA levels. Finally, the 

constraints of transcriptome-wide multiple testing burden can make it difficult to identify 

real signals with statistical significance. It is now widely accepted that it is necessary to 

decrease patient heterogeneity by selecting more (genetically) homogeneous cases and 

controls. Hoesktra et al120 define this objective more precisely, proposing that future studies 

either (i) select patients with a rare highly penetrant disease-associated genetic variant with a 

large effect size, or (ii) select patients with high polygenic risk score based on common 

genetic variants. They further detail that for both strategies, the ideal design would be to 

include four groups of individuals: patients with and without the disease penetrant variant/

high polygenic risk and controls with and without the disease penetrant variant variant/high 

polygenic risk120. Moreover, a more tenable focus, rather than to continue applying hiPSC-

based models for the discovery of SZ risk factors, may be for the field to apply a 

combination of genetic stratification of patient cohorts and gene-edited isogenic hiPSCs in 

order to evaluate the functional effects of manipulating putative rare and common causal 

variants identified through genetic studies.
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To a large extent, inter-individual (genetic) differences explain transcriptional variability 

between hiPSCs107, 121, 122, consistent with the degree of genetic variation in human gene 

expression regulation123–125. Retaining the donor-specific signature is essential to studying 

case control differences. In two recent studies of hiPSCs, variance across donors explained a 

median of ~6%126 and 48.8%107 of expression variation, while we observed a much smaller 

(2.2%) donor effect in hiPSC neurons97. Donor effects in differentiated cells may be reduced 

due to stochastic noise in the differentiation from hiPSCs to neurons. Consistent with this, 

regulatory variation between individuals is lower in hiPSCs than in two differentiated cell 

types121. It remains unclear whether different hiPSC-derived cell types will retain more or 

less donor signal over the course of differentiation.

Although not focused on neuronal cell types, many of the insights from the large collection 

of hiPSCs recently characterized by the NextGen Consortium127 are very relevant to 

neuropsychiatric disease, as these reports quantified the genetic107, 128 and epigenetic129 

basis of variation between hiPSC lines and differentiated progeny130–132. Separate work 

focused on the transcriptomes and chromatin accessibility of hiPSC-derived sensory 

neurons108. These large cohorts facilitated both genome-wide insights into common variants 

underlying disease130–132, but also served as a platform to begin personalized (or at least 

genome-first) drug screening against disease mechanisms or phenotypes133–135.

VI. Genetically stratified cohorts of rare variant patients

Despite their rarity in the genome (0.01-0.02 per generation136), CNVs (frequently de novo) 

were among the first genetic variants associated with SZ. There is an increased CNV burden 

in SZ cases compared to controls137, 138, so one method to increase the power of hiPSC-

based studies, without increasing sample size, is to focus on genetically homogenous cohorts 

harboring such a rare variant of large effect size.

22q11.2 deletion was the first CNV associated with SZ and remains the strongest risk factor 

for developing the disorder, with 25% of carriers exhibiting psychotic symptoms139–141. 

hiPSC-derived neurons from two 22q11.2 patients diagnosed with SZ demonstrated 

significant reductions in a number of cellular phenotypes including neurosphere size, 

neuronal differentiation capacity (neuron to glial ratio), neurite outgrowth and cellular 

migration54. Additionally, given that the 22q11.2 deletion encompasses DGCR8, a known 

regulator of miRNA processing, hiPSC cohorts of 22q11.2 deletion cases have been subject 

to both miRNA and RNA sequencing. miRNA sequencing, performed on a cohort of six 

patients compared to six controls, identified a significant increase in the expression of 

several miRNAs that overlap with differentially expressed miRNAs in post-mortem brain 

and peripheral cells from 22q11.2 cases67. In a larger cohort of eight 22q11.2 cases and 

seven controls, RNA-seq identified changes in expression of nearly all genes within the 

deletion region, as well as 745 genes outside of the region implicating apoptosis, cell cycle 

and MAPK signaling142. These studies demonstrate that rare variant cohorts can identify 

cellular phenotypes and molecular pathways that are consistent with human post mortem 

findings.
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A gene-editing approach can also be used to investigate the causal role of a gene at a SZ-

associated CNV. Given that NRXN1 deletions are only 6.4% penetrant, Pak et al used 

CRISPR/Cas9 (CRISPR-associated protein 9) technology to engineer two heterozygous 

deletions in a control line, to assess if these deletions were sufficient to produce neuronal 

deficits. Both deletions resulted in deficits in neurotransmitter release, with no changes in 

synapse number or neuronal differentiation capacity, a finding consistent with mouse 

models143. Isogenic comparisons are crucial for establishing a causal role for incompletely 

penetrant rare variants such as NRXN1.

While focusing on rare genetic variants with large effect size will increase the power of 

hiPSC-based analyses, their incomplete penetrance and pleiotropic effects may complicate 

the identification of disease specific phenotypes, which are likely impacted by polygenic 

risk. Therefore, it is imperative to consider the genetic background of common variations in 

each donor, even when focusing on variants of large effect size. Ideally, isogenic controls 

should be used whenever possible to demonstrate causal relationships between genetic 

variants and their phenotypic consequences.

VII. CRISPR-editing and manipulating of expression to study common 

variant effects

hiPSC-based models can be applied to functionally evaluate common variant risk genes 

identified by such analyses. For example, induced neurons (iNeurons) generated from over 

20 individuals with different genotypes for a non-coding common variant in the voltage-

gated calcium channel subunit gene CACNA1C demonstrated that the homozygous risk 

allele genotype correlated with increased CACNA1C mRNA expression and calcium 

channel current density144. While this study correlated genotype to expression, it did not 

directly demonstrate the role of the SNP in regulating gene expression.

A combination of CRISPR-based tools now make it possible to precisely engineer hiPSC 

lines with single nucleotide mutations to recapitulate common variants, finely tuned 

endogenous gene expression changes, as well as the multiplexing of such 

modifications145–147. A number of critical issues limit these studies and will be discussed 

below. First are the decisions of which hiPSC line (genotype and diagnosis) and which 

precise SNP(s) to engineer, and whether to edit one or both alleles. Second is how to prevent 

and identify off-target effects, in order to ensure the construct validity of any biological 

findings.

Obviously, as well established between different mouse strains, genetic background has 

dramatic impact on gene expression and would be predicted to significantly impact the 

effects of genetic manipulation148–152. Therefore, one important question is whether to 

conduct these isogenic experiments in control or SZ hiPSCs. If penetrance is to be first 

established in control backgrounds, there is the possibility that potential (protective) 

compensatory processes may limit the impact of the genetic change. If effects are queried in 

patients, there is the possibility that any of the other risk alleles may interact with the edited 

SNP to confuse the results. Likely, isogenic comparisons will need to be conducted across a 

number of genetic backgrounds. Establishing the polygenic risk scores and haplotypes of 
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different donor cell lines will be critical when choosing a cell line for genetic engineering. 

Close collaboration between computational geneticists and biologists is essential for the 

study of complex genetic disorders.

It remains unknown to what extent, and across how many putative causal loci, manipulating 

eQTLs in control hiPSCs will be sufficient to alter the levels and/or splicing of associated 

mRNAs, leading to downstream phenotypic changes in one or more neural cell types. To 

date this has been accomplished comparatively few times, so careful choice of the candidate 

variant will prove beneficial. Forrest et al. prioritized SZ-associated variants located in 

neuron-specific open chromatin regions in iNeurons. CRISPR correction of a common 

variant risk allele near the mir137 locus increased expression of mir137, dendritic 

complexity and synapse maturation103. CRISPR-editing of common variants associated with 

other diseases has similarly been shown to affect gene expression in hiPSC-derived disease-

relevant cell types153–155. In a novel attempt to bridge the study of common and rare 

variants, Castel et al.156 tested the potential effect of regulatory variants on the penetrance of 

pathogenic coding variants. By introducing a pathogenic Mendelian variant into a known 

eQTL haplotype they elegantly demonstrated a possible mechanism in which common 

variants can contribute to variable penetrance of genetic disorders.

A distinct advantage of isogenic comparisons is that small effect sizes can be more readily 

resolved than in non-isogenic comparisons (see section VIII). However, even between 

isogenic cell lines, inherent heterogeneity caused by extended culture and variability during 

differentiation could mask subtle effects157, 158. Therefore, although the obvious experiment 

is to compare effects between homozygous risk and non-risk genotypes, an alternative is to 

instead compare allele-specific expression in heterozygous neurons in order to avoid this 

inherent transcriptional heterogeneity between cell lines. Such an approach was used to 

demonstrate that a common SNP risk allele associated with Parkinson’s disease affects 

transcription factor binding efficiency and thereby alters gene expression159.

Particularly when considering common alleles with small predicted effect sizes, it is critical 

to consider the possibility of off-target Cas9 nuclease activity. Although whole genome 

sequencing of ten CRISPR/Cas9-edited hPSC lines suggested low occurrence of off-target 

effects in hPSCs160, other evidence suggests that the risk of off-target may have been 

underestimated161–164. Off-target effects can be reduced by incorporating transfection of 

Cas9 protein or mRNA (rather than plasmid DNA)165, biochemically modified Cas9 

varieties (ie. eSpCas9 and SpCas9-HF1) that exhibit reduced interaction between Cas9 and 

the target DNA166, 167, improved gRNA design168 and screening methods (ie. CIRCLE-seq 

and GUIDE-seq)169, 170. If off-target effects cannot be eliminated, independent engineering 

of multiple isogenic pairs via different gRNAs should be sufficient to rule out their impact 

on the biological effects observed.

A significant hindrance to the study of common disease-associated variants is their great 

likelihood to be in high linkage disequilibrium (LD) with other variants. While the causal 

SNP may be predicted via fine mapping171, 172, it cannot always be identified unequivocally. 

It may be more simple to directly manipulate endogenous gene expression; in this way, 

hiPSC-derived neural cells were used to show that the SZ candidate gene ZNF804A impacts 
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inflammatory cytokine response in differentiating neurons173, CYFIP1 affects neural 

polarity in NPCs174 and FURIN alter neural migration in NPCs91. Not all genes are 

appropriate targets for traditional overexpression or knockdown experiments, particularly 

those that are very long or highly alternatively spliced. Fortuitously, gene expression 

modulation via CRISPR/Cas9 occurs at the promoter or enhancer, and therefore is predicted 

to include the full range of alternative splice isoforms that are frequently overlooked by 

cDNA overexpression or RNAi approaches. By introducing nuclease-null mutations into 

Cas9175, 176 and fusing the catalytically inactive or dead Cas9 (dCas9) to a variety of 

effector protein domains, the modulation of transcription175, 176, DNA methylation177, 178 

and histone modifications179 have all been demonstrated. By testing dCas9-mediated 

transcriptional modulation using three such platforms, we recently fully evaluated the 

efficacy and variability of dCas9-protein fusion-based transcriptional modulation of seven 

different SZ-associated risk genes in three different hiPSC-derived neural cell types (NPCs, 

neurons and astrocytes), using hiPSCs from three unique donors180. While this platform has 

not proven equally efficacious across all neuronal genes, donors and cell types tested, it can 

be a fast method to achieve disease relevant changes in gene expression.

VIII. Integrating advanced genetics and hiPSCs in future approaches

As hiPSC-based studies increasingly incorporate isogenic comparisons, stem cell biologists 

must contemplate statistical and biological considerations that are already well accepted in 

the field of genetics. When planning CRISPR-mediated isogenic hiPSC-based comparisons 

to validate disease-associated eQTLs, care must be taken to design a well powered study. In 

general, the power to identify a statistically significant difference in the expression of a 

particular gene between two or more groups of samples depends on the magnitude of the 

expression differences between the groups (i.e. effect size) and the amount of expression 

heterogeneity within each group (i.e. variance). Standard eQTL analysis divides samples 

into three allelic categories based on a given SNP and determines if the number of reference 

alleles for that SNP is significantly associated with expression of a particular gene. For a 

particular SNP, the statistical power to detect a significant effect on gene expression varies 

by gene, reflecting both the effect size of the eQTL and the expression variance within each 

of the three allelic groups (Figure 2). Although isogenic hiPSC and post-mortem 

experiments are predicted to have equivalent eQTL effect sizes, we strongly believe that 

isogenic hiPSC-based approaches will demonstrate reduced expression variance due to the 

common genetic background in isogenic comparisons. Therefore, assuming even a 5-fold 

reduction in standard deviation (i.e. square root of the variance) for most genes, an isogenic 

design is well powered to identify differences in the cis-gene targets (assuming a comparison 

of four isogenic hiPSC replicates from a single donor with the CRISPR allele swap to the 

homozygous alternative allele to twelve isogenic replicates with the homozygous reference 

allele). While we hypothesize that using isogenic lines will reduce biological and technical 

variation, until the extent to which this is true is empirically evaluated, it must be modeled 

across a range of values of expression variability.
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Statistical considerations for CRISPR validation studies

Designing a successful study requires adapting the experiment, question or analysis so that it 

is experimentally tractable, biologically plausible and statistically well powered. Here, 

although we consider the power to detect a significant expression change following a 

targeted CRISPR allele swap of a SNP affecting gene expression, where the eQTL 

association was identified in postmortem brain, the same reasoning applies to testing case/

control expression differences. The statistical power to detect expression differences 

between two sets of samples depends on four major factors discussed below: magnitude of 

expression difference, expression variance, sample size and significance level.

i) Magnitude of the expression difference—For a given SNP-gene pair, a linear 

regression model can be fit to estimate the effect size (β) of increasing the number of minor 

alleles and the variance of the expression residuals ( σ2) after the SNP effect is considered. 

Let μ0 and μ2 be the average expression levels of the two homozygote classes. Since β is the 

difference in expression from changing a single allele, then μ2 − μ0 = 2β. Power calculations 

depend on the term 2 β/σ and generally assume that the effect size remains the same in the 

discovery and validation datasets. But, when isogenic hiPSC studies are used to validate 

findings identified in whole brain tissue, this variation in cell type composition can reduce 

the observed magnitude of a signal present in only one cell type. Therefore, it is obviously 

desirable to conduct hiPSC-based isogenic experiments in the appropriate neural cell type 

where the eQTL is most active, increasing the statistical power by increasing the effect size.

ii) Expression variance—Gene expression levels measured in postmortem brain can be 

highly variable due to donor genetics, variation in cell type composition, environmental 

effects experienced by the donor, and technical variation in sample processing. Increasing 

the fraction of expression variation explained by the SNP of interest by reducing the 

variation attributable to extraneous variables will improve the statistical power to validate an 

initial finding. Using isogenic cell culture model as a validation system should remove some 

of this variation and increase statistical power.

iii) Sample size—Collecting a sufficient number of samples is essential to conducting a 

well-powered study, especially when effect sizes are small. Of course, findings should 

always report the number of hiPSC lines (and individuals represented), experimental 

replicates and technical replicates conducted for each analysis. Observations should be 

presented by individual, rather than as averaged group effects, so as to most transparently 

reflect variation within these isogenic comparisons. Interpreting expression variation within 

each phenotype class is essential to interpreting the biological relevance of a finding.

Obviously, cost constraints are often the major factor limiting sample size. Therefore, one 

solution is to conduct all isogenic comparisons in a few common hiPSC line(s), allowing all 

engineered lines to serve as additional isogenic controls for the other pairs. The effects of 

biological heterogeneity can be further reduced by conducting a paired statistical analysis 

whereby each perturbed sample is compared to a donor-specific baseline (Figure 3).
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iv) Significance level—The central goal of most gene expression studies is to identify 

expression differences that are larger than expected by chance. Findings are generally 

evaluated based on passing statistical significance, by convention often p<0.05. When 

multiple genes are tested in an analysis, the p-value cutoff to attain significance must be 

adjusted in order to account for the number of statistical hypothesis tests. This is known as 

the ‘multiple testing problem’. Analyses focusing on a single gene can use a nominal p-

value cutoff of 0.05. Genome-wide analyses must overcome a higher multiple testing burden 

in order to control the false positive rate. The Bonferroni correction is widely used and 

intuitive so that a nominal p-value cutoff of 0.05 corresponds to 0.05/k when k genes are 

tested. When 20,000 genes are tested the Bonferroni cutoff becomes p<2.5e-6 and is much 

more stringent that the nominal cutoff.

The scope of the biological question and the statistical analysis has major impact on the 

multiple testing burden and the power of the study. Thus decreasing the scope of an analysis 

by only considering genes near a SNP of interest can dramatically increase statistical power 

compared to a genome-wide analysis. Overall, focused validation experiments will always 

be better powered than genome-wide discovery.

Biological considerations for CRISPR validation studies

While the effect of modifying an eQTL SNP in an hiPSC-based study of gene expression 

can be estimated from post mortem data, considering the effect of a SNP identified by 

GWAS of a psychiatric trait is more challenging and open-ended. Whereas genetic variants 

have a large effect on direct phenotypes (such as gene expression), the effect on higher-level 

phenotypes (such as neuronal function or diagnosis) will be attenuated by buffering and/or 

environmental effects. Thus, the effect size will likely reflect how far the assayed phenotype 

is from genetics181, 182 and assumes that one has selected the correct intermediate phenotype 

to study. For a given eQTL SNP, the sorting of effect sizes might look like: gene expression 

> protein > neuronal function > psychosis > SZ. A particular SNP might not act through 

gene expression, or not under the specific conditions of the experiment, or not in a particular 

cell type.

Moreover, the question remains as to how to link eQTL associations to the complex 

behavioral phenotypes associated with SZ, ranging from delusions, hallucinations, negative 

affect and impaired cognition. Obviously, once the constraints of these isogenic studies are 

better understood, future studies may wish to improve the complexity and maturity of the 

neural cells being queried, advancing towards circuit-level complexity. Moving forward, it 

will be increasingly straightforward to incorporate three-dimensional culture techniques 

and/or generate defined neuronal circuits comprised of specific neuronal cell types, synapsed 

in a defined orientation, together with oligodendrocytes to provide myelination, and 

astrocytes and microglia to incorporate critical aspects of inflammation and synaptic 

pruning. Moreover, either by neuronal stimulation or treatment with physiologically-relevant 

exposures of stress hormones and/or other environmental factors, it may one day be possible 

to further unravel the causality of environmental risk factors such as neuroinflammation, 

stress and drug exposure183 using isogenic hiPSC-based comparisons. While models, by 
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definition, will always lack the intricacies of human disease, our goal must always be to 

strive towards the complexity of the human brain.

IX. A perspective on the hypothesis of biological convergence of disease

Much of the current work to improve our understanding of disease etiology and develop 

novel treatment strategies is implicitly predicated on an assumption of biological 

convergence. Under this model, patients who share high-level psychiatric symptoms are 

clinically diagnosed with a particular disease and are hypothesized to share a disruption of 

some lower-level biological function. As discussed in section II, this convergence model has 

yielded themes of disruption in ion channels and neuronal genes in SZ. Recent psychiatric 

research has pursued models of biological convergence at multiple levels (Figure 4), 

including genetic26, epigenetic89, 184 gene expression91, 92, gene module32, 91, 92, 

proteome185, 186, braining imaging187, 188, drug response85, psychiatric endophenotypes and 

disease subtypes189–191 and high-level disease phenotypes26.

The best level to study this common hypothesis of functional convergence is unclear; it may 

be too low level or underpowered to detect at the level of gene expression and more likely to 

be identified at the level of modules/pathways/gene-sets/subnetworks. For example, while 

there may be hundreds of genetic perturbations that converge at the level of synaptic 

function, the majority of these likely have a distinct expression signature34. Therefore, 

detecting a convergence at the molecular level is dependent on having the proper module/

pathway/gene-set/subnetwork to test. Whereas these pathways show clear convergence at the 

higher behavioral/psychiatric level, and deconstructing this convergence to lower level 

phenotypes can reveal shared molecular etiology and potential therapies, which level to 

focus on is not clear. The amount of convergence increases with complexity (i.e. toward 

psychiatry) since the diagnosis is based on is psychiatric symptoms, but so does the cost per 

patient to study. Going down a level (towards DNA) allows increased resolution, sample size 

and prospects for understanding molecular mechanism, but also dramatically increases 

multiple testing burden and is susceptible to a lack of biological convergence. Obviously, 

each has its own technical and logistical challenges.

A major challenge in psychiatric genomics is how best to align a patient cohort, biological 

assay and analytical approach with a hypothesis of convergence that is both biologically 

feasible and statistically well powered. While in ASD there is sufficient convergence at the 

genetic and pathway levels that exome and genome sequencing have already identified 

multiple genetic disruptions of the same genes and pathways, such clear convergence is not 

seen in SZ. Since SZ risk is conferred by genetic variants of weaker effect sizes, there is 

weaker convergence at the genetic and expression levels in SZ, and so convergence has only 

been observed at the pathway (i.e. ion channel) level. Moving forward, this can be addressed 

by increasing sample size, developing focused cohorts to increase statistical power and 

applying integrative statistical methods to detect convergence at new levels34, 43. The open 

questions in psychiatric genetics are therefore, given a set of patients, with a given amount 

of heterogeneity in genetics, phenotype and technical noise, as well as cost limitations: what 

level of biological convergence can be expected, is the assay able to detect this level of 

convergence and are we statistically well-powered to detect a signal of a reasonable effect 
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size? By thoughtfully integrating GWAS, post-mortem and hiPSC-based approaches, we 

hope that the molecular convergence underling SZ and other complex genetic disorders will 

become better resolved, revealing novel points of therapeutic intervention.
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Figure 1. Genetic contributions to neuropsychiatric disorders
A) Current state of psychiatric genomics with the assays and analyses linking genetics, gene 

expression and disease biology. B) Genetic liability to neuropsychiatric disease. Common 

variants constitute the majority of the genetic contribution to neuropsychiatric disorders. 

Graph adapted from Gandal et al.8. C/D) Representative plots illustrating the polygenetic 

nature of neuropsychiatric diseases. The liability threshold plot shows the normal 

distribution of disease liability among the population. Genetic and environmental factors 

combined may lead to crossing of the threshold into disease. The dose-response plot 

visualizes the same additive effect of genetic liability to disease risk.
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Figure 2. Genetics of gene expression and statistical power
A) Statistics from eQTL analysis of 3 representative genes from post mortem RNA-seq data 

from the CommonMind Consortium91. The reference SNP ID (rsid) of the SNP with the 

smallest p-value for each gene is shown along with the corresponding p-value, effect size 

(β), residual variance (σ2, but shown on the scale of standard deviation σ ), and the percentage of 

expression variation explained by the SNP. B) Observed expression of the 3 genes from (A) 

in post mortem brains stratified by the corresponding eQTL SNP. C) Hypothetical gene 

expression in isogenic hiPSC-derived cell lines substantially reduces the amount of 

expression variation due to multiple genetic and non-genetic factors. D) Statistical power of 

targeted CRISPR allele swap from one homozygote to the other as a function of the residual 

variance, where effect size and variance of each gene were computed from CommonMind 

Consortium data of 534 post mortem brains. For each gene the power is computed as a 

function of the residual variance for a study of 4 hiPSC lines that are homozygous for the 

alternative allele at the relevant SNP compared to 12 hiPSC lines that are homozygous for 

the reference allele. Power is evaluated at p<0.05 corresponding to a focused analysis testing 

only a single gene. Power is shown as σ decreases by up to a factor of 10. We note that 

statistical power varies substantially across genes.
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Figure 3. Statistical tests for independent and paired samples
A) Testing expression differences between two genotypes in independent samples involves 

comparing the mean expression between the two genotypes. The statistical analysis 

considers whether the difference in the mean expression in the homozygous reference 

genotype (i.e. Ref/Ref) is statistically different from the mean expression in the homozygous 

alternative genotype (i.e. Alt/Alt). This corresponds to testing if the difference in means is 

statistically different from zero. Here the color of the observation indicates the donor, but the 

fact that each donor is measured twice is not used. B) When a study design involves paired 

samples as in a perturbation experiment with treated and control samples from the same 

individual, an individual-specific baseline can be used to compute the expression change 

between the two genotypes within each individual. In this case, the statistical test considers 

the difference between the treated and control samples for each individual, and then tests if 

the mean of the differences is statistically different from zero. The colors of the observations 

indicate the donor and the statistical model explicitly considers the fact that the paired 

observations are from the same donor. In R, the paired model is used by including the donor 

in the regression formula.
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Figure 4. Hypothesis of multiple levels of biological convergence
A) Multiple genetic variants directly affect the same risk gene. B) Risk variants have an 

indirect effect on the expression of a downstream gene. C) Risk variants indirectly affect a 

higher level molecular process by disrupting the function of a biological module of genes. 

D) Risk variants disrupt intermediate genes to indirectly affect a psychiatric phenotype. E) 
Biological variation is traced from low level DNA variants to high level disease phenotype 

through intermediate levels of increasing complexity. The possibility of performing 

biological assays at each level is indicated for hiPSCs, post mortem brains and living 

patients. Gradients indicate the level of biological convergence expected for idiopathic 

versus a genetically selected cohort. The feasible sample size is largest for studies of DNA 

and disease phenotype (i.e. GWAS), but is much lower for intermediate phenotypes.
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