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Abstract: The blood–brain barrier (BBB) precisely controls brain microenvironment and neural activ-
ity by regulating substance transport into and out of the brain. However, it severely hinders drug
entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modula-
tion of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis,
possesses the potential to increase BBB permeability and improve intracranial drug concentrations
and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and
investigated preclinically and/or clinically. This review describes conventional and emerging BBB
modulation strategies and related mechanisms, and safety issues according to BBB structures and
functions, to try to give more promising directions for designing more reasonable preclinical and
clinical studies.
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1. Introduction

The blood–brain barrier (BBB) plays a crucial protective role in maintaining a highly
precise brain microenvironment for neuronal activity by regulating material transport
into and out of the brain. The structural bases of the BBB (Figure 1) are brain capillary
endothelial cells with tight junctions, active efflux transporters, and major facilitator su-
perfamily domain-containing protein 2a (Mfsd2a), which jointly endow the BBB with
extremely low both paracellular permeability and transcellular permeability [1]. Tight
junctions seal endothelial paracellular gaps, leading to high trans-endothelial electrical
resistance and limited paracellular transport. Transmembrane tight junction proteins
include claudins, occludin, and junctional adhesion molecules, which all attach to intra-
cellular actin cytoskeleton by membrane-associated proteins (e.g., zonula occludins-1).
Highly expressed active efflux transporters include P-glycoprotein (Pgp), breast cancer
resistant protein (BCRP), and multidrug-resistance proteins (MRPs). Mfsd2a mediates
unique BBB endothelial lipid composition via transporting lysophosphatidylcholine esteri-
fied docosahexaenoic acid to BBB endothelial cells, to limit formation of caveolae-mediated
transcytotic vesicles [2–4]. In addition, endothelial cells, pericytes, and astrocytes jointly
form the neurovascular unit (Figure 1), and regulate the development and function of
the BBB microcirculation by interacting with each other via secreting several factors [5–7].
These above properties cause the BBB to be constantly and dynamically modulated by both
physiological and pathological factors [8,9].

Despite its protective function, the BBB blocks the entry of therapeutic substances
into the brain. Although various brain diseases can lead to BBB breakdown with impaired
structure and increased permeability [8], BBB around lesion margins or after repairing
(e.g., Pgp upregulation in epilepsy and brain tumor) can still block drug delivery to the
brain [9–12]. Therefore, systemic drug therapy for brain diseases is severely limited by the
BBB. BBB modulation contributes to an increased drug concentration in the brain, and thus
increases the efficiency of various systemic therapies [13]. Crucial proteins and structures in
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formation and regulation of BBB and their changes in brain diseases have been selectively
regulated to improve drug delivery for systemic therapies against various brain diseases.
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Figure 1. The neurovascular unit (left) and the mechanisms of transport inhibition by the BBB (right).

This review describes various conventional and emerging strategies for BBB modu-
lation that increase both paracellular permeability and transcellular permeability of the
BBB, and classifies these strategies according to BBB structures and functions including
tight junctions, active efflux, and low transcytosis (Table 1). Furthermore, mechanisms
responsible for increased BBB permeability and safe issues related to various strategies
are also discussed, to try to give more promising directions for designing more reasonable
preclinical and clinical studies.

Table 1. BBB regulation strategies and related advantages and disadvantages.

BBB Modulation
Targets Strategies Advantages Disadvantages

Tight junctions

Osmotic disruption Transient and
reversible

Nonselective, uncontrolled
flow, invasive, anesthesia,

and side effects

Radiation-mediated
disruption Disease-specific

Unclear mechanisms and
acute, subacute, and chronic

dose-dependent toxicity

Activating
bradykinin
B2 receptor

Disease-specific,
rapid and transient

Limited application to only
brain tumor and peripheral

side effects

Direct interference Transient and
reversible Peripheral side effects

Active efflux

Direct Inhibition Transient and
reversible . . .

Tolerability concerns of the
inhibitor, and side effects to

both brain and
peripheral tissues

Targeting regulatory
pathways Disease-specific Slow and side effects

Transcytosis Upregulation of LRP1 Drug-specific Slow and possible
LRP1-associated side effects

Inhibition of Mfsd2a Transient and
reversible

Possible Mfsd2a-associated
side effects

Upregulation of
GLUT1 Efficient Fasting-associated

poor compliance
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2. Modulation of Tight Junctions

Opening BBB tight junctions is supposed to increase paracellular BBB permeability
and facilitate paracellular drug transport into the brain [14]. Ideally, tight junction opening
should be transient and selective in a controlled manner to prevent unwanted accumulation
(and toxicity) in the brain, and also avoid any short- or long-term peripheral side effects [15].
Various tight junction opening strategies have been reported with robust both preclinical
and clinical performance (Figure 2). However, concerns of causing severe toxicity constantly
exist, because the non-specific accumulation of neurotoxic blood components may induce
neuronal degenerative changes and even cognitive impairments [16–18]. Various reported
strategies are discussed here, which may help to promote the emergence of highly efficient
approaches with minimal side effects.
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2.1. Osmotic BBB Disruption

Intra-arterial infusion of 25% hyperosmotic mannitol into the carotid or vertebral
artery can induce vasodilation, endothelial cell shrinkage, and subsequent tight junction
loosening and separation, leading to transient and reversible BBB disruption [15,19]. While
conventional intra-arterial administration increases drug exposure of brain tumors 10-fold,
osmotic BBB disruption can further increase drug exposure by up to 100-fold [20]. This
strategy has been translated into the clinic to increase chemotherapy efficiency for brain
tumors, and the tight junction opening window by osmotic BBB disruption can last for
hours in humans [21]. Other hyperosmotic agents that transiently open tight junctions also
include arabinose, lactamide, saline, urea, and radiographic contrast agents [15]. Osmotic
BBB disruption is generally nonselective with uncontrolled flow into whole brain regions,
such as neurotoxic blood components (e.g., albumin), leading to edema, neurological
toxicity, epilepsy, aphasia, and hemiparesis [15,22–24]. In addition, the invasive nature
and general anesthesia render the technique impractical for drug therapy against chronic
brain diseases [14]. Therefore, the use of osmotic BBB disruption is confined to only clinical
management of brain tumors.

2.2. Radiation-Mediated BBB Disruption

Radiation cannot only induce tumor cell apoptosis, but also disrupt the BBB [7,18,25–31].
Although the underlying mechanisms are still uncertain, BBB disruption induced by
radiation leads to enhanced paracellular diffusion and transcellular transport [7]. Radiation
therapy has been combined with systemic therapies to treat brain tumors. Although some
study suggests that radiation failed to increase intracranial drug concentrations, increased
gefitinib concentration in cerebrospinal fluid was shown with escalating radiation dose
in patients with brain metastases in clinical trials [32,33]. Therefore, further research is
needed to verify whether enhanced drug delivery to the brain can indeed occur after
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radiation and whether it is based on the effects on the BBB [34]. It has been reported
that the disrupted BBB by radiation needs hours to years to recover [27]. Therefore,
irradiation involves acute, subacute, and chronic dose-dependent toxicity [26,27]. For
example, vasogenic edema from vascular damage causes early radiation toxicity syndrome
including headache, nausea, or neurologic deficits [18]. Subacute side effects may appear
around six months post radiation and progress into chronic dysfunction. Chronic side
effects include radiation-induced necrosis, demyelination, leukoencephalopathy, cerebral
atrophy, and neurocognitive deficits, and so on [35,36]. Stereotaxic radiosurgery may be an
alternative approach to reduce radiation-related intracranial side effects and simultaneously
maintain the BBB disrupting effects.

2.3. Activating Bradykinin B2 Receptor

Bradykinin B2 receptor is constitutively expressed on BBB endothelial cells. Its stim-
ulation can rapidly and transiently disengage tight junctions and increase BBB perme-
ability [37]. The expression of bradykinin B2 receptor is upregulated in the blood–tumor
barrier (BTB) in brain tumors [38,39]. Therefore, activating the bradykinin B2 receptor may
selectively modulate the BTB permeability and increase drug delivery to brain tumors.
This strategy may be able to avoid side effects of osmotic BBB disruption towards the
normal brain, owing to targeting effects on the BTB. Nonapeptide RMP-7 can selectively
stimulate bradykinin B2 receptor and possesses longer blood circulation than endogenous
bradykinin [37]. RMP-7 has been shown to be effective in opening BBB tight junctions and
increasing intracranial drug concentrations in normal animal and in brain tumor animal
models after intravenous infusion or intra-arterial injection [40–42].

Bradykinin B2 receptor is also expressed at numerous additional sites, and its activa-
tion at these sites can induce a wide variety of physiological responses including smooth
muscle relaxation (e.g., vasculature) and contraction (e.g., intestine and uterus), inflamma-
tion modulation, pain mediation, and dose-limiting side effects (e.g., hypotension) [37].
The major side effects of intravenously administered tolerable RMP (up to 300 ng/kg
over 10 min) were immediate and transient and included flushing, nausea, headache, and
tachycardia [43–45]. At clinically approved dosage, the effects of intravenously infused
RMP-7 weren’t shown in Phase II clinical trials in patients with brain tumors [38,44–46].
Intracarotid injection rather intravenous infusion has the potential of concentrating RMP-7
to the brain and reducing effects on peripheral tissues. Except for transient decreases in
arterial blood pressure, intra-arterial administration of RMP-7 wasn’t shown to produce
any other side effects, such as apparent cerebrovascular abnormalities and neurologic
deficits in swine [47]. It is to be noted that bradykinin-increased BBB permeability may also
be related with increased vesicular transport [48]. Considering the specific effect of RMP-7
on the BTB and the evidence demonstrated with the U87 glioma model that 7~100 nm
pores in BTB are sufficient to allow the translocation of certain nanoparticles [49], the
possibility of combining RMP-7 with targeting macromolecules or nanomedicine should
be further evaluated.

2.4. Direct Interference of Tight Junctions

Claudins are major components of tight junctions, and claudin-5 dominates the BBB
tight junctions by limiting paracellular penetration of small molecules [50–52]. Knockdown
of BBB endothelial claudin-5 using specific siRNA was also shown to be able to transiently
and reversibly increase BBB permeability to small molecules (MW up to 742) in mice [53].
The BBB opening and increased permeability after claudin-5 siRNA treatment were found
to be size-selective and last for 72 h for small molecules with MW 443 and for 48 h for
small molecules with MWs 562 and 742. It is also noteworthy that BBB opening after
claudin-5 siRNA treatment also contributed to the clearance of water from the brain with
cognitive improvement in mice with focal cerebral edema [54]. Anti-claudin-5 antibody
can specifically recognize and bind with the extracellular loop domain of claudin-5, leading
to impaired BBB tight junctions and increased BBB permeability to small molecules (e.g.,
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sodium fluorescein with MW 376) [55–57]. The 3 mg/kg antibody didn’t induce any liver
and kidney injury, change of plasma biomarkers of inflammation, and behavior change
in cynomolgus monkeys while vasodilation in liver, lung, and kidney, lung hemorrhage,
and brain edema were shown with 6 mg/kg antibody [55]. The side effects of high dose
of anti-claudin-5 antibody can be ascribed to the wide expression of claudin-5 in the
vascular endothelium of peripheral tissues [52]. The narrow window between the tight
junction opening and peripheral side effects should be considered and local delivery of
anti-claudin-5 antibody may be able to prevent the above side effects. Peptide C5C2
can bind with the first extracellular loop of claudin-5 and was shown to internalize and
downregulate claudin-5 [58]. However, in contrary to anti-claudin-5 antibody and claudin-
5 siRNA, the transient and reversible BBB opening mediated by C5C2 was found to allow
brain entry of molecules up to 40 kDa.

Angulin-1 and tricellulin constitute the functional BBB tricellular tight junctions, which
blocking brain entry of macromolecules only [50,59,60]. Angubindin-1 is derived from the
receptor-binding domain of Clostridium perfringens iota-toxin and can bind with angulin-1
of tricellular tight junctions and remove angulin-1 and tricellulin from tricellular tight
junctions, leading to enhanced BBB permeability to macromolecules [61]. Intravenously
injected angubindin-1 disrupted tricellular tight junctions without any overt adverse effect
and increased BBB permeability for transient brain entry of macromolecules [60].

2.5. Other Potential Strategies

There also reported numerous other strategies for opening BBB tight junctions with
enormous potential. For example, as a G protein-coupled receptor, sphingosine 1-phosphate
receptor-1 (S1PR1) plays an important role in the barrier function of the BBB and peripheral
vessels [17]. Knockout or downregulation of endothelial S1PR1 transiently and reversibly
altered distribution of BBB tight junction proteins and allowed increased brain penetration
of small molecules with MW less than 3000 in mice. The opening of BBB tight junctions
by S1PR1 inhibition via FTY720 didn’t show any signs of brain inflammation or injury.
Controversially, FTY720 was also reported to reverse downregulation of S1P1 and S1P3
in retinas of diabetic rats and repair BBB by upregulating claudin-5 and downregulating
VCAM-1 [62,63]. Therefore, further research is needed to verify whether FTY720 can in-
deed open BBB tight junctions and enhance paracellular drug delivery to the brain. The
upregulation of astrocytic S1PR3 was linked to high permeability of brain metastases from
breast cancer [64–66], suggesting contrary pathophysiological effects of S1PR3 to those
of S1PR1. Further studies are also needed to elucidate the respective roles of S1PR1 and
S1PR3 in the BBB.

Intracarotid injection of alkylglycerols was shown to transiently increase paracellular
BBB permeability to small molecules and macromolecules with an efficiency compara-
ble to that of osmotic BBB disruption and higher than that of intracarotid infusion of
bradykinin [67–71]. Although intracarotid administration is an invasive procedure and
the effects of alkylglycerols haven’t been proven clinically, the strategy of alkylglycerol-
mediated BBB opening didn’t reveal any sign of toxicity at the animal level after long-term
in vivo analyses [71]. In addition, intracarotid infusion of oleic acid or linoleic acid was
also found to cause reversible BBB disruption and increase BBB permeability, but with
brain edema, necrosis, and demyelination [72,73].

In theory, selectively disrupting the diseased BBB is more advantageous than nonspe-
cific BBB disruption when systemic therapy of brain diseases is considered, owing to the
absence of unwanted side effects to normal brain regions, e.g., the strategy of activating
the bradykinin B2 receptor in 2.3. Pericytes derived from glioblastoma were reported to
be directly associated with the BTB tight junctions and poor response of glioblastoma to
chemotherapy [74]. Reducing pericyte coverage of the BTB was found to successfully
increase paracellular BTB permeability and then improve chemotherapy efficiency against
glioblastoma [75]. Ibrutinib with the ability of eliminating glioblastoma-derived pericytes
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by inhibiting BMX kinase was proven to be able to selectively impair the BTB tight junctions
to enhance the therapeutic efficacy of drugs with poor BTB penetration [74].

Substance P is an important proinflammatory neuropeptide that functions as an im-
munoneuromodulator in the brain. Notably, substance P is also expressed by breast cancer
and involves in chemoresistance and BBB crossing of breast cancer cells to form brain
metastases [76]. Substance P secreted by breast cancer cells induces BBB endothelial cells
to successively secret tumor necrosis factor alpha (TNFα) and angiopoietin-2 (Ang-2),
which further activate their receptors to reorganize endothelial cytoskeleton and destabi-
lize inter-endothelial adhesion complexes to alter distribution of tight junction proteins
such as claudin-5 [76–79]. In addition, increased BBB permeability by secreted Ang-2 is
also correlated with upregulated caveolin-1 and intensified caveolae-mediated vesicular
transport [80]. Considering the substance P-mediated effects and corresponding specific
expression of TNF receptors in the BTB (brain metastases), substance P, TNFα, Ang-2 and
their derivatives can be used to open tight junctions in the BBB and tumor-associated
BTB, respectively.

3. Modulation of Active Efflux

Active efflux transporters are selective gatekeepers at the BBB and cooperate with
tight junctions to regulate substance transport into and out of the brain. Pathophysio-
logical processes and pharmacological intervention further aggravate the efflux effect
by intensifying expression and activity of these efflux transporters. Therefore, targeting
regulatory pathways of BBB efflux transporters is supposed to be a feasible approach for
efficient drug delivery to the brain [81,82]. BBB efflux transporters include Pgp, BCRP and
MRPs. Although the role of other efflux transporters may be underestimated, Pgp with
multiple binding domains for broad substrate spectrum is thought to be a predominant
BBB efflux transporter [81,82]. Therefore, this section is focused on the modulation of Pgp.
Typical strategies including direct inhibition and inhibiting transcriptional activation are
introduced here. Notably, preserving and restoring their normal expression and activity
after treatment is of specific importance, owing to the protective roles of active efflux.
Many other modulating mechanisms of BBB Pgp expression and activity, such as posttran-
scriptional mechanisms, posttranslational mechanisms, and intracellular and intercellular
trafficking, were not reviewed here, owing to the absence of reported pharmacological
intervention [81].

3.1. Direct Inhibition of Efflux Transporters

Pgp activity can be directly inhibited using specific competitive inhibitors, such as
verapamil (Figure 3) [83,84]. In vivo cerebral microdialysis can be used to directly measure
the concentration of free drug in the brain to study possible drug–Pgp interactions [85].
For example, through brain microdialysis in rats, it has been shown that Pgp inhibition
enhanced the brain concentration of Pgp substrates ceftriaxone and seliciclib [86,87]. Evalu-
ated by intracerebral microdialysis on mice, topotecan penetration in gliomas was enhanced
by modulating Pgp using gefitinib [88]. However, high dosed inhibitors are often used,
owing to their low Pgp binding affinity and greater resistant Pgp inhibition at the BBB than
peripheral Pgp [89], which may lead to tolerability concerns and side effects. In addition,
Pgp inhibition at the BBB can enhance brain concentrations of unwanted substrates, which
could lead to serious intracranial side effects from the unwanted compounds [85]. The
second-generation inhibitors with improved tolerability, including valspodar, possess the
shortcomings of inhibiting cytochrome P450 enzymes, leading to delayed drug clearance
and prolonged systemic exposure of co-administered therapeutic drugs [82]. Thus, the
effects on drug metabolism and pharmacodynamics limit the application of these two
generation inhibitors. Third-generation inhibitors (e.g., elacridar) affect BBB efflux efficacy
by inducing Pgp conformation changes.



Pharmaceutics 2021, 13, 2024 7 of 19

Pharmaceutics 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

enhanced the brain concentration of Pgp substrates ceftriaxone and seliciclib [86,87]. Eval-
uated by intracerebral microdialysis on mice, topotecan penetration in gliomas was en-
hanced by modulating Pgp using gefitinib [88]. However, high dosed inhibitors are often 
used, owing to their low Pgp binding affinity and greater resistant Pgp inhibition at the 
BBB than peripheral Pgp [89], which may lead to tolerability concerns and side effects. In 
addition, Pgp inhibition at the BBB can enhance brain concentrations of unwanted sub-
strates, which could lead to serious intracranial side effects from the unwanted com-
pounds [85]. The second-generation inhibitors with improved tolerability, including 
valspodar, possess the shortcomings of inhibiting cytochrome P450 enzymes, leading to 
delayed drug clearance and prolonged systemic exposure of co-administered therapeutic 
drugs [82]. Thus, the effects on drug metabolism and pharmacodynamics limit the appli-
cation of these two generation inhibitors. Third-generation inhibitors (e.g., elacridar) af-
fect BBB efflux efficacy by inducing Pgp conformation changes. 

 
Figure 3. The strategy of directly inhibiting efflux transporters. 

3.2. Targeting Regulatory Pathways of Efflux Transporters 
Inhibiting the signal pathways intensifying Pgp expression and activity is supposed 

to overcome Pgp-mediated efflux and chemoresistance [90]. A number of “orphan” nu-
clear receptors are key transcriptional regulators and their expression at the BBB can up-
regulate Pgp, BCRP, and MRPs to respond to potentially harmful compounds. For exam-
ple, pregnane X receptor (PXR) directly participates in Pgp upregulation by anticancer 
drugs [91–93]. Antagonists of these orphan nuclear receptors, such as ketoconazole, were 
shown to effectively inhibit rifampicin- and paclitaxel-induced Pgp upregulation, and 
sensitize brain cancers to anticancer drugs [94]. It is to be noted that these Pgp regulating 
mechanisms at the BBB likely exist in peripheral tissues. Strategies reversing Pgp upreg-
ulation might also reduce Pgp in other tissues and thereby cause unintended side effects. 

The signaling pathway of glutamate/NMDA-R/COX-2/prostaglandin E2 EP1 recep-
tor induces Pgp and BCRP overexpression at the BBB in epileptic brains (Figure 4). MK-
801, an antagonist of N-methyl-D-aspartate receptor (NMDA-R), was proven to effectively 
prevent glutamate-induced Pgp upregulation [95]. However, the side effects severely re-
strict the development of this approach [96]. COX inhibition using indomethacin and 
celecoxib was proven to prevent seizure-induced Pgp overexpression and enhance deliv-
ery of antiepileptic drugs to the brain in epilepsy model with negligible effect on basal 
Pgp expression and transport activity [97–99]. Unfortunately, COX-2 inhibitors are also 
associated with an enhanced risk of cardiovascular and cerebrovascular events and the 
controversial impact on seizure thresholds and seizure severity [100]. Inhibiting the pros-
taglandin E2 EP1 receptor by SC-51089 was further demonstrated to abolish glutamate-
induced Pgp increases at the BBB, and enhance antiepileptic drug efficacy [82,101]. Neu-
rodegeneration aggravation after COX-2 inhibition can be attributed to the blocking of 
EP2, EP3, and EP4 downstream of prostaglandin E2 [102–104]. Therefore, antagonism of 
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3.2. Targeting Regulatory Pathways of Efflux Transporters

Inhibiting the signal pathways intensifying Pgp expression and activity is supposed to
overcome Pgp-mediated efflux and chemoresistance [90]. A number of “orphan” nuclear
receptors are key transcriptional regulators and their expression at the BBB can upregulate
Pgp, BCRP, and MRPs to respond to potentially harmful compounds. For example, preg-
nane X receptor (PXR) directly participates in Pgp upregulation by anticancer drugs [91–93].
Antagonists of these orphan nuclear receptors, such as ketoconazole, were shown to ef-
fectively inhibit rifampicin- and paclitaxel-induced Pgp upregulation, and sensitize brain
cancers to anticancer drugs [94]. It is to be noted that these Pgp regulating mechanisms at
the BBB likely exist in peripheral tissues. Strategies reversing Pgp upregulation might also
reduce Pgp in other tissues and thereby cause unintended side effects.

The signaling pathway of glutamate/NMDA-R/COX-2/prostaglandin E2 EP1 recep-
tor induces Pgp and BCRP overexpression at the BBB in epileptic brains (Figure 4). MK-801,
an antagonist of N-methyl-D-aspartate receptor (NMDA-R), was proven to effectively
prevent glutamate-induced Pgp upregulation [95]. However, the side effects severely
restrict the development of this approach [96]. COX inhibition using indomethacin and
celecoxib was proven to prevent seizure-induced Pgp overexpression and enhance delivery
of antiepileptic drugs to the brain in epilepsy model with negligible effect on basal Pgp ex-
pression and transport activity [97–99]. Unfortunately, COX-2 inhibitors are also associated
with an enhanced risk of cardiovascular and cerebrovascular events and the controversial
impact on seizure thresholds and seizure severity [100]. Inhibiting the prostaglandin E2
EP1 receptor by SC-51089 was further demonstrated to abolish glutamate-induced Pgp
increases at the BBB, and enhance antiepileptic drug efficacy [82,101]. Neurodegeneration
aggravation after COX-2 inhibition can be attributed to the blocking of EP2, EP3, and EP4
downstream of prostaglandin E2 [102–104]. Therefore, antagonism of the prostaglandin E2
EP1 receptor may be the most promising approach to control Pgp expression and enhance
entry of antiepileptic drugs to epileptic brains. Strategies of reversing Pgp upregulation in
epilepsy can be extended to the application in treating brain ischemia, because the gluta-
mate release and similar Pgp upregulation mechanisms also exists in brain ischemia [105].
In contrary, as a critical factor for intracranial clearance of amyloid β-protein (Aβ), Pgp
expression at the BBB is often downregulated to promote intracranial Aβ accumulation
in Alzheimer’s disease [106–109]. Signaling pathways inducing Pgp upregulation may be
carefully harnessed to treat Alzheimer’s disease. For example, PXR ligands (e.g., hyper-
forin) and EP1 receptor agonists hold the potential for upregulating Pgp to interfere with
Alzheimer’s disease. In addition, strengthening the Wnt/β-catenin signaling may also be
able to increase Pgp to reduce Aβ burden in Alzheimer’s disease [110].
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4. Modulation of Transcytosis

Receptor-mediated transcytosis is often used to mediate transcellular BBB crossing,
owing to the extremely low paracellular BBB permeability controlled by the tight junctions
and active efflux transporters. Receptor-specific ligands can be used to decorate drug
delivery systems (e.g., multifunctional nanoparticles) to initiate transcellular transport
across the BBB [8,49,111–117]. However, the density of these target receptors at the BBB is
much lower than that of nutrient transporters (e.g., glucose transporter) [118]. More impor-
tantly, exclusively expressed Mfsd2a limits formation of caveolae-mediated transcytotic
vesicles and the transcytosis rate at the BBB by regulating BBB endothelial lipid composi-
tion [1–6,119–121]. Therefore, the efficiency of transcellular transport at the BBB should be
modulated to improve brain accumulation of ligand-modified drug delivery systems.

4.1. Upregulation of LRP1

Low-density lipoprotein receptor-related protein 1 (LRP1) is expressed at both luminal
and abluminal sides of the BBB. While abluminal LRP1 is primarily responsible for clearing
Aβ from the brain to blood [122], luminal LRP1 has been extensively studied to mediate
drug delivery to the brain. Inspired by the fact that statins can suppress cholesterol
synthesis and then induce compensatory expression of LRP1 [118,123–126], simvastatin-
loaded nanoparticles were reported in our previous work to upregulate LRP1 at the
BBB and boost LRP1-targeting chemotherapy efficiency against brain metastases from
breast cancer [114]. In addition, LRP1 can respond to astrocytic apolipoprotein E to
maintain the BBB integrity by suppressing the BBB-degrading pathway of activation of
cyclophilin A-matrix metalloproteinase 9 [127,128]. More importantly, the diminishment of
abluminal LRP1 is closely related to intracranial Aβ accumulation in Alzheimer’s disease,
and also to the aggregation of α-synuclein into Lewy bodies in Parkinson’s disease [127,128].
Therefore, the strategy of upregulating LRP1, a potentially important therapeutic target of
BBB breakdown-related diseases, holds the potential to be used to treat both Alzheimer’s
disease and Parkinson’s disease. In fact, delivery of LRP1 gene to the BBB has been reported
to facilitate Aβ clearance via upregulating LRP1 [127,129].

4.2. Inhibition of Mfsd2a

Reversible inhibition of Mfsd2a holds the potential to temporarily liberate the limited
transcytosis at the BBB [2]. In our previous work, Mfsd2a inhibitor tunicamycin was
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delivered to the BBB and shown to be able to enhance brain accumulation of subsequent
therapeutic nanoparticles and the efficiency in treating brain metastases from breast cancer
in mice [117]. Owing to the crucial role of Mfsd2a in transporting essential fatty acids and
promoting BBB formation and brain development, Mfsd2a knockout induces microcephaly,
Allan-Herndon-Dudley syndrome, and other severe side effects (e.g., BBB breakdown,
neuronal loss, cognitive impairment, intellectual disability, behavioral deficits, spasticity,
and absent speech and so on) [4,121,127,128,130–132]. In clinical practice, the loss of BBB
Mfsd2a is often found in Alzheimer’s disease, traumatic brain injury, stroke, and brain
tumor. Mfsd2a may be a potential therapeutic target for these diseases and remains to be
explored further [130,131]. However, tunicamycin-mediated Mfsd2a inhibition is likely to
be reversible, because the inhibition mechanism is supposed to be just physical binding
and the inhibitor would dissociate from Mfsd2a after entering the brain [2]. Therefore, side
effects associated with Mfsd2a deficiency could be avoided.

4.3. Upregulation of GLUT1

Glucose transporter 1 (GLUT1) at the BBB maintains the continuous high glucose
and energy demands of the brain. Based on its essential role in transporting glucose and
its participation in pathological processes of various brain diseases such as Alzheimer’s
disease, ischemia, and brain tumors, upregulation of GLUT1 has been proposed to treat
hypoglycemic conditions, while its downregulation or inhibition could be used to cope
with hyperglycemic conditions [133]. In addition to being direct therapeutic targets, wide
expression of GLUT1 at the BBB has been extensively used to mediate drug delivery to
the brain. GLUT1 upregulation at the luminal side of the BBB via hypoglycemia and
its migration to the abluminal side were implemented via rapid glycemic increase after
fasting [134]. Then, the brain accumulation of properly configured glucose nanoparticles
was shown to reach 6% dose/g-brain in normal mice with glycemic control. Because
Alzheimer’s disease is characterized by reduced GLUT1 at the BBB and a reduction of
glucose transport [129], this strategy of rapid glycemic increase after fasting holds the
potential to treat Alzheimer’s disease via upregulating GLUT1.

5. Multifunctional Strategies by Multiple BBB Modulation

All the above strategies increase BBB permeability via separately modulating tight
junctions, active efflux, or transcytosis. In fact, there many other multifunctional strategies
were also reported, which can simultaneously modulate multiple controlling factors and
achieve theoretically higher BBB permeability for efficient drug delivery to the brain.

5.1. Focused Ultrasound

Low intensity focused ultrasound is a noninvasive technique that is combined with
intravenously injected gaseous perfluorocarbon-filled microbubbles to transiently and
focally modulate the BBB [135,136]. With the help of stable oscillation of microbubbles,
the BBB is transiently and reversibly disrupted and characterized by (1) disintegration
of tight junctions including claudin-5; (2) fenestration and channel formation; (3) Pgp
suppression; and (4) upregulation of caveolin-1 and caveolae-mediated transcytotic vesi-
cles, which jointly facilitate both paracellular transport and transcellular passage through
the BBB [137–141]. Under the guidance by magnetic resonance imaging, microbubble-
enhanced focused ultrasound can act on specific intracranial areas with negligible toxicity
to adjacent normal brain cells [142–146]. Further, ultrasmall superparamagnetic iron oxide
nanoparticles can be encapsulated into microbubbles and nanobubbles to increase the
BBB disruption efficiency and monitor post-sonication BBB opening and drug delivery
across the BBB [147,148]. Generally, microbubble-enhanced focused ultrasound is less
invasive than BBB disruption induced by osmotic agents with minimal neurotoxicity, in-
flammation, and stroke occurrences in clinical settings [135,149–153]. However, increasing
acoustic energy is associated with increasing risk of side effects including vascular dam-
age, edema, parenchymal damage, microhemorrhage, and over-activation of the immune
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system (e.g., autoimmunity) [137,154,155]. Therefore, adjusting ultrasound parameters
is necessary for reducing risks, especially for repeated treatments and the application of
mediating drug delivery to Alzheimer’s disease owing to Aβ-mediated resistance of BBB
disruption [156,157].

5.2. Activating A2A Adenosine Receptor

A2A adenosine receptor interacts with Gs protein to activate adenylate cyclase and
further increase intracellular cAMP [154]. It is located on platelets, leukocytes, blood
vessels and intracranial regions such as striatum [158]. Its activation can inhibit platelet
aggregation and regulate blood pressure through vasodilation [159]. Its expression can be
altered by pathological conditions, e.g., upregulation on glial cells by hypoxia and inflam-
mation and at the BBB by brain tumors [10,160], to protect against damage via reducing
inflammation [161]. The activation of A2A adenosine receptor at the BBB can increase BBB
permeability by rapid and reversible decrease of tight junction proteins (e.g., claudin-5),
Pgp and BCRP [154,162]. Intravenous injection of clinically used regadenoson was shown
to be able to increase intracranial concentrations of small molecules and macromolecules in
preclinical studies [163–167]. However, regadenoson treatment at FDA-approved doses
in humans (bolus injection of 0.4 mg) was found without increased intracranial concen-
trations of temozolomide in patients with recurrent glioblastoma [168,169], which may
be attributed to the insufficient dose of this strategy for effective BBB modulation, and
warrants the necessity of studies on whether higher dose or different agonists would be
effective [154]. The alternative option of nanomedicine-mediated targeted agonist delivery
holds the potential of not only enhancing selectivity, intensifying the BBB opening effect,
and prolonging the BBB opening time window from up to 50 min to up to 2 h [170–174],
but also avoiding affecting peripheral A2A adenosine receptors to minimize systemic
side effects, e.g., excessive vasodilatation of the peripheral vascular bed, dizziness, and
headaches [154].

5.3. Activating Potassium Channels

Blood vessel endothelium widely expresses potassium channels, especially ATP-
dependent potassium channels (KATP) [175,176]. Activation of KATP can regulate vascular
hyperpolarization, relaxation, dilatation and vessel permeability [175–178], making KATP a
therapeutic target for hypertension. KATP is often upregulated in hypoxic environments
including brain tumors and ischemia [178,179]. The regulatory effects on BTB permeability
by activating the KATP are expected to be more significant than those of the BBB [176,180].
These effects include intensified paracellular diffusion and transcellular transport, which
involve in downregulated tight junction proteins and upregulated caveolin-1 and caveolae-
mediated transcytotic vesicles [176,181,182]. BTB modulation by strengthening the acti-
vation of KATP can be tightly controlled by inhibitors and has been used via minoxidil to
increase Herceptin delivery to primary or metastatic brain tumors [183–186]. Although
minoxidil was found to be nontoxic in both mice and rats [175], nonselective activation of
KATP may induce pericardial effusion, cardiac tamponade, reflex tachycardia, myocardial
necrosis, coronary arteriopathy, degeneration of renal tubules, hypotension, dermatologic
reactions, and hypertrichosis [154,187]. Intracarotid injection rather intravenous infusion
holds the potential of concentrating minoxidil to the brain and reducing effects on periph-
eral tissues. As an alternative approach, in our previous work, minoxidil was delivered by
hyaluronic acid modified nanoparticles to specially intensify the activation of BTB KATP to
enhance specific accumulation of subsequently injected therapeutic nanoparticles in brain
metastases in mice [188].

5.4. Other Potential Multifunctional Strategies

As a key factor in hypertension, diabetes and aging, angiotensin-II can increase BBB
permeability in both paracellular and transcellular manner by altering the distribution
of tight junction proteins, decreasing Mfsd2a, and increasing caveolin-1 [189]. Thus,
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angiotensin-II can be used to open the BBB for increased drug delivery into the brain to
treat various brain diseases. As a surgical technique, laser interstitial thermal therapy has
been widely used to ablate brain tumors [190,191]. Interestingly, increasing data indicate
that thermal therapy can disrupt the BBB via temporarily altering tight junctions and
increasing transcytosis [190]. Although this technique is invasive and requires general
anesthesia, combination of laser interstitial thermal therapy with other systemic therapies
still holds the potential for synergistic therapeutic effect.

6. Conclusions and Future Perspectives

Modulation of the BBB, including tight junctions, active efflux transporters, and
transcytotic vesicles, has been extensively studied to increase drug delivery to the brain.
Although improved intracranial drug concentrations were often shown for almost all
approaches, most of these studies were conducted preclinically and focused on brain
tumors with very few exceptions on epilepsy. Side effects associated with these mod-
ulating strategies need to be carefully handled to extend these technologies to various
brain diseases, including neurodegenerative diseases. First, although any delivery route
can be used including intravenous, intracarotid or stereotactic administration, these BBB
modulation approaches by themselves (e.g., radiation and various modulators) can be
severely toxic. Second, besides the BBB’s protective roles, BBB modulations are likely to
impair the intracranial physiological functions of related targets, e.g., normal physiological
actions of bradykinin B2 receptor, S1PR1, Pgp, Mfsd2a, LRP1, GLUT1, A2A adenosine
receptor, and KATP. Third, increased drug concentrations in normal brain and peripheral
tissues resulting from efflux inhibition or tight junction opening may worsen side effects of
subsequent therapeutic drugs. Fourth, unwanted accumulation of endogenous neurotoxic
blood components and xenobiotics in normal brain regions (even specific accumulation
in diseased regions) may lead to severe neurological complications. Therefore, the mod-
ulation window of various modulation strategies should be carefully investigated for
safe clinical translation, especially those multifunctional strategies that combine multiple
BBB modulations.
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