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Abstract

Recent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species
divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of
introgression, providing an important means to advance our understanding of the role of gene flow in speciation. Here,
we implement the multispecies-coalescent-with-introgression model, an extension of the multispecies-coalescent model
to incorporate introgression, in our Bayesian Markov chain Monte Carlo program BPP. The multispecies-coalescent-with-
introgression model accommodates deep coalescence (or incomplete lineage sorting) and introgression and provides a
natural framework for inference using genomic sequence data. Computer simulation confirms the good statistical
properties of the method, although hundreds or thousands of loci are typically needed to estimate introgression prob-
abilities reliably. Reanalysis of data sets from the purple cone spruce confirms the hypothesis of homoploid hybrid
speciation. We estimated the introgression probability using the genomic sequence data from six mosquito species in the
Anopheles gambiae species complex, which varies considerably across the genome, likely driven by differential selection
against introgressed alleles.
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Introduction

A number of recent studies have revealed cross-species hy-
bridization/introgression in a variety of species ranging from
Arabidopsis (Arnold et al. 2016), butterflies (Martin et al.
2013), corals (Mao et al. 2018), and birds (Ellegren et al.
2012) to mammals such as bears (Liu et al. 2014; Kumar
et al. 2017), cattle (Wu et al. 2018), gibbons (Chan et al.
2013; Shi and Yang 2018), and hominins (Nielsen et al.
2017). Introgression may play an important role in speciation
(Harrison and Larson 2014; Mallet et al. 2016; Martin and
Jiggins 2017). Inference of introgression and estimation of
migration rates can contribute to our understanding of the
speciation process (Mallet et al. 2016; Martin and Jiggins
2017). Furthermore, introgression and deep coalescence (or
incomplete lineage sorting) are two major challenges for spe-
cies tree reconstruction (Martin et al. 2013; Liu et al. 2014;
Fontaine et al. 2015).

There is a large body of literature on the use of networks to
model non-treelike evolution (Huson et al. 2011) and a num-
ber of methods have been developed to detect cross-species
gene flow. Most use summaries of the multilocus sequence
data such as the estimated gene trees (Solis-Lemus and Ane
2016; Wen et al. 2016; Solis-Lemus et al. 2017; Cao et al. 2019)
or the counts of parsimony-informative site patterns (Green
et al. 2010; Durand et al. 2011; Blischak et al. 2018). See
Degnan (2018) and Folk et al. (2018) for recent reviews.
We focus on coalescent-based full-likelihood models applied

to multilocus sequence alignments from closely related spe-
cies. These come in two forms. The isolation-with-migration
(IM) model assumes continuous migration, with species ex-
changing migrants at certain rates every generation (Hey and
Nielsen 2004; Hey 2010), whereas the multispecies-coales-
cent-with-introgression (MSci) model assumes episodic intro-
gression/hybridization (Yu et al. 2014). Although the
probability density of the gene trees under the IM (Hey
2010) and MSci (Yu et al. 2014) models is straightforward
to compute, developing a Bayesian Markov chain Monte
Carlo (MCMC) program that is feasible for use with
genome-scale data sets has been challenging. The space of
unknown genealogical histories (including the migration/in-
trogression histories) is large, and constraints between the
species tree and the gene trees make it difficult to traverse
the parameter space in the posterior. Current implementa-
tions of full-likelihood methods through MCMC include IMa3
(Hey 2010; Hey et al. 2018) for the IM model, and *BEAST

(Zhang et al. 2018; Jones 2019) and PHYLONET/MCMC-SEQ

(Wen and Nakhleh 2018; Wen et al. 2018) for the MSci model.
It does not appear computationally feasible to apply those
programs to realistically sized data sets, with more than 200
loci, say.

In this article, we extend the multispecies-coalescent
(MSC) model in the BPP program (Rannala and Yang 2003;
Burgess and Yang 2008; Yang 2015) to accommodate intro-
gression, resulting in the MSci model (Degnan 2018). The
MSci model can be used to estimate species divergence times
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and the number, timings, and intensities of introgression
events. By accommodating gene flow and providing more
reliable estimates of evolutionary parameters, the model
may also be used in heuristic species delimitation (Jackson
et al. 2017; Leach�e et al. 2019). We conduct simulation to
examine the statistical properties of the method, in compar-
ison with two summary methods, SNAQ (Solis-Lemus and
Ane 2016; Solis-Lemus et al. 2017) and HYDE (Blischak et al.
2018). We apply the new method to data sets of purple cone
spruce (Sun et al. 2014; Zhang et al. 2018), budding yeast
(Rokas et al. 2003; Wen and Nakhleh 2018), and Anopheles
mosquito genomes (Fontaine et al. 2015; Thawornwattana
et al. 2018a), to examine the computational efficiency of our
algorithms in comparison with previous implementations
(Wen and Nakhleh 2018; Zhang et al. 2018) and to estimate
the introgression probability and to study its variation across
the genome.

Results

The MSci Model
We extend the MSC model (Rannala and Yang 2003) to ac-
commodate cross-species hybridization (or introgression) by
introducing hybridization (or H) nodes (fig. 1). Each H node
has two parents (Hl and Hr, for left and right) and one daugh-
ter, although the H node and its parents may have the same
age when there is an admixture or horizontal gene transfer
(fig. 1B and C). In model A, both parental species become
extinct after hybridization, whereas model B represents an
introgression from species RSA into THC. Model C represents
hybrid speciation, whereas model D represents bidirectional
introgression (Kubatko 2009).

When we trace a lineage backward in time and reach an H
event, the lineage may traverse either the left or the right
parental species, according to the introgression probability (u

or 1� u). This probability is equivalent to the “inheritance
probability” c of Yu et al. (2014) and the “heritability” of Solis-
Lemus and Ane (2016). The MSci model includes three sets of
parameters: the speciation and introgression times (s); the
population size parameters (h), with each h ¼ 4Nl, where N
is the effective population size and l is the mutation rate per
generation per site; and the introgression probabilities (u).
Both ss and hs are measured by the expected number of
mutations per site. Here, we assume that the MSci model is
fixed; cross-model MCMC moves will be developed in future
work.

Let G ¼ fGig be the set of gene trees for the L loci. For
each locus i, Gi represents the gene-tree topology, the branch
lengths (coalescent times), and the paths taken at the H
nodes, indicated by a set of flags for each gene-tree branch,
with l for left, r for right and 1 for null (meaning that the
branch does not pass the H node). The data X ¼ fXig are the
sequence alignments at the L loci. Sites within the same locus
are assumed to share the same genealogical history, whereas
the gene trees and coalescent times are assumed to be inde-
pendent among loci given the species tree and parameters.
The ideal data for this kind of analysis are loosely linked short
genomic segments (called loci), so that recombination within
a locus is unimportant, whereas different loci are largely in-
dependent (Burgess and Yang 2008; Lohse et al. 2016; Hey
et al. 2018). The Bayesian formulation consists of two com-
ponents. The first is the probability density of gene trees given
the species tree under the MSci model, fðGijs; h;uÞ, given in
Yu et al. (2014) although here Gi includes the flags for hybrid
nodes. Note that this differs from the density given by
Kubatko (2009), as pointed out by Solis-Lemus and Ane
(2016). The second component is the likelihood of the se-
quence data at each locus i given the gene tree, fðXijGiÞ
(Felsenstein 1981). The posterior probability density of the
parameters on the species tree given sequence data is then

A B C D

FIG. 1. The MSci model with four different types of hybridization (introgression or admixture) events. In (A), two parental species SH and TH merge
to form a hybrid species H, at time sH, leading to extinction of the parental species. In (B), there is introgression from species RSA to species THC at
time sH ¼ sS , with introgression probability u. In (C), species RSA and RTB come into contact to form hybrid species H at time sS ¼ sH ¼ sT ,
which evolves into species C, while the two parent species become A and B. In (D), bidirectional introgression occurs between species RXA and RYB
at time sX ¼ sY , with introgression probabilities uX and uY . Parameters in the model include speciation/hybridization times (ss), population sizes
(hs), and introgression probabilities (us). The models are represented using the extended Newick notation (see Appendix) (Cardona et al. 2008), as
(A–C): ððA; ðCÞHÞS; ðH; BÞTÞR and (D): ððA; YÞX; ðX; BÞYÞR. Arrows indicate the direction of time from parent to child or from source to target
populations.
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fðs; h;ujXÞ / fðs; h;uÞ
YL

i¼1

ð
Gi

fðGijs; h;uÞfðXijGiÞ dGi;

(1)

where fðs; h;uÞ is the prior on parameters. We assign in-
verse-gamma priors on hs and ss and a beta prior on u.

We have implemented six MCMC proposals to average
over the gene trees (Gi) and sample from the posterior
(eq. 1). Those proposals 1) change node ages on gene
trees, 2) change gene-tree topologies using subtree prun-
ing and regrafting (SPR), 3) change hs on the species tree
using sliding windows, 4) change ss on the species tree
using a variant of the rubber-band algorithm (Rannala
and Yang 2003), 5) changing all node ages on the species
tree and gene trees using a multiplier, and 6) change the
introgression probabilities us using sliding windows. The
proposals are detailed in Materials and Methods using the
example species tree model of figure 2.

Simulation Study
We conducted three sets of simulation to examine the
performance of BPP in different situations.

The first set includes multiple sequences from each species
and examines BPP estimation of parameters in the MSci model
and the impact of factors such as the number of loci, the
introgression probability u, and the species tree model. We
used models A and C of figure 1. Each data set consisted of 10,
100, or 1,000 loci, with 10 sequences from each species per
locus (and 30 sequences in total). We used two values for u
(0.1 and 0.5) and two values for h (0.001 and 0.01). Either a JC
(Jukes and Cantor 1969) or a GTRþC (Yang 1994a, 1994b)

substitution model was used to simulate data, but JC was
always used to analyze them. The results may be summarized
as follows (supplementary figs. S1–S8, Supplementary
Material online).

• First, there were large variations in estimation precision
and accuracy among the different parameters. For exam-
ple, estimates of hs for modern species were accurate
even in small data sets in all combinations of trees, mod-
els, and h values. In contrast, hs for some ancestral species
(such as hS, hT, hHl

, and hHr
in model A when the true

h ¼ 0:001) were poorly estimated, with the posterior
dominated by the prior even with 100 or 1,000 loci.
Those parameters were hard to estimate as very few
sequences enter or coalesce in the populations. These
same parameters were much better estimated when
the true h ¼ 0:01 as then many more sequences could
enter and coalesce in the ancestral species. For similar
reasons, the ages of ancestral nodes such as sH and sS

were much better estimated when the true h ¼ 0:01
than when h ¼ 0:001.

• Second, parameter estimates under model C were more
precise than under model A, because the former has 9
parameters, whereas the latter 13.

• Third, there were virtually no differences in the results
whether the data were simulated under JC or GTR þ C.
As the role of the mutation model in BPP is to correct for
multiple hits at the same site and as the simulated
sequences are highly similar, the choice of the mutation
model is unimportant. Similar observations were made in
previous simulations examining species tree estimation
without introgression (Shi and Yang 2018).

• Last, the data size (the number of loci) had a huge impact
on the precision and accuracy of estimation. In particular,
data of only 10 or 100 loci did not produce reliable esti-
mates of u, whereas estimates from 1,000 loci were both
precise (with narrow intervals) and accurate (close to the
true values). Because the MSci models are parameter rich,
large data sets in the order of 1,000 loci are necessary for
reliable inference.

In the second set of simulations we compared BPP with two
summary methods: SNAQ (Solis-Lemus and Ane 2016; Solis-
Lemus et al. 2017) and HYDE (Blischak et al. 2018), using one
sequence per species. We simulated data under model A,
with three ingroup species (A, B, and C), as well as two out-
group species D and E, as required by SNAQ (Solis-Lemus et al.
2017). One sequence was sampled per species per locus. The
data were then analyzed using the three programs to estimate
u (supplementary fig. S9, Supplementary Material online).
Data size had a large impact on the precision and accuracy
of the estimates. All three methods performed poorly with 10
or 100 loci (or gene trees), but the estimates were close to the
true values with 1,000 loci. Overall, the three methods had
similar performance in estimating u. In some small data sets,
SNAQ and HYDE had extreme estimates of 0, whereas BPP

always produced nonzero estimates, due to Bayesian shrink-
age through the prior.

FIG. 2. A species tree for three species (A, B, C) with a gene tree for 12
sequences running inside it to illustrate the gene-tree node-age move
and the gene-tree SPR move. There are four speciation nodes
(R; S;U;V) and two hybridization nodes (H1 and H2). This MSci model
is also used in simulation, where the model is referred to as “2H”.
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Note that the problem examined here is a conventional
parameter estimation problem under a well-specified model,
so that standard statistical theory applies, which states that
the Bayesian method has optimal large-sample properties
(O’Hagan and Forster 2004). The small differences among
the methods suggest that information in the data concerning
u mostly lies in the proportions of gene trees, which may be
reliably estimated even if phylogenetic information content
at each individual locus is low. We note that BPP has several
advantages. 1) BPP accommodates the uncertainties in the
data appropriately and produces posterior credible intervals
(CIs), whereas SNAQ and HYDE generate point estimates only.
2) BPP estimates all 13 parameters in the model, whereas
SNAQ and HYDE estimate only 2 (u and the internal branch
length) with the others unidentifiable. Estimates of ancestral
population sizes (hs) and species divergence and introgres-
sion times (ss) may be useful for understanding the evolu-
tionary history of the species. 3) BPP can use loci of any data
configuration, including loci with sequences from only one or
two species, which are informative for BPP but carry no infor-
mation about gene trees. 4) Some introgression models or
biologically important scenarios are unidentifiable using
SNAQ and HYDE but can be analyzed using BPP (see below).
In contrast, SNAQ and HYDE have a huge computational
advantage over BPP and may be very useful for exploratory
analysis in large data sets.

The third set of simulations explored the performance of BPP

under models that are unidentifiable using SNAQ and HYDE.
We used model D of figure 1 and model 2H of figure 2, with
results in supplementary figure S10, Supplementary Material
online. Model D represents bidirectional introgression be-
tween two species. Population size parameters (hs) for mod-
ern species A and B were well estimated even with 100 loci, as
was hR for the root, but hX for species X (branch X-R) and hY

(for branch Y-R) were more poorly estimated (supplementary
fig. S10A, Supplementary Material online). Both s parameters
were well estimated. The introgression probabilities uX and uY

were poorly estimated in small data sets of 10 or 100 loci but
were fairly accurate with 1,000 loci.

Model 2H (fig. 2) involves two introgression events on a
species tree of three species. There were large differences in
information content for different parameters (supplementary
fig. S10B, Supplementary Material online). Parameters hs for
modern species were well estimated even in small data sets,
but hs for most ancestral species were poorly estimated be-
cause of lack of coalescent events in those populations.
Parameter hH1r

was more accurately estimated than hH1l
be-

cause more sequences passed node H1 from the right (with
probability 1� u ¼ 0:9) than from the left (with u ¼ 0:1),
and hH1l

and hH1r
were more reliably estimated than hH2l

and
hH2r

because more sequences passed node H1 than node H2.
Similarly sH1

was better estimated than sH2
. With 1,000 loci, all

six node ages (for R; S;U;V;H1, and H2) were well estimated.
The two introgression probabilities (uH1

and uH2
) were

poorly estimated with 10 or 100 loci but were reliably esti-
mated when 1,000 loci were used.

In summary, in both introgression scenarios of models D
and 2H, where SNAQ and HYDE are inapplicable, BPP appears

to be a well-behaved method, providing reliable estimates of
introgression probabilities as well as species divergence and
introgression times.

Analysis of the Purple Cone Spruce Data
We analyzed three data sets concerning the origin of the
purple cone spruce in the Qinghai–Tibet Plateau, Picea pur-
purea, hypothesized to be a hybrid species, formed through
homoploid hybridization between P. wilsonii (W) and
P. likiangensis (L) (Sun et al. 2014). Two small data sets
were previously analyzed using *BEAST under model A of fig-
ure 3, whereas the third one (the “Full” data) is a much larger
data set from which the first two were sampled. We
attempted to apply PHYLONET/MCMC-SEQ (Wen and Nakhleh
2018) to analyze any of those data sets but were unsuccessful.
The program used all 144 cores on our server and did not
produce any output after 5 days. The data sets appeared to be
too large for the program.

Parameter estimates under model A from the two small
data sets were similar to those in Zhang et al. (2018), with u
estimates between 0.32 and 0.44, although the estimates in-
volved large uncertainties (supplementary table S1,
Supplementary Material online). The uncertainty is appar-
ently due to the use of only 11 loci (although many sequences
are available at each locus) and the shallowness of the species
tree, with species divergence times being comparable with
coalescent times (or with similar ss and hs). Accommodating
rate variation among loci had very small effects. The full data
produced similar parameter estimates to the two small data
sets, but u is larger, at 0.47–0.49. We also applied model C
(fig. 3) to the full data, which produced more precise esti-
mates because of the smaller number of parameters (fig. 3
and supplementary table S1, Supplementary Material online).
The u estimate under model C was 0.53, with the 95% highest
posterior density (HPD) CI to be 0.36–0.71.

Note that the models represent different biological scenar-
ios. Model A assumes the existence, and subsequent extinc-
tion at the time of hybridization, of species DH and EH (fig. 3).
This is not a very plausible model (Sun et al. 2014). Model C
represents speciation through homoploid hybridization, with
species RDW and REL coming into contact and forming a
hybrid species (H) at time sH. A possible scenario is that
changes in species distribution may have led to habitat over-
lap between P. wilsonii and P. likiangensis during the
Quaternary glaciation in the central Qinghai–Tibet Plateau
(Sun et al. 2014). We calculated marginal likelihoods (Bayes
factors) to compare models A–C (fig. 1). The log marginal
likelihood was –18,361 for model A, –18,359 and –18,361 for
two cases of model B (with sH ¼ sD and sH ¼ sE, respec-
tively), and –18,362 for model C, suggesting the fit of the
models to data is similar. The marginal likelihoods are thus
indecisive. We suggest that model C should be preferred,
because of its biological plausibility.

Analysis of the Budding Yeast Data Set
We fitted the MSci model of figure 4 to the data of 106 loci
from 5 species of budding yeast. This model had a posterior
probability of >95% in the PHYLONET/MCMC-SEQ analysis of the
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same data by Wen and Nakhleh (2018). The u estimate from
BPP was 0.70 (with the 95% HPD CI 0.56–0.83), compared with
0:7560:06 in Wen and Nakhleh (2018). The small differences
may be due to the use of different priors and the assumption
of a constant h across all populations in the PHYLONET analysis.
The results confirm the expectation that full-likelihood pro-
grams, if computationally feasible, should produce similar
results. Running time for achieving an effective sample size
(ESS) of 1,000 for u was�3 min for BPP using all 8 threads on a
notebook, compared with �17 h for PHYLONET using 32
threads on a computer server (Wen and Nakhleh 2018). If
we make a 10-fold allowance for the fact that the model is
fixed in BPP while PHYLONET spent computational efforts
attempting changes to the model, this very roughly translates
into a 100-fold difference in mixing/computational efficiency
between the two programs (17� 60=3� 4=10 ¼ 136).

Variable Introgression across the Genome in the
Anopheles gambiae Species Complex
To examine the variation in introgression intensity across the
Anopheles genome, we analyzed blocks of 100 loci, assuming
the species tree of figure 5. Estimates of uA!GC for the
A. arabiensis ! A. gambiae þ A. coluzzii introgression and
uR!Q for the A. merus! A. quadriannulatus introgression
vary considerably across genomic regions or chromosomal
arms (fig. 6). The probability uA!GC is high (>0.5) in most
blocks, whereas uR!Q is high in 3La and 3R.

We then merged the loci on the same chromosomal arms/
regions to form 12 large coding and noncoding data sets, and
analyzed them under the model of fig. 5 (table 1). We also
sampled three sequences per locus to form data triplets for
analysis using the maximum likelihood (ML) program 3S

(Thawornwattana et al. 2018a, supplementary table S3,
Supplementary Material online, GAR and RQO). For all

autosomes, the introgression/migration rate from
A. arabiensis to A. gambiae þ A. coluzzii is very high (with
uA!GC > 0:5), whereas MA!G ranges from 0.12 to 1.12. To
reconcile the estimates from the two models, note that M is
the expected number of migrants per generation, so that
even a small M may mean a large number of migrants accu-
mulated over many generations. As noted previously
(Fontaine et al. 2015; Thawornwattana et al. 2018a), the auto-
somes are overwhelmed by the A! GC introgression so that
all species tree methods that ignore gene flow infer incorrect
species trees. In population genetic models of population
subdivision, migration rates of M� 1 do not lead to sub-
stantial population subdivision. However, here M as low as 0.1
may have a significant impact on the species phylogeny if the
species arose through radiative speciation events and the
ancestral species had large sizes.

Parameter uR!Q varied across chromosomal regions and
was high for the inversion region 3La. Coding and noncoding
loci produced highly consistent estimates of species trees,

A B

FIG. 3. Two species trees for the purple cone spruce Picea purpurea (P)
from the Qinghai–Tibet Plateau, and two parental species P. wilsonii
(W) and P. likiangensis (L). These correspond to (A) Model A and (B)
Model C of figure 1. The branch lengths represent the posterior
means of divergence times (ss) estimated from the “Full” data set,
with node bars showing the 95% HPD intervals (see supplementary
table S1, Supplementary Material online).

FIG. 4. The species tree for five species of budding yeast, with one
introgression event. The branches were drawn to reflect the posterior
means of divergence/introgression times (ss) from BPP, with node bars
showing the 95% HPD intervals, whereas posterior means of popula-
tion sizes (hs) are shown along the branches.

FIG. 5. A species tree with two introgression events for the Anopheles
gambiae species complex.
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species divergence times, and population sizes (supplementary
table S2, Supplementary Material online) (see also
Thawornwattana et al. 2018a), but estimates of migration
rate/introgression probability differed between the two data
sets. The higher introgression rates for coding than noncoding
loci in regions 3La, 2L1þ 2, and 3R suggest the intriguing
possibility that the introgressed genes may have brought adap-
tive advantages, so that introgression is aided by natural se-
lection. The functions of coding genes or exons that are most
likely transferred across the species barriers could be examined
to explore this hypothesis. There is overall consistency be-
tween estimates from the IM model in 3S and the MSci model
in BPP in that regions with high u tend to have high M as well.
Note that both u and M reflect long-term effective gene flow,
after the filtering of introgressed alleles by natural selection.

Discussion

Identifiability of MSci Models
If the probability distributions of the data are identical for two
sets of parameter values (H and H0), with fðXjHÞ ¼ fðXjH0Þ

for all possible data X, then H is unidentifiable given data X.
Previous studies of identifiability have mostly focused on the
use of gene-tree topologies as data (Zhu and Degnan 2017;
Degnan 2018). Note that a model unidentifiable given gene-
tree topologies alone may be identifiable given gene trees
with branch lengths or coalescent times, and that a model
unidentifiable when one sequence is sampled per species may
be identifiable when multiple samples per species are avail-
able (Yu et al. 2012; Pardi and Scornavacca 2015; Zhu and
Degnan 2017).

A comprehensive examination of the identifiability issue
under MSci is beyond the scope of this article. Here, we con-
sider a few simple cases. First, the population size parameter h
is unidentifiable if at most one sequence per locus is sampled
from that species or its descendant species and ss associated
with a hybridization event may also be unidentifiable.
Consider the model of figure 2 and suppose the data consist
of one sequence from each species. Then hA, hB, and hC, as
well as hH1l

; hH1r
; hH2l

, and hH2r
, are unidentifiable. In addition,

sH1
and sH2

are unidentifiable. Parameters sU, sV, sS, sR, and

FIG. 6. Posterior means and 95% HPD intervals of the introgression probabilities uA!GC and uR!Q for the Anopheles gambiae species complex in BPP

analysis of the blocks. Each block consists of 100 loci, which are assumed to have the same u at each hybridization node.
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uH1
and uH2

are identifiable, as are hR; hS; hU, and hV. In this
case, the gene tree at any locus depends on whether sequence
c takes the left path at H1 and enters species U (which hap-
pens with probability uH1

), or it takes the right path and
enters species H2 (which happens with probability
1� uH1

), but not on the age of the H1 node. The same
applies to the path taken by sequence c at H2.

The most interesting case for the MSci model implemented
here is where multiple sequences are sampled from each spe-
cies at each locus, with multiple sites per locus. We speculate
that the MSci model is identifiable on such data of sequence
alignments as long as it is identifiable when the data consist of
gene trees with coalescent times: H is identifiable using multi-
locus data X if and only if fðG; tjHÞ 6¼ fðG; tjH0Þ for some G
and t. Note that identifiability implies statistical consistency for
a full-likelihood method as implemented here. If the model is
identifiable, the Bayesian parameter estimates will approach
the true values when the number of loci approaches infinity.

Here, we note an interesting unidentifiability
issue with model D of figure 1. Let H ¼
(hA; hB; hR; hX; hY; sR; sX;uX;uY) be the parameters of
the model, and let H0 have the same parameter values as
H except that h0X ¼ hY; h0Y ¼ hX , u0X ¼ 1� uX , and
u0Y ¼ 1� uY . Then fðGjHÞ ¼ fðGjH0Þ for any H, G, and
data configuration (with nA and nB sequences from A and B,
respectively, say). Thus for every point H in the parameter
space, there is a “mirror” point H0 with exactly the same
likelihood. With H, a certain number of A sequences may
take the left (upper) path at X (with probability uX) and enter
population XR, coalescing at the rate 2=hX , whereas with H0,
the same A sequences may take the right (horizontal) path
(with probability 1� u0X ¼ uX) and enter population YR,
coalescing at the rate 2=h0Y ¼ 2=hX . The differences between
the two scenarios are in the labeling only, with “left” and X
under H corresponding to “right” and Y under H0, but the
probabilities involved are exactly the same. The same argu-
ment applies to sequences from B going through node Y, and
to sequences from A and B considered jointly. This is a case of
the label-switching problem. Arguably H and H0 have the

same biological interpretations concerning the relatedness of
the sequences sampled from A and B. If the priors on uX and
uY are symmetrical, say betaða; aÞ, the posterior density will
satisfy fðHjXÞ ¼ fðH0jXÞ for all X. Otherwise, the “twin tow-
ers” may not have exactly the same height.

Note that the label-switching kind of unidentifiability does
not hinder the utility of the model. One can apply an iden-
tifiability constraint, such as u < 0:5, to remove the uniden-
tifiability. However, in the general case of multiple
bidirectional introgression events or multiple species on the
species tree, it may be complicated to decide on the identifi-
ability of the model.

Finally, we point out that there are many scenarios of data
configurations and parameter settings in which some param-
eters are only weakly identifiable and very hard to estimate.
For example, if hC is very small relative to sH1

in figure 2,
sequences from C will have coalesced before reaching node
H1, so that only one C sequence passes H1 and the data will
have little information about sH1

; hH1l
; hH1r

; sH2
; hH2l

, and hH2r
.

Full-Likelihood and Summary Methods to
Accommodate Introgression/Migration
Although biologically simplistic, the MSci and IM models offer
powerful tools for analysis of genomic sequence data from
closely related species, when cross-species gene flow appears
to be the norm (Mallet et al. 2016; Martin and Jiggins 2017).
Full-likelihood implementations of those models, including
the ML (Zhu and Yang 2012; Dalquen et al. 2017) and
Bayesian MCMC methods (Hey et al. 2018; Wen and
Nakhleh 2018; Zhang et al. 2018), make efficient use of the
information in the data and naturally accommodate phylo-
genetic uncertainties at individual loci caused by high se-
quence similarities (Edwards et al. 2016; Xu and Yang 2016).
The complexity of those models means that large data sets
with hundreds or thousands of loci may be necessary to ob-
tain reliable parameter estimates, as indicated by our analyses
of both simulated and real data. In this article, we have de-
veloped new MCMC proposal algorithms for MSci models (of

Table 1. Maximum Likelihood (3S) Estimates of Migration Rate (M¼ Nm) and Bayesian (BPP) Estimates of Introgression Probability (u) from the
Anopheles Genomic Data.

Data Set Loci A. arabiensis fi A. gambiae þ A. coluzzii A. merus fi A. quadriannulatus

bMAfiG (3S, GAR) uAfiGC (BPP) bMRfiQ (3S, RQO) uRfiQ (BPP)

2L1 1 2 coding 3,585 0.319 0.372 0.943 (0.924, 0.963) 0.025 0.020 0.281 (0.242, 0.322)
2L1 1 2 noncoding 6,434 0.239 0.209 0.977 (0.967, 0.985) 0.000 0.000 0.002 (0.000, 0.003)
2La coding 2,776 0.915 1.120 0.731 (0.697, 0.766) 0.052 0.036 0.006 (0.002, 0.009)
2La noncoding 6,732 0.989 0.935 0.640 (0.627, 0.653) 0.000 0.000 0.001 (0.000, 0.002)
2R coding 6,849 0.511 0.477 0.966 (0.958, 0.975) 0.030 0.024 0.340 (0.295, 0.391)
2R noncoding 17,027 0.357 0.297 0.971 (0.961, 0.986) 0.007 0.007 0.222 (0.122, 0.342)
3L1 1 2 coding 1,747 0.168 0.340 0.939 (0.923, 0.956) 0.000 0.024 0.321 (0.271, 0.369)
3L1 1 2 noncoding 4,319 0.267 0.267 0.959 (0.951, 0.968) 0.000 0.003 0.330 (0.304, 0.356)
3La coding 1,998 0.866 0.790 0.931 (0.914, 0.947) 0.127 0.105 0.650 (0.619, 0.680)
3La noncoding 6,208 0.692 0.671 0.977 (0.970, 0.984) 0.021 0.020 0.544 (0.456, 0.700)
3R coding 4,977 0.393 0.365 0.945 (0.932, 0.958) 0.042 0.042 0.430 (0.371, 0.488)
3R noncoding 14,323 0.334 0.281 0.977 (0.971, 0.984) 0.009 0.009 0.030 (0.012, 0.062)

NOTE.—ML estimates from 3S were obtained from two random samples of the GAR and RQO triplets, whereas the BPP estimates (posterior means and 95% HPD intervals) used
all 12 sequences at each locus.
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types A–D of fig. 1) and have successfully applied them to
analyze large data sets of over 10,000 loci (table 1). The algo-
rithms appear to have good mixing efficiency. We suggest
that this is a promising start, from which further improve-
ments to the algorithms may be possible. Future work will
include implementation of efficient MCMC proposals to
move between MSci models, and a systematic examination
of identifiability issues.

We note that the computational load for BPP increases with
an increase in the number of species, the number of hybrid-
ization events, the number of loci, the number of sequences
per locus, or the number of sites per sequence. Increasing the
number of species or hybridization events increases the num-
ber of parameters (as well as the number of models when the
model is changing in the MCMC) so that the parameter space
becomes much larger. Increasing the number of loci also
increases the posterior search space since the MCMC has
to sample in the space of gene trees for each locus (Flouri
et al. 2018). In comparison, the number of sites per sequence
has the least impact on the amount of computation. We
found it helpful to make a distinction between computa-
tional efficiency of an MCMC algorithm, which reflects the
computational time for each MCMC iteration, and mixing
efficiency, which is measured by the ESS in parameter esti-
mates for a given number of MCMC iterations. When the
data set gets larger, particularly with more loci in the data set,
the posterior for parameters becomes spiky, which in general
leads to a deterioration of MCMC mixing efficiency, so that a
greater number of MCMC iterations become necessary to
produce estimates with acceptable precision. We conjecture
that poor mixing is a more serious problem than poor com-
putational efficiency for most MCMC algorithms in
phylogenomics.

Our simulation suggests that under simple introgression
scenarios, summary methods such as SNAQ and HYDE can
produce as reliable estimates of the introgression probability
as BPP. However, full-likelihood methods provide measures of
uncertainties and are applicable to complex introgression
scenarios which are unidentifiable using summary methods.
Summary methods are simple to implement, computation-
ally efficient, and useful for analyzing large data sets. They can
be used to generate hypotheses for further testing and esti-
mation using BPP. Furthermore, the current implementation
of MSci in BPP assumes the molecular clock and is unsuitable
for distantly related species. Summary methods such as
SNAQ use outgroups to root the tree without the need for
the molecular clock.

Variable Introgression Probability across the Genome
The models implemented here (fig. 1A–C) assume that the
introgression probability or migration rate is constant among
loci or across the genome. However, the impact of introgressed
alleles on the fitness of the individual may strongly depend on
the function of the genes in the introgressed region. Genes
involved in cross-species incompatibilities are unlikely to be
accepted in the recipient species. For example, crossing experi-
ments between A. arabiensis and A. gambiae highlighted large
differences between the chromosomes, with the X

chromosome being most resistant to introgression, presum-
ably because it harbors genes involved in cross-species sterility
and inviability (Slotman et al. 2005). Differential selection
across the genome means that the u parameter should vary
among loci. Note that u in our models when estimated from
genetic sequence data reflects the long-term combined effects
of migration, recombination, and natural selection. It may be
very different from the per-generation hybridization rate,
which should apply to the whole genome.

In our analysis of the Anopheles genomic data, we used
blocks of 100 loci to partially accommodate the variation in
migration rate or introgression probability across chromo-
somal regions (fig. 6). We leave it to future work to implement
MSci models with u varying among loci. We note that many
sequences per locus may be necessary to estimate locus-
specific migration rates or introgression probabilities.

Materials and Methods

MCMC Proposals
We have adapted the five proposals in Rannala and Yang
(2003) to accommodate hybridization nodes on the species
tree and added another move to update the u parameters.

Step 1. Change node ages on gene trees using a sliding
window. Suppose the concerned gene-tree node is node x
with age tx in population X, with parent node p in popula-
tion P and two daughter nodes u and v in populations U and
V, respectively. To propose a new node age t�x first determine
the bounds, tL < t�x < tU, with tU determined by the age of
the parent node (tp) and tL by the age of the oldest daughter
node: tL � maxðtu; tvÞ. In addition, if the two daughter
nodes are in different populations (with U 6¼ V), tL must
be older than the youngest common ancestor of popula-
tions U and V on the species tree.

Generate the new age t�x by sampling around tx, reflected
into the interval ðtL; tUÞ. The new node x� has to reside in a
population that is descendant to the parent population P and
ancestral to the child populations U and V. Among those tar-
get populations, we sample one uniformly. Given the sampled
population for x�, we sample the flags for the three branches:
p–x�; x�–u, and x�–v. In each case, the two ends of the branch
are already assigned a population. This move may cause large
changes to the flags even though it does not change the gene-
tree topology. For example, consider the change of tx in figure 2.
Node x is in population S, with branch x–v having the flags l1,
since the branch passes H1 from the left and does not pass H2.
Suppose the new age, generated in the interval (tu, tp), is t�x
> sR so that the new node x� resides in R. The resampled flags
for branch x�–v may be rr, if the new branch passes both H1

and H2 from the right. The proposal ratio is given by the
probabilities of sampling the flags at the H nodes.

Step 2. SPR move to change the gene-tree topology. This
move cycles through the nonroot nodes on the gene trees.
Suppose the node is a. We prune off its parent node y. The
remaining part of the gene tree is called the backbone. We
sample the new age (t�y ) before reattaching the subtree y–a
onto the backbone. This move always changes the node age ty

but may not change the gene-tree topology.
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First, we determine the bounds on the age of reattachment
point: tL < t�y < tU. The maximum age is unbounded,
whereas the minimum is tL � ta. However, if there are no
branches on the backbone passing the population of node a,
the reattachment point has to be in an ancestral species (in
which there exists at least one branch on the backbone) and
tL has to be greater. For example, clade a in figure 2 resides in
population B, and if we prune off clade a, there will still be
branches in B on the backbone for reattachment. In contrast,
clade a0 resides in population H1r , but if we prune off y0–a0,
there will be no branches in population H1r for reattachment
and the youngest ancestor of H1r with branches on the back-
bone is V, so that tL ¼ sV .

We generate a new age t�y around the current age (ty),
reflected into the interval (tL, tU) if necessary, and then reat-
tach y and clade a to a branch on the backbone at time t�y . A
feasible target branch should cover t�y and should at time t�y
be in a population ancestral to the population of a. We sam-
ple a target branch at random, either uniformly or with
weights determined using local likelihoods.

In case the new branch y�–a passes hybridization nodes,
we sample the flags at each hybridization node, as in step 1.
Suppose we prune off branch y0–a0 in figure 2 and the new
age is t0�y > sR. Then, we let branch y0�–a0 go through H2l or
H2r according to their probabilities. The proposal ratio is given
by the number of target branches for reattachment and the
probabilities for sampling the flags.

Step 3. Change hs on the species tree using a sliding win-
dow. This step is the same as in Rannala and Yang (2003).

Step 4. Change ss on the species tree using a variant of the
rubber-band algorithm (Rannala and Yang 2003). We gener-
ate a new age (s�) around the current age, reflected into the
interval ðsL; sUÞ, determined using the ages of the parent
nodes and daughter nodes on the species tree. Next we
change the ages of the affected nodes on the gene trees using
the rubber-band algorithm. An affected node has age in the
interval ðsL; sUÞ and resides in the current population (with
age s) or the two daughter populations (if a speciation node is
changed), or in the two current populations (Hl and Hr) and
the daughter population (if an H node is changed). For ex-
ample, to change sS, the bounds are ðsH2

; sRÞ, and the af-
fected nodes on the gene tree of figure 2 are in species S, U,
and H2. These are x, u, and w. To change sH2

the bounds are
ðsH1

; sVÞ and the affected nodes are in species H2l; H2r, and
H1r, and are a0. The proposal for changing node ages on the
gene tree given the bounds is as in (Rannala and Yang 2003,
eqs. A7 and A8).

Step 5. Rescale all node ages on the species tree and on the
gene trees using a mixing step (a multiplier) (Rannala and
Yang 2003).

Step 6. Change the introgression probability u for each
introgression event using a sliding window. This step affects
the gene-tree density, but not the sequence likelihood.

The sliding window used in BPP is the Bactrian move with the
triangle kernel (Yang and Rodriguez 2013; Thawornwattana
et al. 2018b). Step lengths are adjusted automatically during
the burn-in, to achieve an acceptance rate of�30% (Yang and
Rodriguez 2013).

Simulation Study
We conducted three sets of simulations. The first set includes
multiple sequences from each species and examines BPP esti-
mation of parameters in the MSci model and the impact of
the number of loci, the introgression probability u, and the
species tree model. The second set compares BPP with two
summary methods: SNAQ (Solis-Lemus and Ane 2016; Solis-
Lemus et al. 2017) and HYDE (Blischak et al. 2018), using one
sequence per species. The third set explores the performance
of BPP when the model is unidentifiable using SNAQ and HYDE.

For the first set of simulations, multilocus data sets were
simulated under the MSci models A and C of figure 1 and
then analyzed using BPP to examine the precision and accu-
racy of parameter estimation. For model A, we used
sR ¼ 0:03, sS ¼ 0:02; sT ¼ 0:02, and sH ¼ 0:01. For model
C, we used sR ¼ 0:03 and sS ¼ sT ¼ sH ¼ 0:01. We used
two values of u (0.1 and 0.5) and two values of h (0.001 and
0.01), applied to all populations. Each data set consisted of 10,
100, or 1,000 loci, and at each locus, 10 sequences were sam-
pled from each species (with 30 sequences in total). The se-
quence length was 500 sites.

Data were generated using the “simulate” option of BPP.
Gene trees with branch lengths (coalescent times) were sim-
ulated under the MSci model. Then, sequences were
“evolved” along the branches of the gene tree according to
either the JC (Jukes and Cantor 1969) or the GTRþC (Yang
1994a, 1994b) models, and the sequences at the tips of the
gene tree constituted the data at the locus. In the GTRþC
model, the GTR parameters varied among loci according to
estimates obtained for chromosomal arm 2L from the
A. gambiae species complex (Thawornwattana et al. 2018a).
The base-frequency parameters were generated from a
Dirichlet distribution ðpT; pC; pA; pGÞ � Dirð25:18; 20:50;
25:22; 20:38Þ. The GTR exchangeability parameters (Yang
1994a) were ða; b; c; d; e; fÞ � Dirð7:59; 3:23; 2:95; 2:93;
2:93; 7:57Þ. The overall rates for loci varied according to a
gamma distribution G(5, 5), whereas the rates for sites at the
same locus varied according to the gamma distribution with
mean one, Gða; aÞ (Yang 1994b), with the shape parameter a
sampled from G(20, 4).

The number of replicates was 10. Thus, with two trees (A
and C), two u values (0.1 and 0.5), two h values (0.001 and
0.01), two mutation models (JC and GTRþC), and three
data sizes (10, 100, and 1,000 loci), a total of 480 ¼ 2� 2� 2
�2� 3� 10 replicate data sets were generated.

Each data set was analyzed using BPP. The JC model was
always assumed whether the data were simulated under JC or
GTRþC. Inverse-gamma priors were assigned on parameters
h and s0 (the root age), with the shape parameter 3 and the
prior mean equal to the true value: IG(3, 0.02) for h ¼ 0:01
and IG(3, 0.002) for h ¼ 0:001, and s0 � IG(3, 0.06). The
inverse-gamma distribution with shape parameter a¼ 3
has the coefficient of variation 1 and constitutes a diffuse
prior. The uniform prior Uð0; 1Þ was used for u.

Pilot runs were used to determine the suitable chain
length, and then the same settings (such as the burn-in, the
number of MCMC iterations, and the sampling frequency)
were used to analyze all replicates. Convergence was assessed
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by running the same analysis multiple times and confirming
consistency between runs (Yang 2015; Flouri et al. 2018).

The second set of simulation was to compare BPP with
summary methods. Most methods are designed to test for
the presence of gene flow (hybridization or migration)
(Degnan 2018). Here, we used two methods that can estimate
the introgression probability under a fixed introgression
model: SNAQ (Solis-Lemus and Ane 2016) implemented in
the program PhyloNetworks (Solis-Lemus et al. 2017) and
HYDE (Blischak et al. 2018). The basic algorithms for SNAQ
and HYDE are formulated for the case of three species with
one or two outgroup species used to root the tree. SNAQ uses
the proportions of the three gene-tree topologies, based on
the observation that the probabilities for the two mismatch-
ing gene trees (which have different topologies from the spe-
cies tree) are the same if there is deep coalescent but no gene
flow while they are different if there is gene flow as well (Yu
et al. 2014). HYDE uses the proportions of the three
parsimony-informative site patterns pooled across loci or ge-
nomic regions (xxyy, xyxy, and xyyx), based on the observation
that the probabilities for the two “mismatching” site patterns
(xyxy and xyyx) are the same if there is deep coalescent but no
gene flow while these are different if there is gene flow as well
(Green et al. 2010).

We used model A of figure 1, plus two outgroup species D
and E, to simulate L¼ 10, 100, or 1,000 loci, with one se-
quence per species per locus. The data were then analyzed
using SNAQ and HYDE, as well as BPP. The JC model was used
both to simulate and to analyze the data. For SNAQ, gene
trees were inferred using RAxML (Stamatakis et al. 2012). For
BPP, the point estimates (posterior means) of u were used for
comparison even though estimates for all parameters, with
CIs, were produced.

The third set of simulation explores the performance of BPP

under models that are unidentifiable using SNAQ and HYDE.
An MSci model may be identifiable given the gene trees with
coalescent times but unidentifiable given gene-tree topolo-
gies only (Degnan 2018). We simulated and analyzed data
using BPP under two models: model D of figure 1 with bidi-
rectional introgression between species A and B and the
model of figure 2 (referred to as model 2H), with three species
and two introgression events. Under model D, there is only
one gene tree between two species so that its frequency is
uninformative and SNAQ is not applicable, and nor is HYDE.
Under model 2H, frequencies of three gene trees or three site
patterns cannot be used to estimate two introgression prob-
abilities and two internal branch lengths: It is thus impossible
to apply SNAQ and HYDE to such data.

For model D, we used the following parameter values:
sR ¼ 0:01; sX ¼ sY ¼ 0:005;uX ¼ 0:1;uY ¼ 0:3, and h ¼
0:01 for all populations. We simulated 10 replicate data sets,
each of 10, 100, or 1,000 loci. At each locus, we sampled 10
sequences per species (20 sequences in total), with the se-
quence length to be 500. The JC mutation model was used
both to simulate and to analyze data by BPP. Note that there
is an interesting identifiability issue (or label-switching
issue) with model D, such that the two sets of parameters
H ¼ ðhA; hB; hR; hX; hY; sR; sX;uX;uYÞ and H0 ¼ ðhA; hB;

hR; hY; hX; sR; sX; 1� uX; 1� uYÞ are unidentifiable (see
Discussion). Thus, an identifiability constraint should be ap-
plied, such as uX < 0:5. We ran the MCMC without any
constraint, but the MCMC sample was preprocessed, with H
replaced by H0 if the sampled value for uX > 0:5, before the
posterior summary was generated.

For model 2H (fig. 2), the following parameter values were
used: sR ¼ 0:04; sS ¼ 0:03; sU ¼ 0:02; sV ¼ 0:03; sH1

¼
0:01; sH2

¼ 0:02;uH1
¼ 0:1;uH2

¼ 0:5, and h ¼ 0:01 for
all populations. As above, 10 sequences per species were gen-
erated, with 30 sequences per locus. The sequence length was
500. The JC model was used both to simulate and to analyze
the data.

Analysis of the Purple Cone Spruce Data Sets
We reanalyzed sequence data concerning the origin of the
purple cone spruce Picea purpurea (P) from the Qinghai–
Tibet Plateau, hypothesized to have originated through
homoploid hybridization between P. wilsonii (W) and
P. likiangensis (L) (Sun et al. 2014). The data were generated
by Sun et al. (2014). To make the computation feasible for the
*BEAST program, Zhang et al. (2018) constructed and analyzed
two nonoverlapping data subsets (data sets 1 and 2), each
with 40, 30, and 30 phased sequences for P, W, and L, respec-
tively, at 11 autosomal loci. We analyzed these data sets for
comparison with the analysis of Zhang et al. (2018) using
*BEAST. We also used BPP to analyze the “Full” data set from
which data sets 1 and 2 were sampled, with 112, 100, and 120
sequences per locus for the same 11 loci.

The species tree of figure 3 was assumed (Sun et al. 2014).
The priors were s0 � IGð3; 0:004Þ; h � IGð3; 0:003Þ, and
u � Uð0; 1Þ. Rates for loci were either constant or had a
Dirichlet distribution with a¼ 2 (Burgess and Yang 2008).
We used a burn-in of 32,000 iterations and took 105 samples,
sampling every 10 iterations. The program was run at least
twice for each analysis, to check for consistency between runs.
Each run (on a single core) took �5 days.

Marginal likelihood for models A–C (fig. 1) was calculated
using thermodynamic integration with Gaussian quadrature
(Lartillot and Philippe 2006; Rannala and Yang 2017), with 16
quadrature points.

Analysis of the Budding Yeast Data Set
We analyzed a budding yeast data set with 106 loci and five
species: Saccharomyces cerevisiae (Scer), Saccharomyces para-
doxus (Spar), Saccharomyces mikatae (Smik), Saccharomyces
kudriavzevii (Skud), and Saccharomyces bayanus (Sbay). This
is a subset of the data set published by Rokas et al. (2003) and
previously analyzed by Wen and Nakhleh (2018). The species
tree or MSci model is shown in figure 4, with a Skud! Sbay
introgression. We used inverse-gamma priors IG(3, 0.04) for
hs and IG(3, 0.2) for s0, and u � Uð0; 1Þ.

Analysis of the Genomic Data from the A. gambiae
Species Complex
We used the coding and noncoding loci compiled by
Thawornwattana et al. (2018a) from the genomic sequences
for six species in the A. gambiae species complex: A. gambiae
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(G), A. coluzzii (C), A. arabiensis (A), A. melas (L), A. merus (R),
and A. quadriannulatus (Q) (Fontaine et al. 2015). There are
12 sequences per locus, with two sequences per species.

We analyzed blocks of 100 loci, as in Thawornwattana et al.
(2018a), and then combined loci for each of the eight chro-
mosomal arms/regions: 2L1, 2La (the inversion region on 2L),
2L2, 2R, 3L1, 3La (the inversion region on 3L), 3L2, and 3R.
Since our objective was to estimate the introgression proba-
bility for the autosomes, the X chromosome was not used.
The species tree is in figure 5, from Thawornwattana et al.
(2018a, figure 6). The priors were s0 � IGð3; 0:2Þ with mean
0.1 for the age of the root, h � IGð3; 0:04Þ with mean 0.02,
and u � Uð0; 1Þ. We used a burn-in of 16,000 iterations, and
took 5� 105 samples, sampling every 2 iterations. Pilot runs
suggest that this generates ESS > 1,000. Each analysis of the
block took a few hours, whereas the analysis of the 12 large
combined data sets of table 1 each took 1–2 weeks.

For comparison, we used the ML program 3S (Zhu and
Yang 2012; Dalquen et al. 2017) to estimate the migration rate
M¼ Nm under the IM model. The implementation assumes
three species (1, 2, and 3, say), with three sequences per locus.
We sampled three sequences, with half of the loci having the
“123” configuration, a quarter with “113,” and another quar-
ter with “223” (Thawornwattana et al. 2018a). We generated
two replicate data sets by sampling the GAR and RQO triplets
to estimate the migration rate MA!G and MR!Q (fig. 5).
Although limited to three sequences, 3S can use tens of thou-
sands of loci and each run took a few minutes.

Software Availability
The MCMC algorithms described in the article are imple-
mented in BPP Version 4 (Yang 2015; Flouri et al. 2018), avail-
able at https://github.com/bpp. The python3 code and
scripts for simulating and analyzing the sequence data and
for making plots using ggplot are available at https://github.
com/brannala/NetworkMSCSimulations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Appendix: Extended Newick Notation for the
MSci Model
We use the extended Newick notation (Cardona et al.
2008) to represent the MSci model in the BPP program.
The parenthesis notation “ðA; BÞS” specifies two branches
from the speciation node S to two daughter species A and
B, whereas “ðAÞH” specifies one branch from H to A. Every

branch is represented once. Each tip species occurs once.
Internal nodes for speciation nodes may and may not be
labeled, but hybridization (H) nodes must be labeled. In
models A–C of figure 1, each H node occurs twice in the
notation, once as a label for an ancestral node and another
time as a tip, and the introgression probability u is iden-
tified with the ancestral node (whereas its “mirror” tip
node has 1� u). Thus, models A–C of figure 1 are repre-
sented as ððA; ðCÞHÞS; ðH; BÞTÞR, with parameter u
assigned to the SH branch and 1� u to the TH branch.
The extended Newick notation is not unique. The repre-
sentation ððA;HÞS; ððCÞH; BÞTÞR specifies an equivalent
model, with parameter u assigned to branch TH and 1�
u to branch SH.

The three types of models in figure 1 (A–C) are distin-
guished using the metadata variable “tau-parent,” which is
assigned the value “yes” or “no” depending on whether the
parent node has an age (s) distinct from that of the hy-
bridization node. Thus, models A–C of figure 1 are repre-
sented as

ðAÞ : ððA; ðCÞH½&tau-parent ¼ yes�ÞS;
ðH½&tau-parent ¼ yes�; BÞTÞR:

ðBÞ : ððA; ðCÞH½&tau-parent ¼ no�ÞS;
ðH½&tau-parent ¼ yes�; BÞTÞR:

ðCÞ : ððA; ðCÞH½&tau-parent ¼ no�ÞS;
ðH½&tau-parent ¼ no�; BÞTÞR:

Model D (bidirectional introgression) differs from mod-
els A–C in that each of nodes X and Y has two parent nodes
and two daughter nodes. The model is represented as
ððA; ðBÞYÞX; ðXÞYÞR. The notation is again not unique,
and equivalent representations include ðððAÞX; BÞY; ðYÞXÞ
R or more concisely, ððX; BÞY; ðA;YÞXÞR. In both notations,
the u parameter is assigned to the branch with an older
parent, whereas the horizontal branch has 1� u.

As a more complex example, the species graph for the
Anopheles mosquitoes of figure 5 is represented as

ððR; ðQÞh½&tau-parent ¼ no�Þg; ðf ½&tau-parent ¼ yes�;
ðððððG; CÞbÞf ½&tau-parent ¼ no�;AÞe;
h½&tau-parent ¼ yes�Þd; LÞcÞaÞo:
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