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The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though

RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymor-

phisms (SNPs) that differentiate the main SARS-CoV-2 lineages that have spread throughout the world. In this study, we

investigated 129 RNA-seq data sets and 6928 consensus genomes to contrast the intra-host and inter-host diversity of

SARS-CoV-2. Our analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights in-

tra-host single nucleotide variant (iSNV) and SNP similarity, albeit with differences in C>U changes. Second, iSNV and

SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of insertions

and deletions contribute to the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-

CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the trans-

mission of SARS-CoV-2.

[Supplemental material is available for this article.]

Coronavirus (CoV) genomes are the largest among single-strand
RNA (ssRNA) viruses, ranging from 26 to 32 kb. Although ssRNA
viruses typically display very high mutation rates, coronaviruses
encode an RNA polymerase with 3′-to-5′ proofreading activity
that allows them to replicate their genome with high fidelity, low-
ering their mutation rate (Drake and Holland 1999; Gorbalenya
et al. 2006; Denison et al. 2011; Peck and Lauring 2018).
Additionally, SARS-CoV-2 contains a common 69-bp 5′ leader se-
quence fused to the body sequence from the 3′ end of the genome
(Sola et al. 2015). Then, leader-to-body fusion occurs during nega-
tive-strand synthesis at shortmotifs called transcription-regulating
sequences (TRSs), which are conserved 5- to 10-bp sequences that
are adjacent to the ORFs (Wu et al. 2020).

OnMarch 11, 2020, theWHOdetermined that an outbreak of
a novel coronavirus SARS-CoV-2 that began in Wuhan, China in
December 2019 had reached pandemic status. Initial consensus-
level genomic data from the Global Initiative on Sharing All
Influenza Data (GISAID) (Elbe and Buckland-Merrett 2017) indi-
cated that the SARS-CoV-2 mutational rate (Shen et al. 2020) was
similar to other CoVs (Eckerle et al. 2010). In order to properly
assess the genomic diversity of any RNA virus, and specifically
SARS-CoV-2, it is necessary to also consider the intra-host poly-
morphisms (Park et al. 2015; Poon et al. 2016; Barbezange et al.
2018; Borucki et al. 2019), including often overlooked structural
variation. Recent studies have claimed that host-dependent RNA
editing might be a key factor for understanding the mutational
landscape of SARS-CoV-2 within hosts (Giorgio et al. 2020;
Ramazzotti et al. 2021). However, these studies were based on a
limited number of samples (<20). In order to explore both the
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intra-host and inter-host mutational landscape of SARS-CoV-2, we
leveraged a data set consisting of 10 RNA-seq samples from the
Baylor College of Medicine and 119 RNA-seq samples from the
Weill Cornell College of Medicine, plus 6928 consensus genomes
downloaded from GISAID.

Understanding the intra-host genomic diversity of SARS-
CoV-2 is also important for other purposes. Most SARS-CoV-2
detection tests rely on oligonucleotide probes and primers that
must be sensitive to SARS-CoV-2. In this setting, sensitivity deter-
mines how well the detection tests can capture the diversity of all
SARS-CoV-2 variants. Lack of sensitivity leads to an increase in
false-negative qRT-PCR results, because two or more mismatches
can result in increases in CT values and degradation in accuracy
of viral load estimates (Whiley and Sloots 2005; Farkas et al.
2020). Moreover, recent studies on Ebola and flu viruses (Park
et al. 2015; Pauly et al. 2017) highlight the importance of intra-
host variation for studying viral population dynamics and trans-
mission scenarios. In this study, we investigate the intra-host
diversity of SARS-CoV-2 by conducting a broad evaluation of (1)
intra-host single nucleotide variants (iSNV), (2) consensus-level
single nucleotide polymorphisms (SNPs), and (3) structural vari-
ants (SVs), across consensus genomes and RNA-seq data sets total-
ing over 7000 samples.

Results

We analyzed three SARS-CoV-2 genomic data sets: RNA-seq reads
for 10 patient samples collected by the Baylor College of
Medicine (Houston, TX, USA) (Doddapaneni et al. 2020), RNA-
seq reads for 119 patient samples collected by Weill Cornell
University (New York [NYC], NY, USA) (Butler et al. 2021), plus
6928 consensus genomes downloaded fromGISAID.We evaluated
structural variants across the 129 RNA-seq samples in both NYC
and Houston; the inferred SVs are shown in Figure 1.We also eval-
uated single nucleotide polymorphisms in the GISAID genomes,
whereas the variants analyzed in the Houston and NYC RNA-seq
data sets include both SNPs and intra-host single nucleotide vari-
ants. The inferred phylogenetic tree for the GISAID genomes is
shown in Supplemental Figure S1. We note that the major clades
correspond to the geographic and time distribution of the samples,
with clades 19A and 19B being common in Asia in the early
months of the outbreak, clade 20A corresponding to the outbreak
in Europe, and 20C to theNorthAmericanoutbreak (Hadfield et al.
2018). We also observe that some of the clade-defining SNPs occur
intermittently outside of the main phylogenetic clades. We will
now dive deep into three main results: (1) the intra-host structural
variant landscape; (2) the intra-host single nucleotide variant

Figure 1. Overview of general diversity of SARS-CoV-2. From outer to inner layers: Annotation of SARS-CoV-2 genome (gray), PCR primer designs (dark
red), transcription-regulating sequences (TRS) (orange), intra-host variant density including iSNVs (blue), deletions start sites (red), duplication start sites
(yellow), and inversion start sites (green) along the entire genome. For SNPs + iSNVs + SVs, we plotted the density scaled by their allele frequency across the
population over 100-bp windows.
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landscape; and (3) exploratory analyses of shared SNPs and iSNVs
within and across patients in NYC.

Structural variant landscape

We identified 3311 structural variants across the 129 RNA-seq sam-
ples, with the majority being inversions (1504) and tandem dupli-
cations (1157), followed by deletions (625) and a few insertions
(25) (Fig. 1). Overall, because we are identifying SVs based on
RNA-seq data, the majority of these SVs are likely to be
highlighting variability in the SARS-CoV-2 transcriptome
(Davidson et al. 2020), which is influenced by fusion, deletions,
frame-shifts, and recombination. We observed a significant over-
lap (Kolmogorov–Smirnov [KS] test: P-value= 0.03, D=0.32) for
the 58 start and 18 end breakpoints with the annotated transcrip-
tion-regulating sequences (dark red, Fig. 1). Subsequently, we focus
on smaller SVs (<1 kb) that more likely indicate true underlying
SVs rather than transcription signals. We identified 286 deletions
and 25 insertions across all 129 SARS-CoV-2 genomes. The imbal-
ance of insertions and deletions is likely due to the low ability to
detect insertions using short reads (Mahmoud et al. 2019). Figure
1 shows the allele frequency (AF) of these SVs across all samples.
We observed 16 deletions that are highly shared among 26 or
more samples (AF: <20%) (see Supplemental File S1). These impact
multiple genes of SARS-CoV-2, including M protein (two dele-
tions), N protein (two deletions), S protein (four deletions),
nsp15 (one deletion), nsp1 (two deletions), nsp3 (one deletion),
nsp4 (one deletion), nsp 6 (one deletion), and orf1 (five deletions).

Next, we investigated where these SVs are mainly located
with respect to the annotated regions. We identified an enrich-
ment of SVs in nsp11 and nsp12 when taking the size of the anno-
tated regions into account (Supplemental Fig. S2). In addition, it is
interesting to see that a higher number of SVs are also clustering in
E protein (five del), nsp7 (five del and one ins), nsp9 (seven del and
one ins), orf6 (six del), and orf7b (three del).

We further compared our SV call set with single deletions re-
ported by various groups. Davidson et al. (2020) reported a 24-bp
deletion in the subgenomicmRNAencoding the spike (S) glycopro-
tein that played a role in removing a proposed furin cleavage site
from the S glycoprotein.Wewere able to identify this deletion (po-
sition: 25,234 bp) in three of our samples. For the gene encoding
spike (S) protein,we identified sixdeletions shared among samples.
Only four out of the six had an allele frequency of 20% or higher:
21,740 bp (39 bp, AF: 49.61%), 21,984 bp (9 bp, AF: 25.58%),
23,558 bp (22 bp, AF: 41.86%), and at 24,014 bp (15 bp, AF:
27.91%). We further identified five deletions; one (at 28,245 bp)
was present in 10 samples (AF: 7.52%) in orf8, a potentially impor-
tant gene for viral adaptation to humans (Muth et al. 2018).

Intra-host single nucleotide variant landscape

We considered intra-host single nucleotide variants to be those
with anAF between 2%and 50% in a sample. Above 50%, all single
nucleotide variants were considered to be consensus-level single
nucleotide polymorphisms, as it is a common threshold for con-
sensus-calling in genome assembly (Wright et al. 2011; Quick
et al. 2017). Figure 2A shows the iSNV AF distribution, with the
peak occurring in the 2%–5% range. The predominant iSNVs ob-
served are U>C and C>U (Fig. 2B). We also note that A>G, G>
A, and G>U iSNVs are common. These findings, specific to the
iSNV mutational profile and frequency, are highly concordant
with the recent intra-host SARS-CoV-2 genomic analyses from
COVID-19 positive patients in Austria (Popa et al. 2020).

When the distribution of iSNVs is mapped onto the SARS-
CoV-2 genome, we observe that C>U is the dominant SNP in 10
out of 16 genes (Fig. 2D). The nsp6 and nsp10 genes stand out as
having larger fractions of U>C iSNVs, and nsp7 has a large fraction
of A>C iSNVs in the Houston data set (Fig. 2D). Additionally, nsp6
and orf3a have a high fraction of G>U SNPs, and orf8 andM genes
have a high fraction of U>C SNPs. We also identified several
interesting SNP and iSNV mutational patterns within the ORFs of
SARS-CoV-2.Ofnote, SARS-CoV-2 encodes three tandemmacrodo-
mains within nonstructural protein 3 (nsp3). The nsp3 protein is
essential for SARS-CoV-2 replication and represents a promising
target for the development of antiviral drugs (Lin et al. 2018).
The nsp3 protein is also one of the most diverged regions of
SARS-CoV-2 compared to SARS-CoV-1 and MERS-CoV.

We note that themutational spectra for SNPsmatches the one
observed for iSNVs, namely A>G, G>A, U>C, and G>U are most
common (Fig. 2B). However, one difference is the relatively lower
percentage of C>U changes in iSNVs from both NYC data sets
(10%–20%) compared to 40%C>U iSNVs for the Houston samples
and over 50% C>U in the Houston and NYC SNPs. The fraction of
GISAID C>U SNPs is nearly identical to the fraction of Houston C
>U iSNVs, clearly distinguishing GISAID SNPs and Houston iSNVs
from Houston and NYC SNPs. We also note that the mutational
spectra of SNPs across the genes of SARS-CoV-2 closely match the
iSNV mutational spectra (Fig. 2D). The mutational spectrum of
NYC SNPs is significantly different from both NYC iSNVs
(Kolmogorov–Smirnov [KS] test: P-value ∼10−100) and GISAID
SNPs (KS test: P-value ∼10−40) mutational spectra. When compared
to SARS and MERS, SARS-CoV-2 has a larger proportion of G>U
iSNVs (Fig. 2C). The other four major iSNV types (C>U, U>C, A>
G, and G>A) are well represented in all three viruses. We also note
that the SARS data sets do not contain any A>U nor A>C iSNVs.

To further investigate patterns of difference and similarity be-
tween SNPs and iSNVs, we analyzed the functional impact of the
observed variants. First, in the GISAID SNPs, we observe 1191
(36.45%) synonymous, 2021 (61.86%) missense, and 40 (1.22%)
stop gained variants. In the NYC iSNVs, we observed 586
(31.73%) synonymous, 1207 (65.35%) missense, and 54 (2.92%)
stop gained variants. Finally, in the Houston iSNVs, we observed
43 (31.16%) synonymous, 86 (62.31%) missense, and five
(3.62%) stop gained variants. Altogether, about two thirds of all
observed variants are missense and about a third are synonymous,
with good agreement for SNPs and iSNVs. Because SNPs and iSNVs
can represent viral populations related by transmission (Fig. 3A) or
arising independently, we have further investigated the patterns of
the overlap between iSNV and SNPs (Fig. 3B). We note that there
are 10 SNPs found in all three data sets (NYC, Houston, and
GISAID). We also observed that 190 SNVs occur both as an iSNV
in at least one sample and as SNPs in the GISAID data. Finally,
there are three iSNVs shared between the Houston and NYC sam-
ples and that also occur as SNPs (Fig. 3B). Themutational spectrum
of the variants that occur as both SNPs and iSNVs is similar to the
general one outlined above, with ∼65% of the changes being C>
U, followed by ∼15% of G>T, and ∼12% of U>C.

Prior studies have found iSNVs early in virus outbreaks that
later establish as SNPs (Parameswaran et al. 2012; Rodriguez-
Roche et al. 2016). Thus, we looked into whether clade-defining
SNPs co-occur with iSNVs identified in the NYC and Houston
data sets. We found that the C1059T and G25563T SNPs defining
the 20C lineage co-occur with iSNVs in our RNA-seq samples. This
indicates the emergence of an iSNV strongly correlated with the
North American clade of the SARS-CoV-2.
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Next, we estimated the genetic diversity (π) of SARS-CoV-2.
We compared the genetic diversity computed using SNPs and
iSNVs separately per SARS-CoV-2 NYC sample and observed
that, when computing diversity using iSNVs, values are higher
and more varied (KS test: P-value<10−45). We observed a differ-
ence in the distribution of πN/πS ratios between iSNVs and
SNPs in the NYC data set being lower for SNPs (median πN/πS:
0) than for iSNVs (median πN/πS: 0.4). The πN/πS ratios are
consistent across the orfs/nsps of SARS-CoV-2 (Supplemental
Fig. S3).

Finally, we analyzed the potential impact of iSNVs and SNPs
on the probes and primers typically used for the detection of SARS-
CoV-2 (Farkas et al. 2020; Khan and Cheung 2020) and also on the
ARTIC primers used for SARS-CoV-2 amplicon sequencing. To
evaluate this, we downloaded the set of probes and primers se-
quences available at the WHO website (54 sequences), as well as
the ARTIC primers (218 sequences). Among these, 263 out of
272 contained at least one SNP or iSNV (Fig. 4 for WHO probes
and primers and Supplemental File S2 for the ARTIC sequencing
primers). On average, each probe/primer sequence contained 1.7

A

B

C

D

Figure 2. Mutational frequencies of iSNVs and SNPs. (A) Distribution of iSNV AF. We note that the distribution of AF is strictly <50% as iSNVs are below
consensus-level by definition. (B)Mutational spectrum of SARS-CoV-2. (C) Mutational spectra of SARS-CoV-1, SARS-CoV-2, andMERS. (D) Mutational spec-
trum of SARS-CoV-2 by orf/nsp.
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iSNVs and/or 3.1 SNPs. These results suggest the potential for a
drop in the sensitivity of the affected probes and primers. We
also note that, because the iSNV and SNPmutational profilesmim-
ic each other for specific mutations, the potential impact of iSNVs
on primer and probe binding should not be overlooked, given the
possibility of iSNVs establishing as SNPs (Parameswaran et al.
2012).

Exploratory transmission analysis of shared SNPs and iSNVs

within and across patients

Shared viral genomic variants can be indicative of transmission
events and routes (Worby et al. 2017), and iSNVs are a critically im-

portant tool for discerning direct transmission and for bottleneck
calculations (Zwart and Elena 2015; Leonard et al. 2017). To assess
our ability to identify shared iSNVs and SNPs across samples, we
first compared all NYC longitudinal samples from the samepatient
taken within 24 hours (Fig. 5A,B). In Figure 5A, we show four
shared SNPs and one shared iSNV that occur in longitudinal sam-
ples taken from patient 9. In Figure 5B, we show three shared SNPs
and one shared iSNV.

We next calculated the number of shared variants (SNPs +
iSNVs) among all possible pairs of NYC samples (Fig. 5C). For
each pair, we consider both possible assignments of donor and re-
cipient, narrowing down the donor alleles to only include those
with anAFbetween0.02 and 0.5, and considering a site to be shared

A

B

Figure 3. Shared SNPs and SNVs across data sets. (A) Illustration differentiating what we define as an intra-host SNV (iSNV) and an inter-host consensus-
level SNP. (B) UpSet plot captures the shared single nucleotide variants between iSNVs and consensus-level SNPs. The horizontal bars on the left show the
total number of variants in the given category. Vertical bars indicate the size of the intersection between highlighted (with black circles) sets. Every variant
contributes to exactly one intersection size to avoid double counting.

SARS-CoV-2 genomic diversity

Genome Research 639
www.genome.org



if the recipient also has that same variant present. We show these
results on the raw data from the iSNV calls, as well as on the same
data but after applying masking to sites near the ends of the ge-
nome. For the raw data before masking, most pairs have 0–3 shared
variants, with about 500 pairs having four ormore shared SNVs (Fig.
5C). After masking sites near the genome ends, these numbers drop
substantially by reducing likely noise from the variant calls, and we
see most pairs sharing 0–2 variants. When examining each possible
pair, one immediately noticeable trend is that site 29,871 yields
strong signals for shared SNVs between samples with large and sim-
ilar AFs. We also observe that the number of samples with a variant
at that site is unusually high (Fig. 5D).

Discussion

In this study, we have analyzed RNA-seq data sets from 129
COVID-19 positive patients plus 6928 SARS-CoV-2 genomes in
depth to describe the intra-host variation in SARS-CoV-2. Our
analyses yielded fourmajor observations. First, the iSNVmutation-
al spectra closely match the SNP mutational spectra inferred from
the consensus genomes. In particular, the SARS-CoV-2 genome is
enriched with C>U changes overall, both for iSNVs and SNPs.
Genes nsp6 and nsp10 are particularly enriched for U>C muta-
tions, whereas nsp7 has an enrichment of A>C SNVs. Second,

the mutational profile of SARS-CoV-2 largely matches that of
other Coronaviruses, but with some key differences. SARS-CoV-2
has a significantly larger proportion of G>U changes in both
iSNVs and SNPs, when compared to SARS-CoV-1 and MERS.
Additionally, we did not see A>U SNVs in SARS-CoV-1, as previ-
ously reported (Pavlovic-́Lažetic ́ et al. 2004). Third, although the
SV spectra are likely reflecting the transcriptome landscape of
SARS-CoV-2, we detected a significant fraction of insertions and
deletions that contributed to the genetic diversity of SARS-CoV-
2. Fourth, the mutational spectra of the SNPs and iSNVs indicate
that there is a complex interplay between endogenous SARS-
CoV-2 mutational processes and host-dependent RNA editing.
This observation is in line with several recent studies that
propose APOBEC and ADAR deaminase activity as a likely driver
of the C>U changes in the SARS-CoV-2 genomes (Giorgio et al.
2020). Of note, this recent study also reported that the number
of observed transversions is compatible withmutation rates found
in other Coronaviruses (Eckerle et al. 2010; Giorgio et al. 2020).We
observed lower mutational complexity within the nsp3 region of
the SARS-CoV-2, indicating that the mutations in this region
tend to become SNPs. This agrees with previous reports that indi-
cate that the nsp3 region has a stronger phylogenetic signal than
the majority of the SARS-CoV-2 protein-coding regions (Pereson
et al. 2020; Yuan et al. 2020).

Figure 4. iSNV and SNP presence onwidely used primers and probes. This figure shows the locations onWHOprobes and primers that contain SNPs (left)
and iSNVs (right). Columns correspond to base pair positions within the probe, and the sequences are 5′-aligned. Rows correspond to the oligonucleotide
sequences, and squares are highlighted based on how many samples/genomes contain a variant in that position.
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We also investigated the potential impact of iSNVs and SNPs
on probes and primers commonly used in RT-PCR-based detection
and amplicon sequencing of SARS-CoV-2. Most probes we ana-
lyzed contain both SNPs and iSNVs. Although many platforms
can tolerate a few single nucleotide mismatches without the loss
of target hybridization, the overall diversity exhibited by SARS-
CoV-2 presents potential challenges for probe and primer develop-
ment. Because we observed an agreement in mutational profiles
between the SNPs and iSNVs, for future probe and primer designs
it could be useful to track the iSNVs to potentially predict and
avoid variable regions of the genome. With the integration of
these data into design processes at early stages, greater sensitivity
could be achieved for hybridization primers and probes even as
the virus evolves.

We analyzed longitudinal samples taken from the same
COVID-19-positive patient within 24 hours of one another to an-
alyze AFs of SNPs and iSNVs.We found that the SNP and iSNVpro-
files and AFs were concordant, indicating the potential of using
shared SNPs and iSNVs and their respective AFs for tracking in-
tra-host SARS-CoV-2 population dynamics. This agreeswith the re-
cent SARS-CoV-2 genomic epidemiology study in Austria, where
iSNVs were found to be stable over time within the same patient
(Popa et al. 2020). Although these analyses cannot confirm sample
pairs as having been involved in direct transmissions without ad-
ditional metadata, this exploratory analysis suggests the possible
presence of such transmission pairs (Worby et al. 2017). We be-
lieve the analysis done here serves to highlight the potential of ex-
tracting possible events through sequence data alone.

Despite the potential for tremendous insight, the study of in-
tra-host variation in viruses can be confounded by multiple fac-
tors. First, the estimated AFs are impacted by variable coverage

and transcription patterns. Second, a low viral load (Ct values
above 32) in samples can have an impact on downstream sequenc-
ing and analysis (Thorburn et al. 2015; Huang et al. 2019;
Supplemental Fig. S4). Third, previous studies (De Maio et al.
2020) highlight SARS-CoV-2 sites marked as prone to high homo-
plasy that need to be taken into consideration for transmission
analyses. Lastly, lack of additional metadata imposes a barrier to
an in-depth study of transmission events. These factors should
be addressed in future studies of intra-host variation in SARS-
CoV-2.

In summary, our analysis of intra-host variation across 129
RNA-seq samples from COVID-19-positive patients revealed a
complex landscape of within-host diversity that will likely shed
additional light on the elusive mechanisms driving the rapid dis-
semination of SARS-CoV-2. Metatranscriptomic analysis is a pow-
erful tool for interrogating the genomic and transcriptomic
landscape of RNA viruses, as it provides a simultaneous peek into
viral, bacterial, and host gene expression. Future studies able to in-
tegrate all three of these perspectives may hold the key to novel
therapies and treatments of this devastating pandemic.

Methods

Data sets

We analyzed available RNA-seq data from 10 patient samples col-
lected by Baylor College of Medicine (Doddapaneni et al. 2020),
and from 140 patient samples collected by Weill Cornell College
of Medicine (Butler et al. 2021). Both data sets consist of
Illumina NovaSeq 6000 paired-end reads. Samples were first tested
for the presence of the SARS-CoV-2 genetic material with CDC RT-
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Figure 5. In-depth analysis of shared iSNVs. (A) Paired samples from patient COVSUBJ 9 in NYC. (B) Paired samples from patient COVSUBJ 0639 in NYC.
(C) The distribution of the number of genomic pairs and their shared variants. (D) The number of pairs with variants at given nucleotide positions. Red color
represents positions that were shown to be highly homoplasic and more likely to be affected by error (De Maio et al. 2020).
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PCR-based tests, and then metagenomic RNA-seq was performed
(library preparation and sequencing details in Doddapaneni et
al. 2020 and Butler et al. 2021). Host and bacterial genetic material
have been removed from the data sets, and we performed all anal-
yses on the viral read data. Additionally, we removed 21 samples
from the Weill Cornell data sets due to either high Ct values
(>32, 5 samples) in the RT-PCR tests or low read counts (<20,000
reads, 16 samples) for the SARS-CoV-2 reads.

We also used additional 147 RNA-seq samples obtained by
the NYU Langone Sequencing center (PRJNA650245) (Maurano
et al. 2020) in order to compare mutational profiles observed in
two different NYC data sets (Fig. 2B,D) and investigate overlaps be-
tweenNYC iSNVs and SNPs andHouston andGISAIDdata (Fig. 3B).

In addition, we downloaded 6928 SARS-CoV-2 consensus ge-
nomes from the GISAID database, available on April 18th, 2020.
We only selected high-quality, complete (<29 kb) genomes.

Furthermore, we analyzed 42 samples of SARS-CoV-1 and
53 samples of MERS viral read data (PRJNA233943) (M Frieman,
C Coleman, and SC Daugherty, pers. comm.) sequenced by the
University of Maryland School of Medicine (Baltimore, MD, USA).

In total, we analyzed 6928 SARS-CoV-2 consensus sequences
and 129 SARS-CoV-2 (119NYCand 10HoustonRNA-seq samples),
42 SARS-CoV-1, and 53 MERS samples. The summary of all data
used in the paper can be found in Supplemental File S3.

Read QC and mapping

We processed the Illumina paired-end reads using Trimmomatic
ver. 0.39 (Bolger et al. 2014) to remove adapter sequences and
trim low-quality base pairs. We used a universal set of Illumina
adapters as a reference for the adapter removal. We set the maxi-
mum mismatch count to 2, palindrome clip threshold to 30, and
simple clip threshold to 10. We also trimmed leading and trailing
low-quality (quality value <3) and ambiguous (N) base pairs.
Finally, we applied sliding window trimming cutting the read if
the quality score of four contiguous bases made the average score
drop below 15. After trimming in the final read set, we included
the reads above the length of 36 with both reads from a pair pass-
ing quality control.

We aligned the trimmed reads to the reference genome using
Burrows-Wheeler Alignment tool (BWA) ver. 0.7.17 (Li andDurbin
2009; Li 2013).We used paired-endmode formapping reads to the
SARS-CoV-2 reference genome (NC_045512).

Weused SAMtools ver. 1.9 to convert the output of BWA from
SAM to BAM format and to sort and generate indices for the BAM
files (Li et al. 2009).

SNV calling and annotation

We used LoFreq ver. 2.1.4 to perform variant calling on the
trimmed andmapped reads (Wilm et al. 2012).We filtered the var-
iants with the default LoFreq parameters: minimum coverage was
set to 10, Phred quality-score set to Q20 (99%), and strand-bias
FDR correction P-value is greater than 0.001. We also filtered out
the variants occurring below 0.02 AF threshold for the subsequent
analyses (in accordance with the values used for SARS-CoV-2 iSNV
analyses in other studies) (Popa et al. 2020) and required all iSNVs
to be supported by 10× minimum coverage. We annotated the
SNVs found in each of the data sets with SnpEff ver. 4.3
(Cingolani et al. 2012). We used SNPGenie (Nelson et al. 2015)
with the default set of parameters to estimate the genetic diversity
and nonsynonymous to synonymous diversity ratios in SARS-
CoV-2.

SV calling

Structural variations were identified using Manta (ver. 1.6.0)
(Chen et al. 2016). Subsequently, the SV calls were merged using
SURVIVOR (ver. 1.0.7) (Jeffares et al. 2017) using a 100-bp maxi-
mum distance between the breakpoints and requiring that the
SV types are in agreement in order to merge two SVs across the
samples.We annotated the SV using a simple 1-bp overlapmethod
using BEDTools (ver. 2.27.1) (Quinlan and Hall 2010) intersect us-
ing the annotations. The samemethod was used to establish if the
start or stop breakpoints of an SV are overlapping with the TRS
sites. To test the significance of the overlap, we used a permutation
test where we randomized the TRS sites (using BEDTools random)
to generate random TRSs with length of 5 bp, 1000 times and cal-
culated per TRS the number of start/stop breakpoints of the SV cat-
alog. Subsequently we used this together with the observed
overlap using a Kolmogorov–Smirnov with an alternative set to
“two.sided” in R (ver. 3.2.2).

To generate SV and SNV densities, we computed the number
of variations per type within a 100-bp window. For each variant,
we counted 1/AF where AF is the frequency of that variant across
the samples. This was done based on a custom script
(Supplemental Code). The plot was generated using Circos (ver.
0.69-8) (Krzywinski et al. 2009).

Phylogenetic tree construction

We used Parsnp (ver. 1.2) (Treangen et al. 2014) to align the
GISAID genomes. We set the maximal cluster D value to 30,000,
and the rest of the parameters were set to the default values. We
used RAxML (Stamatakis 2014) to infer a phylogenetic tree from
the GISAID alignment.We ran RAxMLwith default parameters us-
ing GTRCAT approximation model for tree scoring.

Probe and primer mapping

Primer and probe sequences were derived from the WHO website
and hCoV-2019/nCoV-2019 version 3 amplicon set (Artic net-
work).Wemapped probes and primers against the SARS-CoV-2 ref-
erence genome (NC_045512) with Bowtie 2 (Langmead and
Salzberg 2012). Analysis of the primer and probe mapping regions
was performed with a custom R script (Supplemental Code), and
visualizations were done with R-3.6.1 (R Core Team 2020).

Transmission analyses

We counted the number of shared variants (SNPs+ iSNVs) within
individual pairs. For each pair, we consider both combinations of
one sample as a putative donor and one sample as a putative recip-
ient. Shared variants were then defined as variants that share the
same variant nucleotide between the two samples and where the
variant frequencies in the assigned donor sequences are from
0.02 to 0.5. We examined variants with frequencies≥0.02 as the
cutoff to avoid including variants caused by sequencing errors.
For the 119 samples from New York, given that we consider each
pair twice, there are 14,042 pairs. Note that, becausewe are looking
for putative transmission events, we can only consider samples
within the same geographic region, so we limited our analyses to
the 119 samples that came from New York. We masked the vari-
ants that occur between positions 1 and 55 and 29,804 and
29,903 in the genome. Additionally, we masked 25 nucleotide
positions between 56 and 29,804 that are highly homoplasic
(De Maio et al. 2020). These positions are more prone to sequenc-
ing and mapping errors and therefore were not used in the trans-
mission analyses.
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We used variants supported by at least 10 reads. We also con-
sider the case where the variant base is the same as the reference
sequence base. In this case, for instance, when a variant is called
at a site with 0.7 AF and no other variants are present, we take
the reference base as a variant with 0.3 AF if there are no other
reads present with an alternate allele and there are at least 10 reads
mapping to the reference base.

Data access

All variant calling files generated in this study are available at
https://rice.box.com/v/SARS-COV-2-SNV-Study and in Supple-
mental Files S4–S7. Scripts used for data analysis are available
at https://gitlab.com/treangenlab/covirt_scripts. Scripts used
for probe and primer analysis and visualization are available
at GitHub (https://github.com/COV-IRT/microbial/tree/master/
manuscript_references). All custom scripts used in this study are
also available as Supplemental Code.
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