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ABSTRACT

Gene regulatory network inference allows for the
modeling of genome-scale regulatory processes that
are altered during development, in disease, and in re-
sponse to perturbations. Our group has developed a
collection of tools to model various regulatory pro-
cesses, including transcriptional (PANDA, SPIDER)
and post-transcriptional (PUMA) gene regulation, as
well as gene regulation in individual samples (LI-
ONESS). These methods work by postulating a net-
work structure and then optimizing that structure to
be consistent with multiple lines of biological evi-
dence through repeated operations on data matrices.
Although our methods are widely used, the corre-
sponding computational complexity, and the associ-
ated costs and run times, do limit some applications.
To improve the cost/time performance of these al-
gorithms, we developed gpuZoo which implements
GPU-accelerated calculations, dramatically improv-
ing the performance of these algorithms. The run-
time of the gpuZoo implementation in MATLAB and
Python is up to 61 times faster and 28 times less
expensive than multi-core CPU implementation of
the same methods. gpuZoo is available in MATLAB
through the netZooM package https://github.com/
netZoo/netZooM and in Python through the netZooPy
package https://github.com/netZoo/netZooPy.

GRAPHICAL ABSTRACT

INTRODUCTION

Gene regulation defines cell phenotypes and controls cel-
lular functions (1). Transcription factors (TFs) are regula-
tory proteins that bind to promoter and enhancer regions
near a gene and serve to activate or repress the transcrip-
tional process (2,3). A variety of methods have been devel-
oped to infer gene regulatory networks from gene expres-
sion and other data types (4–7), but PANDA has shown to
outperform others in predicting TF binding and identifying
phenotype-associated biological processes (8–10). PANDA
estimates gene regulatory networks by postulating a TF-
gene network based on TF binding sites in the genome and
then optimizing that structure to be consistent with TF-TF
interaction data and condition-specific gene expression. A
number of methods have extended the PANDA framework,
including PUMA (11) which includes miRNA regulation
(1) by seeding PANDA with miRNA estimated targets, and
SPIDER (12) which includes epigenetic data on open chro-
matin using DNase-seq data. LIONESS (13) allows infer-
ence of unique networks for each individual in a population
by making iterative calls that assess the effects of exclud-
ing individual samples from network reconstruction. These
methods have proven quite useful, providing insight into
tissue-specific gene regulation (14), explaining sex-specific
response to cancer drugs (15), and identifying altered path-
ways in ovarian cancer (16).
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Despite the success of these methods, memory require-
ments, computational time, and computational cost can
present challenges to their use. The algorithms require a
large number of matrix operations that were, until recently,
reliant on CPUs composed of a relatively small number of
computing cores capable of handling only a relatively small
number of simultaneous software threads.

Graphics processing units (GPUs) offer an attractive al-
ternative to CPUs, handling repetitive matrix calculations
in a faster and more efficient fashion. GPUs have hundreds
of cores designed to handle many threads and thus can sup-
port the efficient implementation of highly parallel compu-
tation in genomics (17) and in network inference (5). To
take advantage of this highly efficient, parallelizable, and
matrix-optimized hardware, we adapted our methods to run
on GPUs; the gpuZoo contains GPU-adapted implemen-
tations of PANDA, PUMA, and SPIDER, collectively re-
ferred to as gpuPANDA (since all three algorithms share
the same core network optimization algorithm) and cre-
ated gpuLIONESS that implements LIONESS on multi-
GPU devices to parallelize the required iterative computa-
tion of sample-specific networks. A cost-performance anal-
ysis found gpuPANDA to be up to 61 times faster and 28
times less expensive than running multi-threaded CPU im-
plementations of PANDA, with similar performance im-
provements for gpuLIONESS of about 10x speedup for net-
work modeling on a population of 127 individuals.

MATERIAL AND METHODS

The serial implementation of PANDA, PUMA, SPIDER,
and LIONESS

PANDA was developed to infer gene regulatory networks
by integrating three sources of input data that reflect what
we know about the process of transcriptional control, and
then iteratively optimizing these to maximize consistency
between them. First, because the regulatory process is con-
trolled by transcription factors (TFs) that bind to specific
DNA motifs to activate or repress gene expression (3),
PANDA takes as input a transcription factor-by-gene ‘regu-
latory network’ adjacency matrix (W0) constructed by map-
ping TF binding sites to a fixed-size window surrounding
the transcription start site of each gene. Second is a TF-by-
TF ‘cooperativity network’ matrix (P0), based on ‘protein-
protein interaction’ (PPI) data, that reflects the fact that
TFs often form multi-protein complexes that carry out reg-
ulatory functions (18). The third input is an expression
‘co-regulatory network’ (C0) consisting of pairwise Pear-
son Correlation Coefficients (PCC) between genes based
on their expression and capturing the fact that genes co-
regulated should exhibit similar patterns of expression.

Because the adjacency matrices of the regulatory network
(W0), the cooperativity network (P0), and the co-regulatory
network (C0) are on different scales, the entries of each
are Z-score standardized across both rows and columns.
PANDA takes these as input and then iteratively optimizes
the consistency between the three input matrices. It first
calculates ‘Responsibility’ and ‘Availability’ values for each
TF-gene edge and combines these values to update each en-
try in W. Next, it updates the values in P and C. Each of
these updates uses a function based on a modified Tanimoto

similarity for continuous variables, which we refer to as the
Tfunction; the Tfunction can be conceptualized in terms of
large matrix operations, making it amenable to significant
improvement using GPU computing (see below and Sup-
plementary Methods).

PANDA (8) computes the final regulatory network (Wf)
(Supplementary Figure S1-B) using a step-wise approach
defined by a learning rate (α) (Supplementary Methods).
To better assess performance gains from GPU computing,
in addition to the Tfunction we also included seven other
commonly used similarity metrics (Euclidean, Squared Eu-
clidean, Standardized Euclidean, City Block, Chebychev,
Cosine, and Pearson Correlation) as alternatives for bench-
marking purposes (see Supplementary Methods).

PANDA has been extended to incorporate additional
regulatory mechanisms. PUMA (11) estimates the regula-
tion of target genes by miRNAs by seeding a modified ver-
sion of the PANDA algorithm with an estimate of miRNA
target predictions in the W0 network. SPIDER (12) im-
proves the accuracy of PANDA networks by integrating
DNase-seq data (which identifies regions of open chro-
matin) by masking edges in W0 where chromatin structure
indicates TFs are unlikely to bind.

PANDA, PUMA, and SPIDER are aggregate network
inference methods that compute a context-specific network
by estimating likely regulatory effects across a population.
LIONESS (13) builds on these methods and uses linear
interpolation to infer individual regulatory networks for
each sample in a population. We have used LIONESS
with PANDA to infer networks for individuals in large
studies, after which the networks are treated as inferred
measurements and compared between relevant subgroups
(15,19,20).

LIONESS begins by using PANDA to compute an ag-
gregate network (W) for all samples using standard PPI
(P0) and motif (W0) seeds, and a gene co-regulatory matrix
(C0) calculated for all samples; these three seed networks
are normalized as part of the standard PANDA preprocess-
ing. Following inference of the initial baseline network, an
iterative process is initiated in which LIONESS iteratively
leaves out single samples, calculates a model for the pop-
ulation deprived of the ith sample (W(i)), and uses the dif-
ference between these two models to estimate the network
for the ith sample (W(i )) using equation 4 in (13). For each
left-out sample i, a gene co-regulatory matrix (C(i )) is com-
puted using all samples but sample i and normalized. This
is then used as input to PANDA (with the same condition-
independent motif and PPI prior as previously) to infer a
regulatory network for all samples but i. The networks with
and without sample i are used to provide a linear interpo-
lation estimate of the gene regulatory network for the ith

sample. This process is repeated for all samples in the pop-
ulation, resulting in a collection of network models, one for
each sample.

In general, the slowest step in this process is comput-
ing and normalizing the co-regulatory network for each
of the left-out samples. However, since LIONESS requires
computing gene co-expression deprived of sample i, we im-
plemented an optimization of the algorithm by computing
gene co-expression on-line––inferring the sample-deprived
gene co-expression C(i ) from three initial variables: m, a
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vector representing the mean expression of genes across all
samples; s, a vector representing the standard deviation in
the expression of genes across all samples; and Cov, a ma-
trix representing the covariance in expression between pairs
of genes across all samples.

First, we use m to compute a vector representing the
mean expression of genes across all samples except for sam-
ple i:

m(i ) = 1
(n − 1)

(
n ∗ m − Gi ) (1)

where n is the number of samples and Gi is a vector of the
expression of all genes in sample i. Next, we use s and m(i) to
compute the standard deviation of genes across all samples
except for sample i:

s(i ) =
√(

s2 − 1
n

∗ (
s − m(i )

)2 ∗ n − 1
n − 2

)
(2)

Then we use Cov and m to compute the covariance across
all samples except for sample i:

Cov(i ) = 1
n − 2

∗
(

Cov ∗ (n − 1) − n
n − 1

∗ (Gi − m(i ))

∗(Gi − m(i ))′
)

(3)

Finally, the sample-deprived co-expression can be com-
puted as follows:

C(i ) = Cov(i )

s(i ) ∗ s(i )′ (4)

Computing the mean, standard deviation, and covari-
ance only once at initiation allows us to infer the co-
regulatory network for all subpopulations (each missing
a single sample) and avoids having to compute gene co-
expression estimates independently for hundreds of sam-
ples.

gpuPANDA and gpuLIONESS

Network inference is implemented in parallel in gpu-
PANDA and begins by broadcasting data matrices to the
GPU device. All subsequent operations required in the net-
work inference step, from measuring the distance between
two matrices to element-wise matrix operations such as ad-
ditions and multiplications (Supplementary Figure S1-A),
are performed on the GPU device by distributing them
across hundreds of GPU cores using CUDA kernels (21).
Each operation is sequentially controlled by the host CPU,
which initiates a CUDA kernel through MATLAB/Python
GPU interfaces and synchronizes the device at the end of
each operation before calling the next operation with the
previous result; the resulting network is sent back to the
host CPU and stored in memory.

To determine the potential for a regulatory interaction
between a TF and gene, PANDA computes a modified Tan-
imoto similarity t(x,y) between the target profile of the TF
and co-expressed partners of the target gene, as represented

by the networks W and C. For each TF-gene pair, repre-
sented by row x of the regulatory adjacency matrix W and
column y of the co-regulatory adjacency matrix C, the sim-
ilarity is computed as follows:

t (x, y) = xy′
√

xx′ + yy′ − |xy′| (5)

In gpuPANDA, the similarity between each TF-gene pair
is computed in parallel (rather than sequentially as in the
original CPU PANDA implementation), meaning that the
GPU implementation can theoretically realize a speedup
factor on the order of the number of GPU cores (Supple-
mentary Figure S1-A)––although in reality, GPU cores are
much slower than CPU cores, and CPU cores can be multi-
threaded.

The gpuPANDA implementation has additional features
designed to optimize GPU memory by considering only
half of the symmetrical co-expression matrices. In order
to avoid memory transfer overhead, data transfer between
host and device are limited to sending input data and get-
ting back the final result (Supplementary Figure S1-C), and
in the case of device failure to save intermediary results and
restart from the last iteration. In addition, communication
between CPU and GPU is initiated for each step of the al-
gorithm to create the CUDA kernels and to synchronize the
device before the start of a new operation.

The implementation of gpuLIONESS consists of a se-
ries of batch calls to an aggregate network inference ap-
proach, such as gpuPANDA, followed by network infer-
ence for each sample represented in the dataset. The method
takes advantage of the architecture of multi-GPU devices,
such as the NVIDIA TESLA K80 and NVIDIA TESLA
P100, by assigning the computation of each single-sample
network to an individual GPU device in parallel. Both gpu-
PANDA and gpuLIONESS use the MATLAB GPU inter-
face and Python CuPy library that create CUDA (21) ker-
nels to parallelize computations across GPU cores. To par-
allelize gpuLIONESS across several non-shared memory
units, these libraries embed CUDA kernels in a Message
Passing Interface (MPI) process (22) to compute single-
sample networks in parallel. This hybrid structure provides
two levels of parallelism that ensures message passing of the
computed results between non-shared memory processes
and within each CUDA process.

gpuZoo which consists of gpuPANDA and
gpuLIONESS was implemented in MATLAB
(2019a, version 9.6.0, The MathWorks Inc., Nat-
ick, MA, USA) as part of the netZooM package
(https://github.com/netZoo/netZooM; version 0.5.2)
and in Python (version 3.7) as part of the netZooPy
package (https://github.com/netZoo/netZooPy; version
0.6.2).

Benchmarking procedure

The runtime and cost of network generation for the CPU
and GPU implementations of PANDA and LIONESS were
compared using networks of three sizes: 652 TFs by 1000
genes, 652 TFs by 27,149 genes, and 1,603 TFs by 43,698
transcripts. These roughly correspond to the sizes of a small
regulatory network consisting of a subset of protein-coding

https://github.com/netZoo/netZooM;
https://github.com/netZoo/netZooPy;
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genes, a network including all human protein-coding genes,
and a network including all human transcripts, respectively.

The small size network was derived from the input data
used by Lopes-Ramos and colleagues (10) to construct lym-
phoblast cell line (LCL) regulatory networks using i) expres-
sion data from GTEx (23), ii) PPI data from STRINGdb
(24), and iii) TF binding predictions derived using FIMO
(25) to scan the promoter regions of all gene sequences de-
fined as TSS +/-750bp in the human genome (hg38) for
matches to TF PWMs from CIS-BP (3). To create the small
network from these data, we restricted the TF binding net-
work to the first 1,000 genes. In the data pre-processing step,
we took the intersection of these three input data sources,
i.e., the intersection of the TFs in PPI and TF binding mo-
tif matrices and the intersection of the genes in the gene co-
expression and the TF binding motif matrices; this resulted
in W, P, and C matrices that included data for 652 TFs and
1,000 genes.

The protein-coding gene network was also derived from
GTEx LCL cell line data, but in the data pre-processing
step we used the union of the three complete input data sets
rather than restricting to 1,000 genes, which returned the ex-
pected 652 TFs while increasing the number of target genes
to 27,149 compared to the small network.

Finally, to test the maximal memory capacity of the GPU
hardware, we computed a large network consisting of all
the known TFs and individual gene transcripts. These in-
dividual transcripts reflect the alternative splicing process
in which each gene can code for several transcripts. This
‘transcript network’ was based on THP-1 Leukemic mono-
cyte cell line (26), gene expression data from GEO (27) pro-
cessed in ARCHS4 (28) to obtain transcript levels, a PPI
network of 1,603 TFs encoded in the human genome from
STRINGdb (24), and the same set of TF binding predic-
tions used in the protein-coding gene network. In the data
pre-processing step, we used the union of the three data
sources which resulted in a data set consisting of 1,603 TFs
and 43,698 transcripts.

In addition to the default Tfunction similarity metric and
default learning rate (� = 0.1), we ran PANDA using seven
commonly used similarity metrics that can be computed
on the GPU (Supplementary Material) and with two ad-
ditional learning rates (� = 0.2 and � = 0.3). We com-
pared these PANDA runs in terms of computational speed
and cost. Our motivation for including additional parame-
ters was twofold. First, we wanted to show that GPU ver-
sus CPU results are consistent across different parameters.
Second, although we successfully used the similarity met-
ric Tfunction with a learning rate of 0.1 in earlier studies
(10,14,15), the cost-effective acceleration provided by gpu-
PANDA enables the exploration of additional parameter
combinations. Therefore, we wanted to ensure that perfor-
mance gains were guaranteed beyond the standard param-
eter values.

We assessed the runtime and cost performance of
PANDA and gpuPANDA as well as LIONESS and
gpuLIONESS, using implementations in MATLAB and
Python. To select the optimal machine configuration for
the benchmarks, three GPU devices were chosen based on
memory size, number of cores, and clock speed. GPU1
(NVIDIA TESLA V100) has 5120 cores and 32 GB of mem-

ory, GPU2 (NVIDIA TESLA P100) has 3584 cores and
16 GB of memory, and GPU3 (NVIDIA TESLA K80) has
2496 cores and 12 GB of memory (detailed configurations
in Table 1). Testing the implementations on different device
sizes allows to find the optimal price-performance config-
urations. Similarly, CPU instances were selected based on
processor clock speed and memory. These instances are cat-
egorized in AWS as ‘compute-optimized’ (c5) and ‘memory-
optimized’ (r5). We selected a first machine (CPU1) from
the ‘compute-optimized’ category with a processor clock
speed of 3.6–3.9 Ghz which is the highest in AWS cata-
log. A second instance (CPU2) was selected for a larger
and faster memory access (256 GB as opposed to 96 GB
for CPU1). The reason for selecting a compute-optimized
and a memory-optimized instance was to determine if sig-
nificant changes in memory size and processor speed would
affect runtime and price-performance. An additional moti-
vation for testing on different machine specifications was to
find the optimal configuration for each network model size
being tested (small, coding-genes, and transcript network).

We used a benchmark design that controls for loss of run-
time performance due to factors such as co-tenancy and
compilation time. Each benchmark was run on a separate
virtual machine and without additional processes running
concomitantly. In addition, a ‘dry run’ was performed at the
beginning of each experiment to allow for the compilation
of GPU libraries in MATLAB and Python and to avoid in-
cluding it in the final runtime.

To reduce the number of comparisons, our approach was
to benchmark the transcript model in GPU1 because it
could not be loaded in other devices, and to benchmark the
coding-genes model on GPU1 and GPU2 for the same rea-
sons. Finally, we benchmarked the small model on GPU2
and GPU3 because with larger devices, the initialization
time could exceed the computation time.

All analyses were performed on Amazon Web Services
(AWS) (accessed on 06/2021) on Python (version 3.7), and
MATLAB (version 2019a) in Ubuntu 18.04 and Windows
10 that enables MATLAB memory benchmarking. The cost
was computed as the price of AWS instance multiplied by
the runtime in seconds. We chose to benchmark the tools
using AWS cloud computing because it offers a wide variety
of General-Purpose GPUs and provides tools for estimating
computing cost.

RESULTS

We first ran the MATLAB implementations of PANDA and
gpuPANDA on our three test networks using three learning
rate values (� = 0.1, � = 0.2, � = 0.3) with calculations in
single and double precision; we also ran these methods with
each of the eight similarity metrics.

For the small network that includes 652 TFs and 1,000
genes, both PANDA on CPU1 and CPU2 and gpuPANDA
running on the GPU2 and GPU3 devices were able to infer
gene regulatory network models that were identical to one
another as determined by the absolute value of the largest
difference (Supplementary Figure S2). This was true using
all eight similarity metrics and running in both single and
double precision. gpuPANDA demonstrated significant ad-
vantages in both runtime (up to 7 times faster with GPU3
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Table 1. Specification of the hardware units used for benchmarking

Unit AWS reference Price ($/hr)
Manufacturer
reference

Number of
cores

Clock speed
(Ghz)

Memory
(GB) Specifications Region

CPU1 c5d.12xlarge 2.304 2nd generation
Intel Xeon
Scalable
Processors

48 3.6–3.9 96 compute-
optimized

us-east-1

CPU2 r5a.8xlarge 1.808 AMD EPYC 7000 32 2.5 256 memory-
optimized

us-east-1

GPU1 p3dn.24xlarge 3.902* Nvidia Tesla V100
Tensor Core

5120 1.53 32 Largest GPU us-east-1

GPU2 p3.2xlarge 3.06 Nvidia Tesla P100 3584 1.19 16 Large GPU us-east-1
GPU3 p2.xlarge 0.9 Nvidia Tesla K80 2496 0.52 12 Smaller GPU us-east-1

In the benchmarks, hyperthreading was enabled to allow all the CPU cores are used to perform computations. EC2 cost corresponds to AWS On-Demand
price.
p3dn.24xlarge has 8 Tesla P100 Tensor Core, the original price of $31.218/hour was divided by 8 to estimate the cost of one unit.

in comparison to CPU2; Supplementary Tables S1 and S2)
and cost (up to 15 times less expensive with GPU3 in com-
parison to CPU2; Figure 1-A, Supplementary Tables S3 and
S4). To further determine the effect of scaling on runtime
and cost, we compared the rate of speedup to the rate of cost
decrease. In comparison to PANDA on CPU1 and CPU2,
the speedup of gpuPANDA using GPU2 outpaced the de-
crease in cost (Figure 1-B) such that a two-fold speedup
comes with < two-fold decrease in cost. However, compar-
ing PANDA on CPU1 and CPU2 to gpuPANDA on GPU3
showed a decrease in cost at a larger rate than speedup,
which means that achieving a two-fold speedup with GPU
comes with > two-fold decrease in cost. The reason for this
is that small networks do not require large devices, and can
be efficiently computed with the smaller and less expensive
GPU3.

For the network modeled on protein-coding genes, GPU
acceleration was possible in GPU1 but only in single pre-
cision with GPU2 due to memory limitations. gpuPANDA
had an up to nine-fold decrease in runtime and a seven-fold
decrease in cost when comparing GPU2 and the compute-
optimized device CPU1 (Figure 2-A). For the memory-
optimized CPU2, the speedup reached up to 26-fold with
a decrease in cost of up to 15-fold (Figure 2-A). This was
particularly clear with the modified Tanimoto (Tfunction)
similarity metric at the default learning rate of 0.1. An anal-
ysis of cost fold decrease rates as a function of speedup rates
(Figure 2-B) showed that CPU1/GPU2 and CPU2/GPU2
had a runtime decrease at a faster rate than cost decrease.
Similarly, GPU1 was up to 12 times faster than CPU1 and
up 61 times faster than CPU2 particularly in double preci-
sion computation using the Euclidean distance, which cor-
responded to a seven-fold and 28-fold reduction in cost, re-
spectively.

We designed the GPU code to optimize memory us-
age. Specifically, we measured the memory requirements of
PANDA and gpuPANDA across six sampling points after
the function call (Figure 3-A) and found a 2.6-fold decrease
in memory usage with our optimized GPU code. However,
despite this improvement, neither the GPU2 and GPU3
configuration had sufficient memory to load the input ma-
trices of the transcript network and perform operations us-
ing either single or double precision (Figure 3-B). In ad-

dition, we could load and compute the network on GPU1
in single precision only for the Tfunction similarity metric.
Benchmarking against CPU1 and CPU2 in this setting re-
vealed a 24-fold decrease in runtime (Figure 3-C) and 11-
fold decrease in cost (Figure 3-D). Finally, to test the repro-
ducibility of these results, we repeated the CPU and GPU
runs three times using CPU1 and GPU1 as representatives
of each category. CPU1 had an average coefficient of varia-
tion (CV) of 0.31% and GPU1 had an average CV of 0.37%
across experiments. (Supplementary Figure S7).

In addition to testing the MATLAB code, we tested the
Python implementations of PANDA and gpuPANDA on
the small network. We found similar results to those de-
scribed above that were based on the MATLAB implemen-
tation. For example, calculating single precision networks
using PANDA on CPU2 and gpuPANDA on GPU3, gpu-
PANDA was more than 10 times faster than the CPU imple-
mentation. We also found the output networks to be iden-
tical, with the largest absolute difference in edge weights
equal to 3.5 × 10–5 (Supplementary Figure S3).

Finally, we tested LIONESS and gpuLIONESS in MAT-
LAB. Both LIONESS and gpuLIONESS perform a series
of batch calls, in our case to PANDA and gpuPANDA, re-
spectively. In estimating 127 single precision individual sam-
ple networks based on the small network dataset, we found
gpuLIONESS to be 10.3 times faster on GPU2 compared
to LIONESS on CPU2 and 3.6 times faster than CPU1.
On GPU1, gpuLIONESS was 24.9 times faster than CPU2
and 8.7 times faster than CPU1 (Supplementary Figure S4-
A). The largest absolute difference between the CPU and
GPU network edge weights was 0.015, which was less than
0.01% of that edge weight, while the average absolute differ-
ence was 6.5 × 10–5 (Supplementary Figure S4-B). We also
combined GPU speedup with an additional algorithmic im-
provement consisting of deriving the co-expression network
on-line (Eq1-Eq4), i.e., without having to recompute it for
every sample (Supplementary Figure S4), although this ap-
proach did not lend reduced runtime. Finally, we also tested
a multi-GPU implementation that distributes single-sample
network inference across several GPU devices. Benchmarks
on an AWS p3.8xlarge instance with four GPUs revealed a
linear speedup as a function of the number of devices (Table
2).
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Figure 1. Runtime and cost performance of gpuPANDA in the small network. (A). Runtime (first row) and cost (second row) fold change between CPU1,
CPU2, GPU2, and GPU3. The results are reported as CPU/GPU fold change, therefore, a fold change larger than 1 indicates a decrease of cost or runtime
using GPU. Conversely, a fold change less than 1 indicates an increase in cost or runtime using GPU. (B). Rate of cost fold change as an effect of runtime
fold change in the small network in single and double precision. The blue area represents the case when CPU/GPU fold change is less than 1 indicating
an increase in cost and/or runtime of GPU computation over CPU.

DISCUSSION

As the sample sizes for genomic and multi-omic data stud-
ies grow, we have the opportunity to develop increasingly
accurate models of the potential causes of various diseases
and phenotypic traits. However, the computational com-
plexity, time, and cost of building such models has become
a limiting factor in many applications. The development of
PANDA, PUMA, SPIDER, and LIONESS as techniques
for inferring accurate regulatory models has allowed the ex-
ploration of gene regulation in health and disease. However,
the use of these models has been limited by the availabil-
ity of computational resources. For example, using PANDA
and LIONESS to generate more than 9,435 individual sam-
ple networks (19) using data from GTEx v6 initially took
multiple months running on a conventional multi-CPU
cluster; rerunning those networks in response to a question
from referees took more than six weeks (after having opti-

mized the CPU code). Our interest in repeating this analy-
sis with GTEx v8 and with other large datasets, underscores
the need for additional computational improvements.

Although PANDA, PUMA, and SPIDER are not mas-
sively parallel algorithms as the estimation of edges in the
final network cannot be structured into independent tasks,
they include a series of operations such as matrix multipli-
cation and distance computation that make them amenable
to GPU acceleration (9). gpuPANDA represents an adapta-
tion of these methods that parallelizes the large matrix op-
erations in each iteration of the network inference and re-
finement process. The implementation of gpuLIONESS ex-
tends this further by distributing the calculation of PANDA
networks for each leave-one-out data subset across the avail-
able GPU devices, such that the computation of each indi-
vidual sample network is distributed across the cores avail-
able within each device.
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Table 2. Runtime of gpuLIONESS in a multi-GPU setting

Number of GPUs Runtime (s)

1 12,307
2 6,441
4 3,392

The coding-genes network was benchmarked in a multi-GPU setting using
a learning rate of 0.1 and in single precision to generate 127 single-sample
networks using a p3.8xlarge AWS instance (4 Tesla V100 GPUs, us-east-1,
accessed on 10/2021).

Improving runtime was a major motivation for creating
GPU implementations of PANDA and LIONESS. By tak-
ing advantage of Python and MATLAB GPU interfaces to
CUDA (21), gpuPANDA reduced memory use by 2.6-fold
relative to the CPU implementation, in part because it is
able to take advantage of symmetries in the co-expression
network (which is generally the largest network). We rec-
ognize that we might be able to further reduce memory us-
age by sending intermediate results from device to host to
free space for the next iteration. However, we chose not to
do so because the associated I/O would considerably in-
crease computation time and, consequently, cost. Further-
more, gpuZoo implementations use MATLAB GPU inter-
face and Python’s CuPy library to create CUDA kernels for
each parallel operation. Although a pure CUDA implemen-
tation would offer better memory usage and runtime per-
formance, using GPU libraries still achieves significant im-
provements while providing great ease-of-use for the users
of these tools to run existing pipelines by simply setting
the ‘compute’ argument to ‘gpu.’ These libraries also en-
able several features such as the distribution across several
nodes (AWS EC2 instances or cluster nodes) without ad-
ditional requirements on the user end. Therefore, using in-
tegrated GPU libraries offers an optimal trade-off between
accessibility of these tools and performance.

Despite these improvements, neither of the GPU de-
vices, including the larger memory GPU1 (32 GB), was
able to load the data for the largest transcript network in
double precision (43,698 transcripts and 1,603 TFs, Fig-
ure 3-D). This is not surprising, given the size of the co-
expression network. This network requires 15.2 GB of
memory (43,698*43,698*8 bytes) and performing additional
operations on it and on other input data requires holding
temporary variables of the same size, such as the ones re-
quired during matrix normalization. However, this should
not pose a major barrier to the use of gpuZoo since most
network inference modeling only include the 20,000–30,000
protein-coding genes. Additionally, most pipelines would
further eliminate genes not expressed in a particular tis-
sue during data preprocessing. For example, the major-
ity of our earlier investigations (14,15,19) fall within the
size of the protein-coding genes network, for which the
computations carried with the modified Tanimoto similar-
ity (Tfunction) had the largest speedup with gpuPANDA.
With GPU3, gpuZoo was not able to load the protein-
coding genes network (652 TFs and 27,149 genes), and with
GPU2 it was only able to load it in single precision. How-
ever, the loss of double precision in the matrix calculations
does not produce major changes in the overall network es-

timation and likely has a much less significant effect than
noise in measurements of gene expression (Supplementary
Figure S5).

Computing 127 single-precision, sample-specific net-
works using gpuLIONESS for the protein-coding genes net-
work on GPU2 was 10.3 times faster than CPU2 and 3.6
faster than CPU1. The reason for a lower performance in
gpuLIONESS compared to gpuPANDA is due to an addi-
tional memory-consuming step. When inferring a sample-
specific network using PANDA together with LIONESS,
there is an additional step that requires recomputing and
normalizing the gene co-expression network for each sam-
ple, which requires large memory resources due to the size of
the co-expression network. Since GPU2 has limited mem-
ory, this step was performed in CPU and the resulting data
is sent to GPU in each iteration. Using the extra memory of
GPU1, this step could be performed on device, which im-
proved the speedup to 24.9-fold in comparison to CPU2
and 8.7-fold in comparison to CPU1. Furthermore, we
tested the distribution of single-sample LIONESS network
inference using several GPU devices. Using the multi-GPU
approach, we found that runtime scales linearly with the
number of devices because gpuLIONESS is massively par-
allel and no additional communication overhead was ex-
pected. Since the price of multi-GPU instances is scaled in
the same way (p3.2xlarge, 1 GPU, $3.06/hour; p3.8xlarge,
4GPUs, $12.24/hour), the cost-performance advantages
are maintained in a multi-GPU setting.

We also investigated combining GPU acceleration with
computing gene co-expression on-line. We did not see an
improvement in the total runtime in our tested networks.
However, we have investigated whether this approach could
be beneficial when the number of samples increases rela-
tive to the number of genes. Running a comparison between
co-expression and on-line co-expression on a 1,000-variable
random network showed similar performance (Supplemen-
tary Figure S6) when the number of samples was 0.5% the
number of genes, which is about the ratio used in our study
(127 samples and 27,149 genes). However, increasing the
sample-to-genes ratio yielded a 2.45 speedup when the num-
ber of samples was equal to number of genes, with accel-
eration starting at 50% (1.5 speedup). We recently com-
puted sample-specific gene regulatory networks using data
from the Connectivity Map across 170,013 experiments on
12,328 genes in two days by combining acceleration from
GPU and on-line co-expression (29), which would have re-
quired several weeks using CPU.

Finally, to test the accuracy of gpuLIONESS, we found
that the largest absolute difference between the edge weights
of single-sample gpuLIONESS networks was 0.015 which
is larger than the difference between PANDA and gpu-
PANDA networks in single precision (∼1 × 10–5), but the
average error was equal to 6.5 × 10–5, which is within the
order of single precision computation. For the small net-
work, despite a greater increase in network inference speed
with GPU2, the smaller GPU3 was more cost-effective for
a similar performance (Figure 1-A, Supplementary Tables
S1 and S3). In particular, computing gene regulatory net-
works using the similarity metric Tfunction on GPU2 was
less efficient than GPU3 and CPU1, because initializing a
large device requires more time than the computation itself.
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Comparing inference of regulatory networks using gpu-
PANDA on three GPU architectures and PANDA on two
CPUs, each with different specifications, allowed us to un-
derstand the effects of processor clock speed and memory
size and access speed on the final runtime and cost. In par-
ticular, the CPU machines on which we ran PANDA were
significantly different: CPU1, the compute-optimized ma-
chine has a faster processing speed and 96 GB of RAM,
while the memory-optimized CPU2 has slower CPUs but
far greater and faster accessible memory (256 GB) (Table
1). However, performance can be enhanced by taking ad-
vantage of the large offering of instances in the AWS catalog
which allows users to further fine tune machine configura-
tions that deliver optimal price-performance.

The main drawback of these implementations is that they
are unable to process networks with more than 20,000 genes
in double precision. However, we found that the differences
between single precision and double precision networks re-
main within the order of single precision, which indicates
that neither hardware specifications nor the software im-
plementation account for additional deviation in precision
than what is expected (Supplementary Figure S5). There-
fore, computing in single precision when GPU memory is
limited could be a viable approach for networks that cover
more than protein-coding genes. These results could even
support the use of half-precision (2 bytes) in memory-scarce
settings, but additional experiments have to be done to en-
sure the accuracy of computational and biological findings.

Overall, we found that gpuZoo offers an optimal cost-
performance solution for the estimation of batches of gene
regulatory networks. These implementations allow the in-
ference of gene regulatory networks in large-scale genomic
studies such as TCGA (30), the Connectivity Map (31), and
the GTEx project (23). Moreover, the rapid pace of im-
provement of GPU devices (32) such as the NVIDIA A100
(40 GB of memory), available through p4d AWS instances,
will soon enable cost-effective, large-scale network inference
in double precision. Finally, gpuZoo tools enable biological
discovery by providing a computational engine that sup-
ports our recent endeavor to reconstruct gene regulatory
networks across human conditions (29) such as cancer hu-
man tissues and cell lines (https://grand.networkmedicine.
org).

DATA AVAILABILITY

gpuZoo (gpuPANDA, gpuPUMA, gpuSPIDER, and
gpuLIONESS) is available through the Network Zoo
package (netZoo; netzoo.github.io) in MATLAB (net-
ZooM v0.5.2) at https://github.com/netZoo/netZooM
with a step-by-step tutorial https://github.com/netZoo/
netZooM/tree/master/tutorials, and in Python (netZooPy
v0.6.2) https://github.com/netZoo/netZooPy with a tutorial
https://github.com/netZoo/netZooPy/tree/master/tutorials.

The code of the benchmarks is available at https://
github.com/QuackenbushLab/gpuzoo, and the correspond-
ing data is available at https://netzoo.github.io/zooanimals/
gpuzoo/.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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