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Carbon dioxide (CO2), a stable gaseous species, occupies the troposphere layer

of the atmosphere. Following it, the environment gets warmer, and the

ecosystem changes as a consequence of disrupting the natural order of our

life. Due to this, in the present reasearch, the possibility of carbon fixation of

CO2 by using borane was investigated. To conduct this, each of the probable

reaction channels between borane and CO2 was investigated to find the fate of

this species. The results indicate that among all the channels, the least energetic

path for the reaction is reactant complex (RC) to TS (A-1) to Int (A-1) to TS (A-D)

to formic acid (and further meta boric acid production from the transformation

of boric acid). It shows that use of gaseous borane might lead to controlling

these dangerous greenhouse gases which are threatening the present form of

life on Earth, our beautiful, fragile home.
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Introduction

Carbon dioxide has been one of the most dangerous threats to the present order of our

lives. As one of the major greenhouse gases, it makes our environment warmer and

directly changes the ecosystem of Earth, the only known planet in the cosmos that

supports complex life forms (Herndon and Whiteside, 2021).

On the one hand, in spite of the global attempts of scientists, the amount of CO2

released into the atmosphere is increasing annually (Abrantes et al., 2021). On the other
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hand, replacing fossil fuels with green energy resources could not

be carried out in the near future. Thus, stopping of CO2

emissions into the atmosphere could not be an operational

approach, at least in the present decade (York and Bell, 2019).

Instead, researchers have found different ways to store or use

such polluting species (Yang et al., 2021; Liu et al., 2022; Pandey

et al., 2022). Artificial photosynthesis (Keijer et al., 2021),

electrochemical reduction (Lin et al., 2019; Zhao and Quan,

2021), and also chemical reactions (Pramudita and Motokura,

2021; Porgar and Rahmanian, 2022) are some of those

approaches.

At least at the present time, it seems that chemical reactions

might be one of the most practical approaches for reduction of

CO2 (Sharghi et al., 2017; Santos-Carballal et al., 2021). The

chemical reactions could be run in the absence of electrical

energy or fragile systems, which are required for artificial

photosynthesis.

Previous reports reveal that some of the borane derivatives

(in the presence of catalysts) could be a choice for chemical

reduction of CO2 due to their ability to release negative hydrogen

atoms. As an example, in recent years, Kadota et al. (2019) have

successfully used metallic borohydrides in the presence of

triphenylphosphine as the catalyst and acetonitrile as the

solvent to give a porous coordination polymer (Kadota et al.,

2019). In another work (2020), they used calcium borohydrides

in the presence of pyridine derivatives as the catalyst and

dimethylsulfoxide (DMSO) as a solvent at 40°C to consume

CO2 for the production of calcium formate (Kadota et al.,

2020). In addition, Zhu et al. (2019), reacted lithium and

sodium borohydrides to CO2 in a gas–solid phase system for

24 h to yield hydrogen molecule and trimethylborane (Zhu et al.,

2019). Also, there are some other examples in which metallic

borohydrides, mostly in the presence of the base and solvent,

have reacted to CO2 to yield synthesized composites or other

products (Fujiwara et al., 2014; Bontemps, 2016). In addition,

sensing or attracting CO2 by special nano-structures via chemical

reactions was studied and proved to be performable in some

previous reports. It indicates that some of the electron-rich

components are able to reduce this gaseous species (Siadati

et al., 2016a; Pakravan and Siadati, 2017; Vessally et al., 2017;

Kadhim et al., 2022a; Kadhim et al., 2022b; Li and Zhao, 2022).

Also, the findings of the previous reports show that studying the

mechanism of the reactions by using the PES method and

reaction pathways approach could give valuable information

about the fate of the atomic and molecular interactions

between the chemical species (Siadati, 2015; Siadati et al.,

2016b; Mohtat et al., 2018; Kula et al., 2021; Vessally and

Hosseinian, 2021).

Due to the abovementioned issues, in this work, we

attempted to follow each of the possible reaction subways

between CO2 and borane in order to find the fate of this

system. The results of the PES studies and also the molecular

dynamic simulations showed that formic acid (and further

metaboric acid production from transformation of boric acid)

would form finally from the reaction between CO2 and borane, at

least in the gas phase.

Calculation details

After performing the molecular dynamic simulations for the

atomic system (containing boron, carbon, 3*hydrogen, and

2*oxygen), a number of meta-stable species (which might

emerge via different atomic orientations) were detected. Then,

after design and optimization of each separated molecule (BH3,

and CO2), any interaction that could occur (despite energy peaks

and any other barrier) was considered and input into the software

to give any possible reaction pathway. After extracting the results

via optimization of each atomic state, various reaction pathways

with separated or common meta-stable species were designed.

Those species consisted of reactant complexes, transition states

(TSs), intermediates, and final products. The Gaussian
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03 chemical quantum package (Frisch et al., 2003) was applied to

perform the calculations, and the density functional theory

(DFT) procedure at the B3LYP/6-311++G (d,p) level of theory

was used to optimize the possible structures (Becke, 1988; Lee

et al., 1988). The TS structures were recognized by using the

synchronous transit-guided quasi-Newton (STQN) approach

(Peng et al., 1996). In addition, in order to find the electrical

charge of each atom in the reactants, intermediates, products,

and TSs, the natural bond orbital (NBO) analysis was used (Reed

et al., 1988).

The following formula was applied for calculating the global

electron density transfer (GEDT):

GEDT � ∑ qA. (1)

In which qA is the net atom in molecule (AIM) charge

(calculated by AIMAll (Version 10.07.01) (Keith, 2010;

Domingo et al., 2021)) and the sum covered the entire atoms

of CO2 species.

Also, molecular dynamic simulations were performed to

investigate the behavior of the mentioned atoms (Lawan et al.,

2022).

Results and discussion

To investigate the possibility of CO2 reduction by the gaseous

form of borane (which evaporates at about 65°C to 67°C), all

possible interactions between those two species were designed in

order to make an accurate map. There were several reaction

pathways with different orientations, intermediates, and

products as the final state of energy. Moreover, a number of

species came from different routes, which could form the cycles.

The results of the molecular dynamic simulations helped us

recognize some of the species that might emerge during the

reaction coordinate (Figure 1). The simulation part of the

calculations was performed by using Gaussian 03 software.

The classical trajectory calculation using the

Born–Oppenheimer molecular dynamics model (BOMD) was

performed in about 2473 femtoseconds (fs) (as the total

simulation time). The force field was calculated with the aid

of the DFT method; the temperature was set at 400 K, and the

time-step was about 0.618 fs.

As shown in Figure 2 (Scheme 1), there were two primitive

routes which produced a number of different reaction valleys (as

sub-branches). Each of those sub-branches reaching a product or

was linked to a cycle.

As shown in Figure 2, there are three main cycles which are

linked to each other, by pillars of energy. Those are cycles AB,

AD, and cycle C, which produce carbon monoxide, molecular

hydrogen, and formaldehyde (cycle AB); methane and methanol

(cycle C); and formic acid (cycle AD), respectively. At the

beginning, there were no compounds except CO2, and BH3,

while after the production of two primitive routes (containing

routes A and B), and the formation of cycle AB, several meta-

stable species with a variety of energy barriers, peaks, and valleys

have emerged. Each of those would be described in the following

sub-sections.

Cycle AB, reaction channels, and products

As shown in Figures 2, 3, at the first step, the primary reactant

complex (containing CO2, and BH3) approaches each other in

different orientations, which causes two separated main routes to

emerge (channels A and B as well as the formation of cycle AB).

Channel A is produced when 1 C=O bond of CO2 comes closer to

one B–H bond of borane (a side-by-side position) to produce TS

(A-1), with an energy barrier of 15.11 kcal mol −1 (making this

process possible in view of energy). Also, channel B emerges via

formation of a five-membered ring (TS (B-1)) during proton

transfer from the boron atom of BH3 to the free oxygen of CO2.

The energy barrier of this species is about 67.99 kcal mol −1,

which shows that route B needs a lot of thermal energy;

somehow, in usual temperatures and in ambient systems,

hypothetical channel A is formed much faster than its parallel

route (channel B). Despite the fact that channel B is nearly

banned at the energy barrier of TS (B-1), it is mentioned that the

subsequent stages of that route contain Int (B-1)

(23.29 kcal mol −1), TS (B-2) (51.38 kcal mol −1; barrier =

28.09 kcal mol −1), Int (B-2) (-18.11 kcal mol −1), TS (B-3)

(59.56 kcal mol −1; barrier = 77.67 kcal mol −1), and state (B-3)

[releasing a molecular hydrogen and a HBO species into cycle C

via Int (A-2)]. Thus, channel B is forbidden from the kinetic

point of view. Int (B-2) releases a carbon monoxide molecule

before the formation of TS (B-3). Also, the results of the

calculations show that in TS (A-1), the amount of GEDT is

about −0.242 (indicating the global electron transfer from CO2 to

borane, while the amount of this parameter for Int (A-1) is

FIGURE 1
Results of the trajectory diagram for the molecular dynamic
simulation based on energy per time (in femtosecond) (fs).
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about −0.847 (attacking the electron density from borane

segment to CO2).

In channel A, TS (A-1) (15.11 kcal mol −1) transforms to Int

(A-1) (−19.73 kcal mol −1), TS (A-2) (24.41 kcal mol −1; barrier =

44.14 kcal mol −1), and Int (A-2) (−14.22 kcal mol −1), which

completes cycle AB. Also, it seems that reaching Int (A-2) via

channel A is difficult, but this route is still favored compared to

channel B. Subsequently, Int (A-2) could release formaldehyde

or transform TS (A-3) to form cycle C. It must be noted that at

the middle of channel A, Int (A-1) could react with a single water

molecule and pass through the reaction pathway AD and form

TS (A-D), having a relative energy barrier of 14.70 kcal mol −1.

Thus, moving Int (A-1) and H2O to the reaction pathway A–D

could give valuable information about the fate of the reaction

cycles of the CO2–borane complex.

Cycle C, reaction channels, and products

Cycle C would begin with the transformation of Int (A-2)

into TS (A-3). In this case, the formaldehyde part of Int (A-2)

moves to reach a parallel situation with HBO species; somehow,

the H–B bond of HBO approaches the O=C bond of

formaldehyde. Then, the proton of HBO is transferred to the

carbon of formaldehyde to yield Int (A-3), which is extremely

stable even in comparison with RC (-54.33 kcal mol −1). For the

next step of this cycle, another BH3 species attacks Int (A-3) and

forms an Int (A-3)-BH3 system. Then, it receives energy and

turns into TS (A-4) with an energy content of 47.31 kcal mol−1

compared to the Int (A-3)-BH3 system (which could only

proceed in high temperatures or some irradiative

environments). In addition, this TS loses energy and reaches

FIGURE 2
Complex of the main routes and sub-branched reaction valleys for the reduction process of CO2 by borane in gas phase.
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FIGURE 3
Energy diagram based on the reaction progress at B3LYP/6-311++G (d,p) level of theory.

SCHEME 1
Total scheme of the reaction between CO2 and borane 1, leading to production of formic acid 3, mono boric acid 2, and metaboric acid
trimer 4.
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FIGURE 4
Geometrical structures of all detected species which emerge during the reaction coordinate optimized at B3LYP/6-311++G (d,p) level of
theory.
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the Int (A-4) + CH4 system with a relative PES of

-96.85 kcal mol−1 (the lowest energy of whole cycles). It shows

that in spite of high activation energies, whichmakes it kinetically

unfavorable (at least in ambient conditions), the formation of

some products of these cycles is extremely favored in view of

thermodynamics. Then, the Int (A-4)+CH4 complex releases a

methane molecule, and Int (A-4) (H2BOBO) decomposes into

two equal HBO fragments (state (A-5), with an energy content of

19.69 kcal mol−1 compared to Int (A-4)) via the TS (A-5)

[48.41 kcal mol−1 compared to Int (A-4)]. Finally, both HBO

fragments of state (A-5) return to the Int (A-2) system to supply

and re-start the cycle C. Thus, by circulation of cycle C, a BH3 is

consumed and a methane molecule is released. However, most

peaks of cycle C are extremely energy-demanding and require

much energy.

Cycle AD, reaction pathways, and
products

The results of the molecular dynamic simulations and the PES

studies by means of DFT calculations indicate that the most

important cycle of the whole system is cycle A–D. As shown in

Figures 2, 3, Int (A-1) could receive a water molecule and form an

Int (A-1)-H2O) complex. Then, this complex gains energy and

forms TS (A-D) via the reaction pathway AD, with a relative PES

of 14.70 kcal mol−1 [compared to the Int (A-1)-H2O complex].

This process is being carried out via an electron pair attack from

the oxygen of water molecules to the boron atom of Int (A-1). The

process continues by proton transfer from the H2O
+ fragment to

the formate part. By following these changes, state (A-D) forms via

quenching TS (A-D). Two species contain a formic acid molecule

and a H2BO fragment in state (A-D) (−11.92 kcal mol−1). After

completion of cycle AD, the H2BO meta-stable species is released

from that cycle via reaction path AD to supply TS (B-3) of cycle

AB.Moreover, formic acid is released, which is both kinetically and

thermodynamically favorable. It shows that among all reaction

valleys and cyclic complexes, the route in which Int (A-1) from

cycle AB and forms cycle AD to release formic acid is the most

favorable one. Also, there are several reports revealing the fast

formation of the six-membered metaboric acid from the

transformation of boric acid (Grigorovskaya et al., 2009; Balcı

et al., 2012; Hoffendahl et al., 2014).

Figure 4 shows the geometrical structures of several detected

species which might emerge during the reduction reaction of

CO2 by BH3 species. As shown below, the two reactants approach

each other in a unique orientation to form the reactant complex

(RC). Then, RC receives energy up to about 15.11 kcal mol−1 to

form TS (A-1), which is significantly favorable compared to TS

(B-1) (67.99 kcal mol−1). During this transformation, B (1)---H

(3) bond is breaking [from 1.85 �Å in RC to 1.3 �Å in TS (A-1)],

while B (1)---O (5) (1.65 �Å) as well as C (4)---H (3) (1.51 �Å)

bonds are forming. Then, TS (A-1) loses energy (34.4 kcal mol−1)

to form Int (A-1). This species gains energy (44.14 kcal mol−1) to

form TS (A-2) in which the C (4)---O (5) bond length reaches to

1.84 �Å to break totally (as well as transferring H (7) from B (1) to

C (4). Following it, Int (A-2) forms, which could release an

aldehyde or begin a cycle (C). Alternatively, Int (A-1) could react

with a water molecule and gain energy to reach TS (A-D) via the

reaction pathway (A-D). As shown in Figure 4, O 8) of the water

molecule approaches B (1) and forms TS (A-D). In this species,

the distance of the O (8)---B 1) forming bond is about 1.54 �Å,

while the distances of the B (1)---O (5), and the O (8)---H 9)

breaking bonds are 1.67 �Å, and 1.29 �Å, respectively. It shows that

the bond distances in the transition state are more likely to

product than to intermediate. The PES data given in Figure 3

confirm these results. Also, it should be noted that TS (AB-3)

could potentially be considered for the (York and Bell, 2019;

Herndon and Whiteside, 2021)-proton-sigmatropic shift

reaction due to properties which have recently been revealed

in Jasiński, (2020). We have used the B3LYP/6311++G (d,p) level

of theory for these mechanism studies due to the fact that this

basis set has been widely applied for theoretical prediction of the

experimentally investigated reaction parameters. The results of

our theoretical studies on the reaction parameters had very good

agreement with the previous experimental reports (Siadati et al.,

2011; Bekhradnia et al., 2014; Siadati, 2016).

Total circulation of the complex of cycles

The results of the relative PES and the molecular dynamic

simulations indicate that the least energy pathway for the

reaction between borane and CO2 (the green line in Figure 3)

is the reactant complex (RC) to TS (A-1) to Int (A-1) to TS

(A-D) to formic acid with a relative PES of 0.00 kcal mol−1,

+15.11 kcal mol−1, -19.37 kcal mol−1, and +14.70 kcal mol−1,

respectively. Thus, among all possible species, formic acid

emerges finally from the reaction between CO2 and borane, at

least in the gas phase.

TABLE 1 Thermodynamic parameters as well as the negative frequency values of TSs for the possible reaction route.

TS ΔG# (kcal mol−1) ΔH# (kcal mol−1) ΔS# (cal mol−1 K−1) Negative freq (cm−1)

TS (A-1) 14.79 19.54 −15.93 −457.90

TS (A-D) 17.57 18.94 −4.57 −1262.52
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As shown in Table 1, the negative frequencies of TSs (A-1) and

(A-D), are -457.90, and -1262.52 cm−1, respectively. These strong

negative frequencies confirm the reliability of the calculations of

the TSs. Also, the ΔG# (Gibbs free energy difference) and the ΔH#

(enthalpy difference) for the formation of TS (A-1) and TS (A–D)

are 14.79 kcal mol−1, 19.54 kcal mol−1, 17.57 kcal mol−1, and

18.94 kcal mol−1, respectively. These values indicate the

relatively low energy barriers and favorability of the formation

of the mentioned TSs in view of thermodynamics, leading to the

production of formic acid on the one hand, andmetaboric acid, on

the other hand.

Conclusion

In the present research, we attempted to follow each of the

possible pathways for all of the interactions between CO2 and

borane in order to find the fate of the reaction. The results of the

PES studies and also those of the molecular dynamic simulations

show that the behaviors of borane and CO2 lead to the emergence

of several possible stable and meta-stable species. Some

molecular fragments which are linked to each other by

energetic routes and make some related cycles.

The result also indicate that the least energy pathway for the

reaction between borane and CO2 is RC to TS (A-1) to Int (A-1)

to TS (A-D) to formic acid with relative PESs of 0.00 kcal mol−1,

+15.11 kcal mol−1, −19.37 kcal mol−1, +14.70 kcal mol−1, and

-11.92 kcal mol−1, respectively. Thus, between all possible

species which emerge from the abovementioned complex of

cycles, formic acid (and further metaboric acid production

from the transformation of boric acid) is formed eventually, at

least in the gaseous atmosphere.

Finally, due to the energy barriers and valleys, reduction of

CO2 by borane molecules is possible and even favorable, at least

in gas phase. This suggests that the use of gaseous borane (boiling

point = 67°C) for reduction of CO2 should be taken under further

consideration by scientists. Investigating any probable meta-

stable species (which might emerge during the designation of

the whole complex of the reaction cycles) would be a reliable way

for understanding the behavior of molecules in the gas phase.

Thus, the outcome of such a project could be helpful for further

research in controlling the amount of atmospheric CO2.
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