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Abstract
Working with recent data and research findings, we estimate the probability that an air traveler in economy class would have 
contracted Covid-19 on a US domestic jet flight over the nine-month period June 2020 to February 2021. The estimates take 
account of the rates of confirmed Covid-19 infections in the US, flight duration, fraction of seats occupied, and some demo-
graphic differences between US air travelers and US citizens as a whole. Based on point estimates, the risk of contracting 
Covid-19 in-flight exceeded 1 in 1000 on a fully-loaded two-hour flight at the height of the pandemic over the nine months, 
but was about 1 in 6000 on a half-full flight when the pandemic was at a low ebb. However, these estimates are subject to 
substantial uncertainty, with the 10th percentiles of various risk distributions only about 1/7 as large as the medians, and 
the 90th percentiles about four times as large. Based on seat-occupancy levels on US flights for each month over June 2020 
to February 2021, the median risk estimate for that period is 1 in 2250, while the mean risk estimate is 1 in 1450. Indirect 
effects arose because those who contracted Covid-19 on US airplanes could in turn infect others.
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Highlights 

•	 Focusing on the period June 2020–February 2021, the 
paper estimates the probability that a randomly-chosen 
passenger uninfected by Covid-19 contracted the disease 
during an average (two-hour) domestic jet flight in the 
United States

•	 The analysis uses numerous data sets to estimate the 
probability that a passenger boarding a US domestic 
flight over the observation period carried contagious 
Covid-19. That probability varied considerably over the 
nine months considered.

•	 In calibrating its probabilistic model, the paper uses data 
from all available peer-reviewed papers that specified the 
seating location(s) of passengers who harbored Covid-19 
when they boarded a flight, and also the seating loca-
tions of other passengers who did and did not contract 
the coronavirus in flight.

•	 The point estimate for the probability of contracting 
Covid-19 on board an average domestic flight was about 
1 in 2000 for the nine-month study period. That estimate 
is subject to sizable uncertainty.

•	 The approach to modeling advanced in the paper can be 
adapted to make risk estimates in other circumstances, in 
connection with both the coronavirus and other infectious 
diseases.

1  Introduction

This paper estimates the probability that, early during the 
Covid-19 pandemic, a US domestic air traveler would con-
tract the coronavirus while in flight. The focus is on the 
nine-month period from June 2020 to February 2021, a time 
frame that excludes both (i) the first months of the pandemic, 
when US air travel came practically to a halt, and (ii) the 
period starting in March 2021, when the use of vaccines 
was accelerating. There was no consensus on the magni-
tude of in-flight infection risk during those nine months. The 
nationally-renowned expert Dr. Anthony Fauci stated that 
he would not fly until the pandemic subsided, while the US 
Centers for Disease Control and Prevention (CDC) warned 
against air travel throughout the nine-month period. Yet 
United Airlines declared that Covid-19 transmission risk was 
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“nearly nonexistent” even on its full flights, while Southwest 
Airlines characterized the risk as “virtually nonexistent.”

It is not easy to estimate the risk that an uninfected pas-
senger on a US domestic flight would contract Covid-19. 
Here we attempt to do so with a probabilistic model which 
assumes that three things must occur for an in-flight infec-
tion to arise: there must be at least one contagious passen-
ger on board, universal mask wearing must fail to prevent 
transmission, and the uninfected traveler must be seated 
fairly close to a contagious one. (As we will explain, we 
treat other means of on-board transmission as second-order 
effects.) The model estimates the joint probability of these 
three events.

The primary focus here is on economy-class passengers 
who took two-hour US domestic flights on either Boeing 
737 or Airbus 320 jets (two hours is the average duration 
of domestic flights). We make estimates of Covid-19 infec-
tion risk on a month-by-month basis during the observation 
period, using the actual distribution of seat-occupancy levels 
in each month. For full flights, our approximate distribution 
for the probability that a randomly chosen uninfected pas-
senger would contract Covid-19 in flight has a median of 1 
in 2250 and a mean of 1 in 1450. The 10th percentile of the 
estimate is about 1 in 14,000, while the 90th percentile is 
about 1 in 600.

Below we start with a literature review, followed by 
development of the general risk model for Covid-19 trans-
mission, then the estimation of model parameters, and then 
the presentation of risk estimates.

2 � Some relevant literature

There is a voluminous literature about the transmission of 
viral infections in closed spaces. Berry et al. [1] summa-
rized much of this work and assessed its general implica-
tions about limiting the spread of Covid-19. Noakes et al. [2] 
modelled the transmission of airborne infections in indoor 
environments, based on such factors as ventilation rate and 
room occupancy. Bazant and Bush [3] proposed upper limits 
on “cumulative exposure time” for uninfected people in an 
indoor space, given an occupant with contagious Covid-19 
who exudes respiratory droplets. . Chen and Liao [4] offered 
probabilistic analyses about indoor transmission of vari-
ous influenza viruses, as a function of viral kinetics, aerial 
transmission potential, and population dynamics . A meta-
analysis performed by Chu et al. [5] considered 216 studies 
about numerous aspects of viral transmission.

Long before the Covid-19 pandemic, the transmission of 
infectious diseases during passenger flights was recognized 
as a serious health hazard. Evidence of in-flight infection 
arose in connection with SARS and the H1N1p flu pandemic 
[6, 7], and public health agencies including the World Health 

Organization and US Centers of Disease Control (CDC) 
concluded that an uninfected traveler is at greatest risk if 
seated within two rows of a contagious passenger [8, 9].

Modeling viral transmission in airplanes in extremely dif-
ficult, but efforts have been made to do so approximately. 
Infections can spread via respiratory droplets or aerosols, 
and models of such spread in aircraft have typically focused 
on one of these modes of transmission. For aerosols alone, 
several simulations of viral diffusion have been performed 
based on the Navier-Stokes equation [10–13]. For droplets, 
the studies include [14–17], but only the first of these is 
specific to passenger aviation.

Several papers have discussed actual experiences with 
viral transmissions on airplanes.

[18–27] In this article, we have attempted to locate the 
full set of peer-reviewed papers with data about transmis-
sion of Covid-19 in flight. We then focused on all nine of 
those papers which reported which seat(s) were occupied by 
travelers with contagious Covid-19, which nearby seats were 
occupied, and which nearby travelers contracted Covid-19 
during the flight.

Furthermore, much recent research has appeared con-
cerning the course of Covid-19 among individuals infected 
with it. This research estimates what fraction of carriers are 
eventually symptomatic [28], the period of contagiousness 
both before and after symptoms occur [29], the distribution 
of symptomatic cases by severity [30], and the duration of 
contagiousness of asymptomatic carriers [31, 32]. These 
various patterns are germane to estimating the likelihood 
that a passenger boarding a plane has a contagious case of 
Covid-19.

3 � The general model

We focus on Boeing 737 or Airbus 320 jet aircraft in an 
all-coach configuration with 174 seats, in 29 rows with six 
seats apiece. In each row, there are two sets of three seats on 
opposite sides of a center aisle (seats ABC to the left of the 
aisle, DEF to the right). We consider nonstop US domestic 
flights of two-hour duration over the nine-month period June 
2020–February 2021. The basic equation for estimating the 
probability P, that a randomly-chosen uninfected traveler 
contracts Covid-19 in flight is

where

P	� P(randomly-chosen uninfected passenger contracts 
Covid-19 in flight)

(1)P =
∑

N,X

QN,XPN,X
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PN, X	� P(randomly − chosen uninfected passenger boards 
flight with N passengers,   X of whom board harbor-
ing Covid-19)

QN, X	� P(randomly chosen uninfected passenger contracts 
Covid − 19 on board | N, X)

That P depends on X, the number of contagious passen-
gers on board the flight, is obvious. The total number of 
passengers (N) matters because, the greater the number on 
board, the larger in general is the fraction of travelers seated 
in close proximity to contagious ones.

Below we first estimate PN, X and then the conditional 
probability QN, X.

3.1 � The distribution of N

Suppose that M is the number of nonstop flights on 737/
A320 aircraft (with an estimated 174 seats) in a particular 
month, and let qZ be the proportion of those flights with 
exactly z passengers on board. Then the total number of pas-
sengers carried on flights with z passengers would be Mzqz, 
and the fraction Qz of all travelers that month aboard such 
flights would follow:

In practice, we work with data for small ranges of z rather 
than individual values. As we will discuss, we had access 
to data about seat-occupancy rates by month on US aircraft 
between June 2020 and February 2021.

3.2 � The distribution of X

For a particular value of N and a particular day, let pCONTAG​ 
be the probability that a randomly-chosen passenger board-
ing one of the flights under study carries contagious Covid-
19. We treat different passengers as independent in terms of 
contagiousness status, meaning that X, the number of con-
tagious travelers on board, would follow a binomial distri-
bution with parameters N and pCONTAG​ . Estimating pCONTAG​ 
is therefore the key to approximating the distribution of X.

Our general strategy for estimating pCONTAG​ is:

•	 Estimate the fraction of Americans who carry Covid-19 
at the time of the flight

•	 Adjust that fraction to reflect the fact that air travelers are 
more affluent than average Americans, and the Covid-19 
infection rate is negatively correlated with income

•	 Further adjust that fraction to reflect the likelihood that 
carrying Covid-19 reduces the likelihood of actually 

(2)Qz = P(N = z) = Mzqz∕

174�

j=0

Mjqj =
zqz

∑174

j=0
jqj

boarding a plane. Take into account that this statement 
is least true for those who are asymptomatic/pre-sympto-
matic, and most true for those with serious/critical cases.

3.3 � The fraction γ of potential air passengers who 
carry Covid‑19

To estimate pCONTAG​, we first estimate the fraction of poten-
tial US air travelers who carry Covid-19 at a given time. The 
general equation for γ is:

Where

C7	� Number of confirmed cases of Covid − 19  in 
the US over the past seven days

POP	� Population of the US

ρ	� a multiplier to adjust for  the (sizable)extent to which 
confirmed Covid − 19 cases in the US underestimate 
the actual number of cases

β	� a"healthy passenger"  factor to ref lect the 
fact  that  US air travelers come disproportionately 
from communities where Covid − 19  is less common 
than in the population at large.

The quantity C7 enters (3) because seven days is approxi-
mately the duration of contagiousness for a carrier of Covid-
19 [29, 32]. Thus, based on confirmed cases, C7

POP
 approxi-

mates the fraction of Americans who are contagious at a 
particular time. Because we are considering US domestic 
flights as a whole, it seems reasonable to work with national 
statistics about new infections.

However, a substantial share of new cases of Covid-19 do 
not get confirmed in the US, meaning that actual cases over 
a seven-day period considerably exceed confirmed cases. 
There is no official guidance in the US about the ratio of 
actual-to-confirmed new cases at any time.. Here the quan-
tity ρ is an estimate of that ratio, which we approximate on a 
weekly basis over the nine-month observation period.

3.4 � Underestimation of US Covid‑19 cases (the 
multiplier ρ for confirmed cases)

To estimate ρ, we follow a process of “reverse engineer-
ing,” using death counts at the particular times to estimate 
numbers of new cases at previous times. Suppose that η is 
the fraction of Covid-19 cases end in death. Thus, having 

(3)� =

(
C7

POP

)
��.
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estimated how many cases that started at a given time ulti-
mately caused deaths, we could multiply by 1/η to approxi-
mate the total number of new cases at that time.

We made the approximation based on literature that 
those who died on a given date contracted their fatal cases 
of Covid-19 about uniformly over a four-week period that 
ended fourteen days earlier [30]. Thus, for new cases on day 
t that ultimately ended in death, these deaths occur in about 
equal numbers on each day from t + 14 to t + 41. However, 
on (say) day.

t + 18, there would also be deaths resulting from new 
cases on days t – 23 to t + 4. We estimate the number of new 
infections on day t that turned fatal under the rule:

Where

ND(t)	� Number of new US Covid − 19 cases on day t that 
ended in death

D(t + j)	� recorded number of US Covid − 19 deaths on day 
t + j

In essence, (4) says that because day t was one of 28 con-
tributors to the death toll on each day from t + 14 to t + 41, it 
contributed about 1/28 of the total deaths of that period. On 
average, that rule seems plausible.

Once ND(t) is at hand, it would be scaled up by the afore-
mentioned factor 1/η to approximate the total number of 
new cases on day t. η would be based on estimates in the 
literature on the fraction of US Covid-19 cases over June 
2020–February 2021 that ended in death. ρ would then be 
approximated by the ratio of the number of new cases based 
on death counts to the number of confirmed cases (C7):

3.5 � “Healthy traveler” factor β

We consider a region that is divided into various communi-
ties, and contrast the overall Covid-19 rate for the region 
with a rate that weights individual communities by their 
shares of air travelers. The estimation uses four quantities for 
each community for 2020: its population, its median income, 
its per-capita rates of confirmed Covid-19 infections, and the 
per-capita annual rates at which its residents took air trips 
(before the Covid-19 pandemic).

(4)ND(t) ≈
(
1

28

) 41∑

j=14

D(t + j)

(5)� ≈

(
1

�

)
ND(t)

C7

If the communities are then combined into n ranges 
based their median incomes, the chance that a randomly-
selected citizen has experienced Covid-19 can be approxi-
mated by:

where

RCV	� probability of having had Covid-19.

Ri	� probability of having had Covid − 19 for citizens of 
communities in median −income range i.

Ii	� fraction of  all  citizens living in communities in 
median − income range i

(n)	� number of median − income ranges

Focusing on air travelers rather than randomly-chosen 
citizens, suppose that Ti = annual air trips per capita in 
communities in median − income range i

Then TiIi∕
∑n

j=1
TjIj is the fraction of pre-pandemic air 

trips taken by people from communities in median-income 
range i. If we weight each range’s per-capita Covid-19 
rates by shares of pre-pandemic air trips, we reach an 
adjusted risk level RCVT that is given by:

RCVT is the probability of having had Covid-19, giving 
greater weight to communities in the income ranges with 
disproportionate shares of air travelers.

An estimate of the “healthy traveler” factor β would be:

As we will discuss, we calculated a β−estimate with 
data from the Commonwealth of Massachusetts, and made 
another estimate using data from England and Wales.

This approximation for β is not perfect. It treats the pre-
Covid distribution of air trips by income as a good proxy 
for the distribution during the Covid-19 pandemic, and 
bases trips per capita in a given community on its median 
income rather than its distribution of income. Avoiding 
such assumptions is not feasible given the limitations of 
available data.

As noted earlier, � =
(

C7

POP

)
�� However, γ is not in itself 

the probability pCONTAG​ that we seek, as we explain below.

RCV =

n∑

i=1

RiIi

RCVT =

n∑

i=1

RiTiIi∕

n∑

j=1

TjIj

(6)� ≈ RCVT∕RCV
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3.6 � The probability pCONTAG​ that a boarding air 
passenger carries Covid‑19

Suppose that α is the probability that a potential air trave-
ler not suffering from Covid-19 would fly on a given day 
during the pandemic. (This quantity takes account of the 
general reluctance to travel because of the pandemic.) 
Among those who carry Covid-19—the number of which 
depends on γ−we posit that their chance of flying is 
α times a filtering parameter f that is less than one. The 
presumption is that some disease carriers refrain from fly-
ing because they suspect or know that they are infected 
with Covid-19 or simply feel too ill to travel.

We treat f as a function of several other quantities. An 
individual who carries Covid-19 who might potentially fly 
would fall into one of four categories:

Category P(someone carrying 
Covid-19 is in that 
Category)

Asymptomatic carrier PASYM

Pre-symptomatic carrier PPRESYM

Carrier with mild/moderate symptoms PMS

Carrier with severe/critical symptoms PSC

In Section 4, we will estimate these probabilities based 
on medical literature.

We define three quantities related to potential travelers 
who harbor Covid-19

ψNS	� the probability that someone with asymptomatic/pre-
symptomatic Covid-19 who would otherwise fly will 
not do so

ψMS 	� the corresponding probability for someone showing 
mild/moderate symptoms of Covid-19

ψCS	� the corresponding probability for someone showing 
severe/critical symptoms of Covid-19

The quantities ψNS, ψMS, and ψCS   ψNS are “desistance” 
probabilities, which reflect an unwillingness to fly among 
Covid-19 carriers beyond the general level of unwilling-
ness signified by the parameter α. ψNS is relevant because 
someone with asymptomatic/pre-symptomatic Covid-19 
might not fly because he knows or suspects that he carries 
the virus. ψMS is the chance that someone with mild/mod-
erate symptoms foregoes the flight, and ψCS is the chance 
for severe/critical carriers. One can reasonably postulate 
that ψNS < ψMS< ψCS, but assigning probability distribu-
tions to ψNS, ψMS, and ψCS is not easy.

If αf is the probability a potential air traveler who carries 
Covid-19 nonetheless flies, the filter f would follow:

The conditional probability pCONTAG​ that a passenger who 
boards a flight carries Covid-19 would then follow:

where γ and f arise from (3) and (7)
Combining the various elements above, we reach:

where P(N = j) arises from (2), and B(N, q)is binomial with 
parameters N and  q)

3.7 � Estimation of QN,X

Given that there are N passengers on board, X of whom 
carry Covid-19, QN,X is the conditional probability that a 
random-chosen passenger from among the uninfected N – X 
will contract Covid-19 during the flight. We consider first 
the case in which X = 1, with a contagious passenger who 
is seated in seat S1.

For an uninfected in another seat S2, we posit that the 
probability of an on-board infection depends on:

•	 The proximity of S2 to S1, based on both distance and the 
presence of any transmission barriers between the seats

•	 The duration of the flight
•	 The failure rate of universal masking

We further assume that short interactions among passen-
gers during boarding, deplaning, or en route to the lavatory 
present second-order risks relative to those of sitting for 
hours close to a contagious person. We do so because CDC 
advised that someone exposed to a person with confirmed 
Covid-19 need not go into quarantine if the interaction was 
shorter than 15 minutes If, however, one believes that these 
hazards are not negligible, they would add to the risks we 
are estimating here.

Directly estimating the Covid-19 transmission probability 
on aircraft is very difficult. It depends on the contagious pas-
senger’s emissions of the virus via a mixture of breathing, 
speaking, coughing or sneezing, as well as on the move-
ment of droplets and aerosols given the geometry of the jet 
airplane and its powerful HEPA air-purification systems. In 
modeling QN,X, we lean heavily on two influential journal 
articles:

(7)
f =

(
PASYM + PPRESYM

)(
1 − �NS

)
+ PMS

(
1 − �MS

)
+ PSC

(
1 − �CS

)

(8)pCONTAG =
�f �

�f � + �(1 − �)
=

f �

f � + (1 − �)

(9)PN=j,X=k ≈ P(N = j) ∗ P(X = k | X is B
(
N, pCONTAG

))
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•	 a dynamic-network simulation of viral transmission on 
US jet aircraft which appeared in the Proceedings the 
National Academy of Sciences [14] It assumes a fixed 
risk per minute that contagious passenger infects a given 
noninfected passenger within one meter (with a point 
estimate of 1.8% per minute)

•	 a meta-analysis which appeared in The Lancet [5], and 
estimated that, absent barriers and masks, risk of viral 
infection (per minute) drops off exponentially with dis-
tance, at roughly a factor of two per meter.

Our general equation for estimating risk per minute given 
S1 and S2 takes the form:

Where

d	� grid distance between contagious and given unin-
fected passenger

ω	� rate of exponential decay of risk with distance 
assuming no barriers

λ	� P(an individual seatback blocks transmission from 
a contagious passenger)

π0	� level of risk at distance zero from contagious person

R	� number of rows between contagious and uninfected 
passengers

pmasks	� P(universal masking blocks the transmission of 
Covid-19 from a contagious passenger to an unin-
fected one)

We amplify on (10) below.
In measuring d, we use not the Euclidean distance 

between S1 and S2 but instead the “grid distance” (i.e., d((x1, 
y1) to (x2, y2)) = |x2 – x1| + |y2 – y1|). This choice reflects the 
assumption that emissions from a contagious traveler in 16A 
that reach the breathing space of a passenger in 15B largely 
travel there via the breathing space for the passenger in 15A.

In including the quantity λ in (10), we recognize that 
the seatback directly ahead of a disease sufferer can block 
some forward transmission of aerosols and droplets, while 
that person’s own seatback can somewhat protect passen-
gers one row behind. There is apparently no literature 
about the health benefits of airplane seatbacks, though an 
article in a medical journal informed potential air travelers 
that “seat backs provide a partial physical barrier [33].) We 
define λ as the probability that a single row of seatbacks 

(10)VS1,S2
= �0e

−�d(1 − �)R
(
1 − pmasks

)

prevents transmission, in which case 1 - λ is the probabil-
ity that it fails to do so. If there are R rows separating S1 
from S2, we assume that the overall failure risk is (1 − λ)R 
because R rows of seatbacks all must fail for transmission 
to occur. R = 0 if both S1 and S2 are in the same row.

The model in (9) follows [14] in assuming a constant 
infection risk per minute assuming no prior transmission, 
and follows [5] in assuming exponential decay of risk with 
distance. In the next section, we estimate the parameters 
π0, ω, and pmasks  based on the literature, assigning them 
probability distributions as well as point estimates.

For a flight of duration T in minutes, the probabil-
ity ZS1,S2 of Covid-19 transmission conditioned on S1 and 
S2 follows:

If N passengers occupy N seats aboard a flight, we 
assume that the single contagious passenger is equally 
likely to be in any of those seats while a randomly-chosen 
uninfected passenger is equally likely to be in any of the 
other N – 1 seats. Therefore, U(S1), the probability condi-
tioned on S1 that a random uninfected passenger contracts 
Covid-19 on board would be given by:

The overall risk of infection QN, X = 1 would follow:

where the seats 1 through N are numbered under some 
convention

If N = 174 on the 737/A320 jet under consideration, 
then all seats are full. As N drops below 174, we assume 
that as many of the empty seats as possible are center 
seats.

Given that QN, X = 1is  small  (as we will see), the risk of 
contracting Covid-19 in flight can be treated as essentially 
linear in the number of contagious people who board. 
Thus, based on (12) we can write

Given (1), (9), and (13) , we have an estimate of P.

(11)ZS1,S2 = 1 −
(
1 − VS1,S2

)T

U
(
S1
)
=
(

1

N − 1

) ∑

all S2≠S1

ZS1,S2

(12)QN,X=1 =
(
1

N

) Seat N∑

S1=Seat 1

U
(
S1
)

(13)QN,X=k ≈
(
k

N

) Seat N∑

S1=Seat 1

U
(
S1
)
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4 � Probability distribution for key 
parameters

Here we pursue the general approaches just outlined to get 
probability distributions for each model parameter. These 
distributions will underpin the simulation analysis in the 
next section.

4.1 � Distribution of ρ, (actual Covid‑19 cases/
confirmed cases)

The “reverse engineering” procedure depicted by eq. (4) 
generates estimates of the average daily number of new fatal 
US cases of Covid-19 from June 2020 to February 2021. To 
reach a total number of new cases, one needs divide new 
fatal cases by the fraction of infections that lead to death 
(the case fatality rate). That fraction is not precisely known. 
Baud et al. estimated in June 2020 that 0.7% of Covid-19 
infections in the US ended in death [34]. Improvements in 
treatment for Covid-19 are believed to have lowered the case 
fatality rate during 2020 by perhaps 20–33%, to about 0.5% 
[35]. Ioannidis classified the US among nations with a case 
fatality rate of 0.57% [36].

We estimate ρ on a weekly basis to avoid day-of-week 
variations in confirmed cases. For a point estimate of the 
ratio ρ in a given week, we first estimated total deaths that 
week using [37]) for each of the seven days. Then we multi-
plied that quantity by 167 to reach a point estimate of total 

cases, based on a case fatality rate of 0.6% (about the aver-
age of the estimates above). We approximated ρ as the ratio 
of total to estimated cases. We assumed (approximately) a 
normal distribution for ρ, treating the point estimate based 
on a 0.6% fatality rate as its median, the ρ − estimate based 
on a 0.7% rate as its 10th percentile, and the estimate based 
on 0.5% as the 90th percentile. Fig. 1 presents graphically 
the movement over time of the estimated 10th, 50th, and 
90th percentiles for ρ.

4.1.1 � Distribution of ˇ
(
ε������� ��������ε ef fect

)

Table 1 presents data about both confirmed Covid-19 
cases and estimated travel frequencies across several 
income ranges in Massachusetts, which can be processed 
in accordance with eq. (3). Somewhat surprisingly, the 
point estimate of β arising from the calculations is 0.86, 
which suggests that the “healthy traveler” effect is not 
all that large.

For further perspective about β,we use data from Eng-
land [40] about Covid-19 death rates as a function of the 
deprivation index used to classify small geographic areas. 
Doing so yields an estimate of β for England and Wales 
of about 0.75.

A reasonable model that incorporates these two esti-
mates and some further uncertainty could posit that β fol-
lows a beta distribution with parameters α = 28 and β = 7. 
This distribution has a mean of 0.8, a slightly higher 
mode, and a standard deviation of 0.066.

Fig. 1   Estimated distribution 
of ρ, the ratio of new actual US 
Covid-19 cases to confirmed 
cases, June 2020–February 
2021. Sources: References 
[34–37]
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4.2 � Distributions for ψNS, ψMS, and ψCS, contributors 
to the “filtering” effect of carrying Covid‑19 
on the likelihood of air travel

Assigning probability distributions to the “deterrence” 
quantities ψNS, ψMS, and ψCS is difficult, because no read-
ily-available data allow for direct estimates. One can, 
however, reasonably postulate that ψNS < ψMS< ψCS, and 
try to work with scant existing “clues” about the magni-
tudes of these parameters.

The quantity ψNS for carriers without symptoms would 
presumably be low. Such individuals could well decline to 
travel if they test positive for Covid-19, or have recently 
been close to others with known infections. But many 
US cases of Covid-19 are never confirmed, and people 
who do get tested may well come disproportionately from 
those with symptoms of Covid-19. For these reasons, it 
seems plausible to assign ψNS for carriers without symp-
toms a normal distribution with a low mean and mod-
est standard deviation. As approximate parameters for 
that distribution, we advance a mean of 0.3 and standard 
deviation of 0.05. (Recall that ψNS = 0.3 implies a 70% 
probability of going ahead with travel.)

Some potential travelers with mildly symptomatic 
Covid-19 will get themselves tested, and those with posi-
tive tests would not be expected to fly. But among poten-
tial passengers who are not tested and who have mild 
symptoms that are hard to distinguish from those of a 
common cold, a fraction of travelers will go ahead with 
their flights. We assign ψMS a normal distribution with 
mean 0.6 and a standard deviation .05.

One would expect that few individuals with severe/
critical Covid-19 would board US flights. But “few” 
is not the same as none. In late 2020, two people are 
known to have died of Covid-19 on US domestic flights. 
We assign ψCS a normal distribution with mean 0.9 and 

a standard deviation of 0.033 (also imposing an upper 
limit of one).

4.3 � Distribution of ω (drop in risk with distance)

As noted, the meta-analysis in [5] estimated that viral trans-
mission risk declines exponentially with greater distance 
from the contagious person. The paper’s point estimate was 
that risk fell by a factor of 2.02 (equivalently, risk was mul-
tiplied by 1/2.02) for each additional meter of separation, 
with a 95% confidence interval extending from a factor of 
1.08 to one of 3.76. This interval—from roughly half the 
point estimate to double it—is strongly suggestive of a log-
normal distribution. We chose such a distribution, and chose 
its parameters to match the three statistics above (1.08, 2.02, 
3.71) Given that ln(1/2.02) = −.703,

ln(1/1.08) = −.077, and ln(1/3.76) = −1.324, we assign 
the normally-distributed logarithm of the decay parameter ω 
a mean of −.703 and a standard deviation of .318. (The latter 
statistic is (1/1.96) times the average of 1.324–.703 = .621 
and .703–.077 = .626.) For those parameters, ω itself is 
assigned a mean of .521 and a standard deviation of .170.

But what of the distance d to which ω would be applied? 
In economy class in a typical Boeing 737 or Airbus 320 
jet, the seats are approximately 18 in. wide while the aisle 
width is about 30 in.. The seatbacks in consecutive rows are 
separated by about 31 in.. As noted, we tie viral transmission 
risk to grid distances between seats. On these aircraft, grid 
distances on these aircraft in inches from people within three 
rows of a contagious person in seat 16A are:

Seat
Row A B C D E F
13 93 111 129 159 177 195
14 62 80 98 128 146 164
15 31 49 67 97 115 133
16 0 18 36 66 84 102
17 31 49 67 97 115 133
18 62 80 98 128 146 164
19 93 111 129 159 177 195

Similar charts arise when the contagious passenger is in a 
B or C seat and, by symmetry, in the D, E, or F seats.

4.4 � The parameter λ (seatbacks as transmission 
barriers)

Reflecting considerable uncertainty about the benefits of seat 
backs, we assign λ--the probability that a row of seatbacks 
blocks viral transmissions to a preceding or following row 
of passengers--a normal distribution with a mean of 0.5 and 
a standard deviation of 0.1. Then 1 - λ is the failure rate of 
one row of seatbacks to prevent such transmission.

Table 1   Average annual airline trips and confirmed Covid-19 cases 
per capita by annual household income, estimates for commonwealth 
of Massachusetts

Sources: 1: Airlines for America [38], for US residents over 2016–17, 
2: Massachusetts Department of Public Health [39]

Median household income Average 
annual 
flights1

Average Covid-19 
positive rate (Through 
1/9/21)2

Below $25,000 0.8 0.066
$25,000-49,999 0.85 0.095
$50,000-74,999 1.65 0.070
$75,000-99,999 4.25 0.042
$100,000-149,999 3.15 0.053
$150,000 and Higher 5.5 0.028
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Passengers three or more rows from the contagious per-
son are separated from her by a minimum of 93 in. and three 
seatbacks. With the distributions we use for ω and λ,  trans-
mission risk is so attenuated under three-row separation 
that we treat it as a second-order effect. Thus, we effec-
tively adopt the two-row rule that, as noted earlier, has been 
advanced by the World Health Organization and the CDC.

4.5 � Distribution of pmasks(benefit of masks)

Some passengers on US domestic flights used cloth masks 
over the study period, while others wear surgical masks. 
(Powerful N95 or KN95 masks were not generally avail-
able during that period.) The meta-analysis in [5] estimates 
that wearing of cloth or surgical masks reduces by an esti-
mated 67% the chance that a viral infection is successfully 
transmitted. A study from China [41] about Covid-19 yields 
the estimate that, when everyone wears such masks, overall 
infection risk drops 79%. Another paper about viral infec-
tions [33] estimates that universal cloth-mask wearing would 
cut transmissions by 75% while surgical masks would cut 
transmission by 94% .

Giving by far the greatest weight to the meta-analysis, 
we approximate the risk multiplier pmasks as approximately 
normal with a mean of 0.3 (i.e., a 70% reduction) and a 
standard deviation of 0.075.

4.6 � The parameter τ0 (transmission risk per minute)

The estimation of τ0 − the transmission risk per minute of 
exposure zero distance from the contagious passenger and 
with no masks--is challenging. One might assume that τ0 

can vary from flight to flight, because a contagious pas-
senger who speaks and sneezes throughout the trip might 
cause more infections than another who sleeps all flight 
long. Here we rely on several research papers about actual 
in-flight transmissions of Covid-19 ([19–27]), the results of 
which are summarized in Table 2. While these papers all 
concern jet flights outside the United States, the flights had 
functioning HEPA air filters similar to those on US jets. As 
we discuss in the Appendix, we assign τ0 a beta distribution 
with parameters α = 1 and β = 520.

4.7 � Estimation of PASYM, PPRESYM, PMM, and PSC

We follow a different approach in estimating the parameters 
about the course of contagious Covid-19, namely, PASYM, 
PPRESYM, PMM, and PSC. Consistent with available litera-
ture [28–32], we treat current carriers of Covid-19 as hav-
ing become infected over the last seven days, and assume 
that about 30% of them are asymptomatic. Among the 70% 
infected in the last week who will develop symptoms, we 
use the estimate that those infected in the last two days (i.e, 
approximately 2/7 of the group) are pre-symptomatic, while 
the remaining 5/7 show symptoms of varying severity. Simi-
larly, we work with published estimates that approximately 
4/5 of symptomatic carriers will develop mild/moderate 
symptoms, while 1/5 will have severe/critical ones. For these 
reasons, we make the approximations:

PASYM ≈ 0.3 PPRESYM ≈ 0.7 ∗
(

2

7

)
= 0.2

PMM ≈ 0.7 ∗
(

5

7

)
∗ 0, 8 = 0.4 PSC ≈ 0.7 ∗

(
5

7

)
∗ 0.2 = 0.1

Table 2   Some details about 
ten jet flights on which some 
boarding passengers carried 
Covid-19 (Sources: References 
[19–27])

1 Based on initially-uninfected passengers within two rows of at least one contagious passenger
2 Infected passenger wore no mask, but most other passengers did
3 Journal article states that “at least four” of the thirteen passengers who tested positive for Covid-19 after 
the flight contracted the disease on board
4 Passengers wore extremely effective N95 masks; on-board infection is suspected to have occurred in lava-
tory
5 Passengers wore N95 masks; one on-board infection but seating location not reported

Routing Duration(Hours) Boarding passengers 
with infections.

% of Nearby passengers 
infected in flight1

Masks?

London-Hanoi 10.2 1 92% (11/12) No
Tel Aviv-Frankfurt 4.7 7 17% (2/12) No
Sydney-Perth 5.0 11 40% (8/20) No
Osaka-Okinawa 2.0 1 30% (7/23) Some2

Guangzhou-Toronto 15.1 2 0% Yes
Dubai-Auckland 15.0 2 50% (4/8) Yes
Dubai-Dublin 7.8. 93 40%   (4/10) Yes
Singapore-Hangzhou 5.0 15 2% (1/50) Yes
Milan-Seoul 11.0 6 3% (1/38) Yes4

Milan-Seoul 11.0 3 Unclear Yes5
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In the analysis, we worked with these point estimates of 
Covid-19 infection parameters, rather than with probability 
distributions. We did so in the belief that adding several 
more distributions to the modeling would do more to make 
the formulation unwieldy than to offer greater insight about 
Covid-19 transmission on airplanes.

5 � Results

(i)	 Individual Flights

Given the number of random variables in the expression 
for PN,X and their differing distributions, the distribution for 
PN,X does not take any familiar analytic form. It is neces-
sary to use simulation to investigate the behavior of PN,X 
and we did so, treating different random variables as inde-
pendent. In most respects, an independence assumption is 
highly plausible: the uncertainty about the “healthy traveler” 
parameter seems unrelated to uncertainty in the effectiveness 
of seatbacks.

We conducted 10,000 simulations for each month from 
June 2020 to February 2021, assuming an all-economy con-
figuration of the 737 or 320 aircraft with 29 rows and 174 
seats. We considered six possible occupancy levels for the 
seats:

•	 All seats full
•	 5/6 of seats full, with half the middle seats empty but all 

other seats occupied
•	 2/3 of seats full, including all window and aisle seats 

occupied but none in the middle
•	 Half of seats full, consisting of three in each row scat-

tered among the four window and aisle seats
•	 1/3 of seats full, consisting of two in each row, one on 

each side of the aisle in the window or aisle position
•	 1/6 of seats full, consisting of one window or one aisle 

seat in each row

Table 3 presents various percentiles for the probability 
that an uninfected passenger would contract Covid-19 during 
a two-hour flight on an “average” day over June 2020–Febru-
ary 2021. (i.e., one for which (N7 /N) was at the average for 
the period). The table reports on three possibilities: the flight 
was full, 2/3 full, or 1/3 full. In all of the columns, the distri-
bution for risk has high variability, with the 10th percentile 
about 1/7 of the median and the 90th percentile nearly four 
times the median. Such variability was unavoidable because 
several of the “input” distributions in the simulation had 
high coefficients of variation.

Table 4 presents mean and median risk at all six lev-
els of crowding that were considered. (Rather than desig-
nate the mean or the median of the simulation results as 
the point estimate for infection risk, we give equal promi-
nence to both.) The mean and the median risk estimates 
diverge somewhat, presumably because several distributions 
for the parameters had long right tails. But both the mean 
and median suggest a risk around 1 in 1000 of contract-
ing Covid-19 in flight on a full plane on an average day. 
The table also indicates that, as the flight becomes less full, 
infection risk drops more than proportionately. For example, 
the mean risk estimate on a 55% full flight is not 55% of that 
for a full flight, but instead 46% of it. If the flight is 55% full, 
then its expected number of contagious passengers is 55% as 
high as that for a full flight. But the uninfected passengers 
are on average further away from the contagious one (espe-
cially because the seat next to that traveler is empty). For 
that reason, risk declines not by 45% but by 54%.

Tables 5 and 6 elaborate on this last point by offering 
estimates of the probability of becoming infected during a 
two-hour flight given a contagious traveler is in seat 16A, 
as a function of the uninfected traveler’s seat in rows 14–18 
(and assuming mask usage). Under the “two row” approxi-
mation, passengers in other rows are assigned infection prob-
abilities of zero.

Fig. 2 shows that the contagious passenger infects more 
other travelers if she is in an aisle seat than in a middle seat, 
while the middle seat yields more infections than a window 
seat. However, the effect is not especially large.

Table 3   Estimated distribution for Covid-19 infection probability for 
randomly-chosen uninfected travelers on November 1, 2020, for two 
hour US domestic jet flights on Boeing 737 or Airbus 320, at three 
levels of seat occupancy

Full 2/3 Full 1/3 Full

10th Percentile 1 in 9050 1 in 14,900 1 in 39,700
25th Percentile 1 in 3350 1 in 5550 1 in 14,350
50th Percentile 1 in 1350 1 in 2200 1 in 5550
75th Percentile 1 in 650 1 in 1050 1 in 2600
90th Percentile 1 in 350 1 in 600 1 in 1450
Mean 1 in 900 1 in 1400 1 in 3500
Standard Deviation 1 in 850 1 in 1350 1 in 3150

Table 4   Mean and median estimates of Covid-19 infection probabil-
ity for two hour US domestic jet flights on Boeing 737 or Airbus 320 
on November 1, 2020, at six levels of seat occupancy

Seat occupancy Mean Median

100% 1 in 900 1 in 1350
83.33% 1 in 1100 1 in 1650
66.67% 1 in 1400 1 in 2200
50% 1 in 2150 1 in 3350
33.33% 1 in 3500 1 in 5550
16.67% 1 in 9950 1 in 16,700
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	 (ii)	 Flights over the Nine-Month Period

So far, we have considered the general question: 
if pCONTAG​ is the probability that each boarding passenger 
has contagious Covid-19 and N is the total number of pas-
sengers on the plane, what is the probability that an unin-
fected passenger will contract Covid-19 in flight? But we 
have not considered what proportions of actual passengers 
faced which specific (N, pCONTAG​) combinations. Here we 
try to address this issue by merging the existing “what if?” 

analysis with data about the ebbs and flows of the Covid-19 
pandemic over the nine months of interest, as well as actual 
seat occupancy rates on US jets during that period.

We are fortunate to have obtained data about the distri-
bution of seat occupancy by for US airlines month from 
June 2020 to February 2021, broken down by deciles. We 
can use these data in estimating overall infection risk if 
we make two assumptions (i) that average occupancy level 
within a decile is at the middle of that decile (e.g., 55% for 

Table 5   Estimated risk of contracting Covid-19 on two-hour US domestic jet flights on Boeing 737 or Airbus 320 for each seat position, given 
that the flight is full and a single contagious passenger is sitting in Seat 14A

Average Risk for 29 Passengers within Two Rows of Contagious One: 1 in 82
Average Risk for all 173 Uninfected Passengers (which is zero beyond Two Rows from Contagious One): 1 in 491

Table 6   Estimated risk of contracting Covid-19 on a two hour US domestic jet flights on Boeing 737 or Airbus 320 for each seat position, given 
that all of the middle seats on the flight are vacant and a single contagious passenger is sitting in Seat 14A

Average Risk for 19 Passengers within Two Rows of Contagious One: 1 in 86
Average Risk for all 115 Uninfected Passengers (which is Zero beyond Two Rows from Contagious One): 1 in 526
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the range 50%–60%) and (ii) the distribution of occupancy 
on 737 and 320 flights is about the same as the distribution 
over all US flights.

Table 7 offers seat-occupancy data for the month Novem-
ber 2020, along with a tabulation of infection risk for each 
occupancy range as a multiple of the risk for a full flight.

To move from this information to infection risk for travel-
ers, we work with eq. (2). Doing so properly reflects the points 
that a plane with 174 seats that is 80% full carries four times 
as many passengers as another such plane that is 20% full .

Table 8 presents mean and median estimates of infec-
tion risk by month for randomly-chosen travelers of 737 or 
320 jets. The risk estimates vary considerably over time, 
and are highest for January 2021 when rates of new Covid-
19 infections in the US were surging. Both the mean and 
median risk estimates are 1 in 2250 or higher for the full 
period. Not everyone would agree with Southwest Airlines 
that this level of risk is “virtually nonexistent.”

It is natural to consider how many US deaths resulted from 
Covid-19 infections contracted on airplanes. But estimating 
that number is extremely difficult. Moreover, a substantial 
fraction of the deaths ultimately caused by on-board Covid-
19 infections could befall people who were never on the plane.

One can make rudimentary calculations tied to the estimate 
that 1 in 2000 uninfected air travelers contracted Covid-19 on 
US domestic flights over June 2020 to February 2021. Given 
204 million passengers in total, the 1 in 2000 rate implies 
about 100,000 infections in total. If one believes that every 
1000 on-board infections ultimately led to one death, then the 
death toll would be 100. For one death per 500 on-board infec-
tions, the corresponding toll would be 200; for one death per 
100 such infections, the death toll would reach 1000. While 

Fig. 2   Probability of contracting 
Covid-19 on two hour domestic 
US jet flight on 11/1/20, based 
on type of seat of single conta-
gious passenger on fully-loaded 
Boeing 737 or Airbus 320
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Table 7   Some details about US domestic jet flights in November 
2020, related to the risk of getting infected with Covid-19 on board

Seat occu-
pancy range

Estimated % of 
seats filled

November 2020% 
of US flights

Infection risk 
relative to full 
plane

Mean Median

0’s 0.05 1.2 0.03 0.02
10’s 0.15 3.5 0.08 0.07
20’s 0.25 6.6 0.17 0.16
30’s 0.35 11.1 0.27 0.26
40’s 0.45 14.7 0.36 0.35
50’s 0.55 18.9 0.47 0.46
60’s 0.65 18.2 0.60 0.59
70’s 0.75 7.6 0.71 0.71
80’s 0.85 8.7 0.83 0.83
90’s 0.95 9.6 0.94 0.94
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such numbers fall far below the hundreds of thousands of US 
deaths in the pandemic, even 100 fatalities over a nine-month 
period compares unfavorably to the average of one passenger 
death every nine months on US flights over 2010–19.

6 � Some other assessments of in‑flight 
Covid‑19 transmission risk

As noted, two major studies about on-board transmission 
of Covid-19 on airplanes did not use data about actual pas-
sengers. Here we discuss them briefly.

The Aviation Public Health Initiative of the Harvard 
School of Public Health extensively studied the risk of 
Covid-19 transmission during air travel [42]. The study 
offered many good practical suggestions about flying 
during the pandemic, but only limited guidance about 
the magnitude of on-board infection risk. Its overall 
assessment was the risk is lower than that “in indoor 
restaurants or grocery stores,” but these were known to 
be especially hazardous venues during the pandemic. 
Moreover, HSPH’s assertion that on-board ventilation 
systems “effectively counter the proximity travelers will 
be subject to during flights.” was an overstatement given 
the evidence in Table 3.

The US Department of Defense [43] conducted an imagi-
native study about viral transmissions of disease on aircraft. 
It used mannequins wearing surgical masks to simulate 
coughing passengers and used aerosol tracers to see where 

the emitted particles went. However, the mannequins in the 
study faced forward and did not “speak” or move, while 
possible transmission via droplets was not considered. The 
researchers suggested that on-board infection risk was low 
but offered no numerical estimate.

7 � Final remarks

We readily acknowledge that this analysis is imperfect, but 
hope that its strengths push it to the positive side of the ledger. 
It seemed worthwhile to use various data sets to estimate the 
prevalence of contagious Covid-19 among Americans who 
boarded airplanes over June 2020 to February 2021 It seemed 
sensible to use peer-reviewed reports about Covid-19 trans-
mission on airplanes as guides to the likelihood that on-board-
infections will occur. And it seemed desirable to work with 
actual seat-occupancy data, so that the modeling could assess 
the experiences of typical passengers, and not just worst-case 
scenarios like full flights at the height of the pandemic.

The situation presumably changed with the widespread 
availability of vaccines starting in early 2021, but also with 
the sharp increase in contagiousness of Covid-19 with the 
arrival of the Delta and Omicron variants. Modeling like that 
presented here could help in assessing the changed situation, 
much as the general approach might help in connection with 
a future pandemic. And that pandemic might arise sooner 
than any of us would like.

Table 8   Mean and median 
estimates of risk that randomly-
chosen uninfected traveler 
contracts Covid-19 on board 
US Boeing 737 or Airbus 320, 
by month from June 2020 to 
February 2021

1 Based on passengers processed at US airports by Transportation Security Administration (TSA), which 
includes a very small proportion of international travelers. We treat the effect of international passengers 
on TSA counts as second-order
2 Arithmetic average of estimated risks for all uninfected passengers that month, taking into account the 
likelihood that a contagious traveler is on board the flight, the effectiveness of masks, the distribution of 
seat-occupancy levels, and the relative locations of contagious traveler and uninfected ones

Month Total US airline 
passengers1(Millions)

Mean on-board infection 
risk2

Median on-
board infection 
risk

June 2020 14.5 1 in 3250 1 in 5000
July 2020 20.7 1 in 3300 1 in 5050
August 2020 21.7 1 in 3950 1 in 6050
September 2020 21.5 1 in 3150 1 in 4850
October 2020 25.6 1 in 1750 1 in 2700
November 2020 25.5 1 in 1050 1 in 1600
December 2020 26.4 1 in 850 1 in 1300
January 2021 23.6 1 in 900 1 in 1400
February 2021 24.4 1 in 1650 1 in 2500
Total 204.0 1 in 1450 1 in 2250
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Appendix: Estimation of the parameter

For individual flights discussed in the literature, an estimate 
of  π0 can arise from data about flight duration, the num-
ber of contagious passengers, and the fraction of passen-
gers within two rows of contagious travelers who became 
infected in flight. Table 3 presents the particulars for ten 
flights during the Covid-19 pandemic that were discussed in 
peer-reviewed publications. These international flights are 
all those mentioned in the review paper [18] that provide 
information about where the contagious passenger(s) were 
seated, and which passengers within two rows of them are 
believed to have contracted Covid-19 during the flight

Using mid-range estimates for ω and λ,estimating π0 is 
most straightforward on flights on which no one wore masks. 
Yet the estimates arising from such flights exhibit large vari-
ation. On the five-hour Sydney-Perth flight, the π0−estimate 
is about .0015 per minute in the air. For the Tel Aviv-Frank-
furt flight on which seven infected passengers were seated 
together, the corresponding estimate is about .0005. Yet the 
92% rate of nearby secondary infections on Vietnam Flight 
54 implies a π0 -value of .005 if not higher. So does the 30% 
rate on the short flight from Osaka to Okinawa.

Flights on which passengers wore masks are less helpful 
in estimating π0, which assumes the absence of masks. The 
scarcity of infections on the Guangzhou-Toronto and Italy-
Korea flights offers little reliable information about π0. On 
the first of these flights, there were no transmissions, but the 
two contagious passengers and all other passengers wore 
masks. On the other two flights, passengers wore powerful 
N95 masks and one on-board infection occurred. Thus, even 
if π0 were high, mask usage could well explain the paucity 
of transmission on these flights.

Still, we can try to extract some information about π0  
from flights on which masks were worn. If masks are treated 
as 70% effective, then a crude rule would assume that the 
observed number of in-flight infections was about 30% as 
high it would have been without masks. Applying this prin-
ciple for Singapore-Hangzhou yields π0 ≈ .0001 . Reluc-
tantly applying it to Guangzhou-Toronto would yield π0 
≈ 0 . On the Dubai-Auckland flight, 50% of the passengers 
near a contagious traveler contacted secondary infections 
despite the use of masks. Yielding .002 is a lower bound 
for π0  based on that flight. On the flight to Ireland, 40% 
of travelers seated near infected passengers got secondary 
infections during the seven-hour flight Here the lower bound 
for π0  is .001. These eight π0 -estimates arising from the 
published literature—namely 0, .0001, .001+ .0005, .0015, 
.002+, .005+ and .005 + −--are individually imprecise, and 
in any case constitute a small sample. If we treat .001+, 
.002+ and .005+ as, respectively, .001 and .002 and .005 we 
can assign π0  a beta distribution with parameters α = 1 and 

β = 520. This beta distribution matches the mean and stand-
ard deviation of the eight numbers above (.0019 and .0019).

Glossary of Variables

P	� Probability that a randomly chosen uninfected-
traveler among those under study contracts 
COVID- 19 in flight

PN,X	� P(randomly chosen uninfected passenger 
boards a flight with N, X of whom board harbor-
ing Covid-19)

QN,X	� Conditional probability that a random uninfected 
passenger contracts COVID-19  on board, given  
N and X

X	� Number of contagious passengers on board a flight 
of interest

N	� Total Number of passengers on the flight
M	� Number of non-stop US flights over an observa-

tion period on a 737/A320 aircraft (174 seats)
qZ	� Fraction of flights of interest with Z passengers on 

board
QZ	� Probability a random air traveler over the period of 

interest boards a flight with a total of Z passengers 
(i.e., P(N = Z))

PCONTAG​	� Probability that a randomly chosen passenger who 
boards a flight carries COVID-19

γ	� Fraction of potential US air travelers who carry 
COVID-19

C7	� Number of confirmed cases of COVID-19 in the 
US over the past 7 days

POP	� Population of the US
ρ	� multiplier to adjust for the extent to which con-

firmed COVID-19 cases in the US underestimate 
the actual number of cases

β	� “healthy passenger” factor to reflect the fact that 
US air travelers come disproportionately from 
communities where COVID-19 is less common 
than in the population at large

η	� Fraction of COVID-19 cases that end in death
ND(t)	� Number of new US COVID-19 cases on day t that 

eventually ended in death
D(t + j)	� Recorded number of US COVID-19 deaths on day 

t + j
RCV	� Per capita rate of confirmed Covid-19 infections 

in the overall population
Ri	� Per capita rate of confirmed Covid-19 infections 

in communities in median income range i
Ii	� Fraction of citizens living in communities in 

median income range i  who
n	� Number of median income ranges
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Ti	� Annual air trips per capita in communities in 
median income range i

RCVT	� Probability of having COVID-19 adjusted for 
communities in income ranges with dispropor-
tionate shares of air travelers

α	� Generic Probability that a potential air traveler not 
suffering from COVID-19 would fly

f	� Overall probability that someone infected with 
COVID-19 who would otherwise fly will not do 
so

PASYM	� Probability that someone contagious with COVID 
is asymptomatic

PPRESYM	� Probability that someone infected with COVID 
is pre-symptomatic at a random time while 
contagious

PMM	� Probability that someone infected with COVID-19 
has mild/moderate symptoms at a random time 
while contagious

PSC	� Probability that someone infected with COVID-
19 has severe/critical symptoms at a random time 
while contagious

ΨNS	� Conditional probability that an asymptomatic/
pre-symptomatic COVID-19 carrier who would 
otherwise fly will not do so

ΨMS	� Conditional probability that a COVID-19 carrier 
with mild/moderate symptoms who would other-
wise fly will not do so

ΨCS	� Conditional probability that a COVID-19 carrier 
with severe/critical symptoms who would other-
wise fly will not do so

VS1,S2	� Risk per minute that a passenger from Seat S2 
would contract COVID-19 from a passenger in 
Seat S1

d	� Grid distance between Seat S1 and Seat S2
ω	� Rate of exponential decay of transmission risk 

with distance, assuming no barriers
λ	� Probability that an individual seatback blocks 

transmission from a contagious passenger
π0	� Level of infection risk per minute at distance zero 

from contagious Covid-19 passenger
R	� Number of rows between Seat S1 and Seat S2
pmasks	� Probability that universal masking blocks a trans-

mission of COVID-19 from an infected traveler to 
an uninfected one

ZS1,S2	� Probability that COVID-19 is transmitted during 
the flight from a contagious passenger in Seat S1 
to an uninfected passenger in Seat S2

T	� Duration of the flight
U(S1)	� Probability that a randomly-chosen uninfected 

passenger on a flight contracts COVID-19 from 
the passenger in Seat S1
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