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Abstract: We previously demonstrated that the injection of pregnant wild-type female mice (carrying
enhanced green fluorescent protein (EGFP)-expressing transgenic fetuses) at embryonic day (E)
12.5 with an all-in-one plasmid conferring the expression of both Cas9 and guide RNA (targeted
to the EGFP cDNA) complexed with the gene delivery reagent, resulted in some fetuses exhibiting
reduced fluorescence in their hearts and gene insertion/deletion (indel) mutations. In this study,
we examined whether the endogenous myosin heavy-chain α (MHCα) gene can be successfully
genome-edited by this method in the absence of a gene delivery reagent with potential fetal toxicity.
For this, we employed a hydrodynamics-based gene delivery (HGD) system with the aim of ensuring
fetal gene delivery rates and biosafety. We also investigated which embryonic stages are suitable for
the induction of genome editing in fetuses. Of the three pregnant females injected at E9.5, one had
mutated fetuses: all examined fetuses carried exogenous plasmid DNA, and four of 10 (40%) exhibited
mosaic indel mutations in MHCα. Gene delivery to fetuses at E12.5 and E15.5 did not cause mutations.
Thus, the HGD-based transplacental delivery of a genome editing vector may be able to manipulate
the fetal genomes of E9.5 fetuses.

Keywords: cardiomyocytes; CRISPR/Cas9; fetal gene therapy; fetuses; genome editing;
hydrodynamics-based gene delivery (HGD) system; myosin heavy-chain α; transplacental gene
delivery (TPGD); TPGD for acquiring genome-edited fetuses (TPGD-GEF)

1. Introduction

In murine fetuses at mid-gestational stages (from embryonic day (E) 9.5 to E12.5; the day the
vaginal plugs are found is designated as E0), there are many organ anlages, and organogenesis occurs
actively [1–6]. To explore the molecular mechanism involved in early organogenesis and to generate
animal models with defects in organogenesis, gene delivery of functional nucleic acids (NAs), such as
plasmid DNA, RNA interference (as exemplified by siRNA), and genome editing components, to these
fetuses is considered to be an important strategy [7]. Gene delivery targeted to mid-gestational fetuses
is largely divided into two routes: one is in utero gene delivery, based on an injection of NAs into fetuses
exposed externally with subsequent electroporation at the injected site, and the other is transplacental
delivery of NAs complexed with DNA delivery reagents into pregnant females [8]. Since the former is
performed by a local injection of NAs under a dissecting microscope, sites suitable for transfection
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appear to be very limited. Typically, neural stem cells located at the basal layer of the zona ventricle
of the fetal brain have been successfully transfected [9]. In contrast, the latter is based on systemic
transfection of fetal cells by NAs delivered via the blood stream after passing through the transplacental
barrier; in this case, the NAs are complexed with DNA delivery reagents and administered through a
tail vein injection [10].

Transplacental gene delivery, termed “TPGD” by our group [11], was first developed by
Tsukamoto et al. [12], who found that transfection of early post-implantation embryos (E6.5) to
mid-gestational fetuses (E12.5) is possible when plasmid DNA complexed with a transfection-promoting
reagent is intravenously injected into pregnant female mice at E6.5 to E15.5. Since then,
several researchers have reported that this system works well, although many of the results reported
subsequently are different from those reported by Tsukamoto et al. [12]. For instance, Kikuchi et al. [13]
demonstrated that TPGD performed at E12.5 resulted in the most efficient gene delivery to fetuses
and that embryonic heart tissue is the most amenable to transfection by this method. Wu et al. [14]
administered siRNA for the sex-determining region Y (Sry) gene to the pregnant female mice at E10.5
and found that the male-to-female sex reversal occurred in the treated female gonad. All of these
experiments are based on the transient expression of a plasmid-based transgene (or oligonucleotide),
thereby leading to the production of fetuses whose chromosomal structure remains intact. However,
with the recent advent of gene editing technology, as exemplified by the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 system, the transient expression of a plasmid carrying
genome editing component is sufficient to cause mutations in target genes [15–18]. We intravenously
introduced an all-in-one plasmid (called pCGSap1-EGFP), enabling the potential expression of both
Cas9 and guide RNA (gRNA) targeted to enhanced green fluorescent protein (EGFP) cDNA in pregnant
wild-type mice (who had been successfully mated with EGFP-expressing male transgenic mice) at E12.5.
Molecular analysis of hearts showing reduced levels of EGFP revealed the presence of insertion/deletion
(indel) mutations at the target locus (3/24 fetuses tested), although normal cells were also present [11].
These findings suggested that TPGD-based genome editing is functional in mid-gestational fetuses.
We thus termed this technology “TPGD for acquiring genome-edited fetuses (TPGD-GEF)” [11].

In the case of TPGD using naked NAs, gene transfer to the fetus often fails, probably due to the
presence of the blood-placental barrier (BPB) [19]. To ensure fetal gene delivery, many researchers have
employed gene delivery reagents such as lipids, liposomes, and polyethylenimines (PEIs), which can
all protect DNA from degradation, enable the DNA to pass through the BPB smoothly, and increase
the transfection efficiency in fetal cells [10]. However, these gene delivery reagents are often toxic to
fetuses and sometimes cause fetal malformation [20–23]. Considering the safety of the fetus, there is a
need to develop TPGD without the use of such reagents.

Previously, we used TPGD-GEF to target EGFP cDNA (introduced exogenously into a mouse
genome) using the lipid-based gene delivery reagent FuGENE6 (Promega KK, Tokyo, Japan) [11].
At this time, we had two questions: the first was whether it was possible to disrupt an endogenous gene
by this technology, and the second was whether it was possible to perform TPGD-GEF in the absence of a
gene delivery reagent, such as FuGENF6. In this study, we first aimed to disrupt an endogenous murine
cardiac myosin heavy-chain α (MHCα) gene [24–26] using this technology. Mutations in the MHCα
gene cause hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in humans [27].
Particularly, HCM is the leading cause of sudden death in young adults [28]. If it is possible to produce
mice with mutated MHCα via TPGD-GEF, they will be useful models for developing therapeutic
strategies for patients with HCM and DCM. We next employed a hydrodynamics-based gene delivery
(HGD) system as the gene delivery reagent-free TPGD. HGD was developed to transfect cells of internal
organs (especially hepatocytes) in vivo by administering a large amount of plasmid DNA-containing
solution (> 2.5 mL per adult mouse) within a short period [29,30]. For HGD-based gene delivery, naked
DNA is frequently used [29,30]; however, recently plasmid DNA dissolved in a TransIT-EE (Enhanced
Expression) Hydrodynamic Delivery Solution (Takara Bio Inc., Kusatsu, Shiga, Japan; hereinafter
referred to as TransIT-EE) has been often employed for in vivo gene delivery, including employment by
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our group [31,32]. TransIT-EE is a polyamine-based solution and no other gene delivery reagents are
included. To our knowledge, the HGD-based delivery of genome editing components using TPGD has
not yet been reported. Thus, hereinafter we term this technology (TPGD-GEF combined with HGD)
“HGD-based TPGD-GEF”. In this study, we performed proof-of principle experiments to examine
whether HGD-based TPGD-GEF enables the manipulation of fetal genomes.

2. Materials and Methods

2.1. Mice Used

B6C3F1 (a hybrid between C57BL/6N and C3H/HeN) female mice (7-weeks old) were purchased
from Japan SLC Inc. (Hamamatsu, Shizuoka, Japan) and served as recipients that were subjected to
HGD-based TPGD-GEF. To obtain pregnant females, B6C3F1 female mice were naturally mated to
C57BL/6 male mice (8–15 weeks old; purchased from Japan SLC Inc.). For all matings, 12:00 on the day
the vaginal plugs were observed was designated as E0.5. All mice were maintained on a 12 h light/dark
schedule (lights on from 07:00 to 19:00) and were allowed food and water ad libitum.

All animal experiments were performed at the National Defense Medical College (Tokorozawa,
Saitama, Japan) in accordance with the guidelines of the National Defense Medical College Committee
on Recombinant DNA Security, and approved by the Care and Use of Laboratory Animals (permission
no. 16008; valid from 9 August 2016, to 31 March 2019, and no. 19007; valid from 23 July 2019,
to 31 March 2020). All efforts were made to reduce the number of animals used and to minimize
their suffering.

2.2. Construction of All-In-One Plasmid pCGSap1-MHCα Used for HGD-Based TPGD-GEF

Two 25-mer oligonucleotides (oligos) (E-oligo-S/E-oligo-AS; shown in Table 1) targeting the upper
portion of MHCα gene (Gene ID in the National Center for Biotechnology Information: 17888) were
synthesized and subjected to annealing at 95 ◦C for 5 min followed by incubation at room temperature
(~24 ◦C) for 30 min. The annealed oligo was then cloned into the Sap I site of the pCGSap1 vector
(upper portion of Figure 1A) [33] to create pCGSap1-MHCα. The resultant plasmid should confer
simultaneous expression of the humanized Cas9 gene under the chicken β-actin-based promoter
(CAG) and gRNA (targeted to MHCα) under the U6 promoter, upon transfection. The constructed
pCGSap1-MHCα was subjected to DNA sequencing to confirm that the introduced oligo had been
correctly inserted into pCGSap1 (lower portion of Figure 1A).

2.3. HGD-Based TPGD-GEF and Isolation of Fetal Tissues

For HGD-based TPGD-GEF, we employed HGD as previously reported [31,32,34]. In brief,
mice were injected with a 20 µg of plasmid DNA (pCGSap1-MHCα) containing TransIT-EE (one-tenth
of the weight/volume (in mL) per mouse; for example, 3 mL/30 g of a mouse) using a syringe (3 mL
Luer lock type; Nipro, Inc., Osaka, Japan) fitted with a 30-gauge needle (Dentronics Co., Ltd., Tokyo,
Japan). Injections were performed at a constant injection speed via the tail vein and completed within
10 seconds by the same researcher in order to avoid artefactual effects in each experiment. Pregnant
B6C3F1 females at E9.5, E12.5, or E15.5 of gestation were subjected to HGD-based TPGD-GEF. Control
fetuses were obtained from B6C3F1 females receiving intravenous injection of TransIT-EE solution
alone at E9.5 of gestation (mock injection).

Prior to the injection of the DNA-containing solutions, mice were subjected to sufficient
anesthesia by intraperitoneal (IP) injection of three combined anesthetics (medetomidine (0.75 mg/kg;
Nippon Zenyaku Kogyo Co. Ltd., Koriyama, Fukushima, Japan), midazolam (4 mg/kg; Sandoz K.K.,
Tokyo, Japan), and butorphanol (5 mg/kg; Meiji Seika Pharma Co., Ltd., Tokyo, Japan). After the
intravenous injection, the anesthetized mice were recovered by a subcutaneous injection of atipamezole
(3.75 mg/kg; Nippon Zenyaku Kogyo Co. Ltd.), a medetomidine antagonist, and then maintained on
an electric plate warmer for recovery from anesthesia.
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Figure 1. Plasmid used for hydrodynamics-based gene delivery (HGD)-based transplacental gene
delivery for acquiring genome-edited fetuses (TPGD-GEF), and a flowchart for experiments using
HGD-based TPGD-GEF. (A). Structure of pCGSap1 carrying a Cas9 expression unit (comprising CAG,
the second intron of the rabbit β-globin gene, the humanized Cas9 (hCas9) gene, and the poly(A) site of
the rabbit β-globin gene) and a guide RNA (gRNA) expression unit (comprising U6, multiple sites
into which chemically synthesized gRNA can be inserted, and a poly(A) site). As described in the
Materials and Methods section, oligos targeting MHCα exon 1 were synthesized and inserted into
the Sap I site of pCGSap1 to create pCGSap1-MHCα. The fidelity of the resultant pCGSap1-MHCα
was confirmed by DNA sequencing using the Sap1-2S primer. The results of sequencing are shown
at the bottom of A. The underlined sequence corresponds to the sequence of the gRNA targeting
the MHCα gene. Nucleotides (shown in red and green) at both the 5′ and 3′ ends of the gRNA are
those recognized by Sap I. The position of primers (Sap1-2S and Sap1-RV) used for identification of
pCGSap1-MHCα are shown above the sequences. Furthermore, primers (MHC60-1S, -2S, -RV, and 2RV)
used for amplification of exon 1 of MHCα are shown below the sequences. CAG, chicken β-actin based
promoter; Ampr, ampicillin resistance gene; U6, human U6 promoter. (B). Experimental flowchart for
HGD-based TPGD-GEF. First, B6C3F1 females were mated to C57BL/6 male mice. On the day when
females were confirmed to have copulatory plugs in their vaginas, 12:00 was defined as E (embryonic
day) 0.5 of pregnancy. On E9.5, E12.5 or E15.5 of pregnancy, a TransIT-EE-based solution containing
pCGSap1-MHCα was intravenously administered to the pregnant females. Two days after HGD,
fetuses were dissected into fetal heart and the other parts designated as “whole body”. These samples
were then subjected to molecular biological analyses for detection of pCGSap1-MHCα and mutations at
the MHCα locus. WT, wild-type.
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Table 1. Nucleotide sequences of oligonucleotides (oligos) used in this study.

Oligo Type Name of Oligo Sequence (5’–3’)

crRNA E-oligo-S 1 ACC GCA GAA TGA CGG ACG CCC AGA G
crRNA E-oligo-AS 1 AAA CTC TGG GCG TCC GTC ATT CTG C
Primer Sap1-2S 2 TAC AAG GCT GTT AGA GAG ATA
Primer Sap1-RV 2 TCT TAT GGA GAT CCC TCG ACC
Primer mEx4-S 3 GCA AAT GTG GAT GCT GGG AAC
Primer mEx4-RV 3 ACA GTT TTA ATG GCC ATC TGG
Primer MHC60-1S 4 GAG AGC CAT AGG CTA CGG TG
Primer MHC60-1RV 4 CTG TCT TGC CAC CAT TGC AC
Primer MHC60-2S 5 AGG GAA GTG GTG GTG TAG GA
Primer MHC60-2RV 5 ATG TCA AAG GGC CGT GTC TG
Primer Fyn-S 6 GCA AAT GCA GCC ATA TTG GGC
Primer Fyn-RV 6 TCT TGG AGC CAG GGG TAA TGA
Primer RP24-S 7 CCG CAT TGG CAT GGT AGT ACC
Primer RP24-RV 7 TAG AAT TCG GTC CAA CTG CAA

1 These oligos were used for synthesis of guide RNA (gRNA) targeting the myosin heavy-chainα (MHCα) gene. 2 This
primer set was expected to yield 435-bp products from the pCGSap1-MHCα plasmid (see Figure 1A). 3 This primer
set was expected to produce 390-bp fragments from the murine endogenous α-1,3-galactosyltransferase (α-GalT)
sequence. 4 This primer set was expected to produce 363-bp fragments from the MHCα gene. MHC60-1S was also
used for sequencing. 5 This primer set was expected to produce 206-bp fragments from MHCα by nested PCR.
MHC60-2S was also used for sequencing. 6 This primer set was used for PCR for off-target analysis. It was expected
to produce 401-bp fragments from the murine Fyn sequence, located on chromosome 10. Fyn-S was also used for
sequencing. 7 This primer set was used for PCR for off-target analysis. It was expected to produce 590-bp fragments
from the murine DNA sequence from clone RP24-296K22 on chromosome 14. RP24-S was also used for sequencing.

Two days after the injection, the female mice were euthanized, and their fetuses were isolated.
The fetuses were separated from the yolk sacs and the hearts were dissected under a dissecting
stereomicroscope (SMZ800; Nikon Co., Tokyo, Japan) and transferred to 1.5-mL tubes (#3810X;
Eppendorf AG, Hamburg, Germany). The other fetal tissues, which are referred to hereinafter as
“whole body”, were also transferred to tubes for genomic DNA isolation.

Genomic DNA was extracted by adding 600 µL of lysis buffer (0.06 mg/mL of proteinase K,
0.2 mg/mL of Pronase E, 10 mM Tris–HCl (pH 8.0), 100 mM NaCl, 10 mM EDTA (pH 8.0), 0.5% SDS) to
the fetal tissue-containing tubes and then was subsequently incubated at 37 ◦C for 2 days with gentle
shaking, followed by extraction with 100 µL saturated phenol [35]. The supernatant was precipitated
with isopropanol, and the precipitated DNA was then dissolved in 100 µL of sterile water. The extracted
genomic DNA was stored at 4 ◦C.

2.4. Molecular Biological Analysis Using PCR, Sub-Cloning, and Direct Sequencing

The amplification reactions by PCR were performed in a total volume of 20 µL containing 10 mM
Tris–HCl (pH 8.3); 50 mM KCl; 1.5 mM MgCl2; 0.25 mM each of dATP, dCTP, dGTP, and dTTP;
1 mM primers; ~ 5 ng of genomic DNA; 0.5 units of Taq polymerase (#R001A; Takara Bio Inc.) with
each of the following primer sets (Table 1): (i) the Sap1-2S/Sap1-RV primer set was expected to yield
435-bp amplification products from the pCGSap1-MHCα plasmid, and was used for detection of the
pCGSap1-MHCα transgene (Figure 1A); (ii) the mEx4-S/mEx4-RV primer set was expected to yield
390-bp products, and was used for the detection of the endogenous mouse α-1,3-galactosyltransferase
gene (GGTA1) as a reference [11]; (iii) the MHC60-1S/MHC60-1RV primer set (Table 1; Figure 1A) was
expected to yield 363-bp products, and was used for amplification of part of the endogenous MHCα
gene (exon 1), spanning a region recognized by gRNA. In some cases, the MHC60-2S/MHC60-2RV
primer set (Table 1; Figure 1A) was used for the nested PCR. This PCR was expected to generate
206-bp products.

Reactions of PCR were performed in an Applied Biosystems Veriti Thermal Cycler, Thermo Fisher
Scientific K.K., Tokyo, Japan, with the following cycling conditions: 95 ◦C for 4 min followed by 95 ◦C
for 30 s, 60 ◦C (65 ◦C in the case of PCR using the Sap1-2S/Sap1-RV primer set) for 30 s, 72 ◦C for 30 s



Cells 2020, 9, 1744 6 of 14

for 35 cycles, and 72 ◦C for 4 min. For the negative controls, ~ 5 ng of genomic DNA from B6C3F1 fetal
samples from mock-injected mice were used. Five nanograms of plasmid DNA (pCGSap1-MHCα)
was concomitantly subjected to PCR as a positive control. For nested PCR, 2 µL of the first-round
PCR product was subjected to second-round PCR in a 20 µL volume. The reaction components and
their concentrations were the same as for the first-round PCR. Four microliters of each of the resulting
PCR products was separated on a 2% agarose gel and stained with ethidium bromide (EtBr) for
DNA visualization.

Direct DNA sequencing was performed by Eurofins Genomics (Eurofins Genomics K.K., Tokyo,
Japan) using the purified PCR products and MHC60-2S primer (Table 1; Figure 1A). Some of the PCR
products that, upon direct sequencing, were found to have overlapping sequences, were sub-cloned
into the TA cloning vector pCR2.1 (Invitrogen Co., Carlsbad, CA, USA). After selection via blue-white
screening, sequencing of the plasmid DNA isolated from the white colonies was conducted.

2.5. Off-Target Analysis

Potential off-target sites were identified based on Cas-OFFinder program outputs (CRISPR RGEN
Tools, Hanyang University, Korea, http://www.rgenome.net/cas-offinder/). From candidates with the
highest scores, two genes were selected. In order to amplify these genes, genomic DNA (~0.5 ng)
derived from fetus #a-1, -3, -4, and -7, all of which had been identified as having indel mutations,
was subjected to PCR using different primer sets (Table 1) in a reaction volume of 20 µL, and employing
the same PCR conditions described above. After purification of the resulting products, these samples
were subjected to direct DNA sequencing using each specific sense-stand primer used for PCR.

3. Results

3.1. Timing of HGD-Based TPGD-GEF

In our previous study, based on the usual (non-HGD-based) method, we introduced plasmid
DNA (pCGSap1-EGFP) complexed with FuGENE6 into the tail vein of pregnant B6C3F1 mice (which
had been mated to a transgenic male) at E12.5. In this case, the method used for the DNA injection
was based on HGD using pregnant B6C3F1 mice (which had been mated to wild-type C57BL/6 male
mice) to target an endogenous gene (MHCα). Furthermore, instead of using FuGENE6, we employed
TransIT-EE, which has been formulated as being adapted to HGD. To identify which embryonic stages
were amenable to HGD-based TPGD-GEF, injections were performed on E9.5, E12.5, or E15.5.

A total of three females were used for each stage in the present study. Two days after HGD,
fetuses were dissected and the fetal heart and other tissues (whole body) were separated from each other
under a dissecting microscope, since, in our previous study, preferential expression of the introduced
transgenes (coding for lacZ (β-galactosidase), with expression driven by the CAG promoter) was noted
in the fetal hearts [13]. PCR-based genotyping of the dissected hearts using Sap1-2S/Sap1-RV primers
(Table 1) revealed that of the 96 fetuses isolated from the nine pregnant females, 10 (10.4%) were found
to have the pCGSap1-MHCα vector (Figure 2; Table S1; Figure S1A). These samples (termed #a-1 to -10)
were all derived from female #A, who had been subjected to HGD at E9.5. However, there were no
transgenic (Tg) fetuses from females #B and #C, who had been similarly injected on E9.5 (Figure 2;
Table S1). Furthermore, no Tg fetuses were obtained from the pregnant females (three tested for
each group) when HGD was performed on E12.5 and E15.5 (Figure 2; Table S1). Notably, the whole
bodies in the same samples (#a-1 to -10) had the transgene in their genomes (Figure S1B). This finding
suggested that the HGD-based TPGD-GEF on E9.5 enables the delivery of a transgene to all the cells in
an animal’s body.

http://www.rgenome.net/cas-offinder/
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Figure 2. Summary of data on fetuses obtained after hydrodynamics-based gene delivery (HGD)-based
transplacental gene delivery for acquiring genome-edited fetuses (TPGD-GEF) at E9.5, E12.5, and E15.5.
Blue, green, and orange in the pie chart indicate the data obtained after HGD-based TPGD-GEF at E9.5,
E12.5, and E15.5, respectively. A total of 96 fetuses were collected from the experiments and 10% of
these fetuses were identified as having the plasmid DNA introduced. Finally, 4% of fetuses obtained
exhibited successful genome editing at a target locus, although the mode was mosaic mutations.
Notably, fetuses with transgenes and the genome-edited MHCα gene were all derived from HGD-based
TPGD-GEF at E9.5.

3.2. Analysis of HGD-Based TPGD-GEF

We next performed direct DNA sequencing of PCR-amplified products spanning a region (exon 1
of MHCα gene) containing the gRNA-binding target sequence using an MHC60-1S/MHC60-1RV
primer set (Figure 1A; Table 1). The samples subjected to sequencing were those of the fetal cardiac
samples (including #a-1 to -10 samples that had been judged positive for the presence of the transgene)
as well as those (including #b-1 to -14, #c-1 to -8, #d-1 to -11, #e-1 to -11, #f-1 to -9, #g-1 to -12,
#h-1 to -4, and #i-1 to -17) that were judged negative for the presence of the transgene (Figure 2;
Table S1). Direct DNA sequencing demonstrated that of the 10 Tg samples examined, four (40%) had
an overlapping electrophoretogram just upstream of the protospacer adjacent motif (PAM), suggesting
a mixture of sequences derived from both genome-edited and unedited cardiac cells, which has been
referred to as “mosaic” mutations (Figure 2; Figure 3A; Table S1). The other six Tg samples remained
unaltered (Figure 2; Table S1). Non-Tg fetal samples had no MHCα indel mutations (Figure 2; Table S1).
We also checked whether mutations involving the MHCα locus in samples #a-1, -3, -4, and -7, which had
overlapping electrophoretograms, were detectable in the whole body samples. As shown in Figure 3B,
similar patterns of overlapping electrophoretograms were also seen in these whole body samples.
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Figure 3. Sequence analysis of PCR products (corresponding to the endogenous MHCα gene exon 1)
derived from HGD-based TPGD-GEF-treated fetuses. (A) Direct sequencing of PCR products obtained
from fetal hearts (WT and #a-1, -3, -4, and -7). In a) control heart, the sequence enclosed by a
quadrant filled with blue (corresponding to the target sequence recognized by gRNA targeting MHCα
sequence) remained unaltered. By contrast, in b) #a-1, c) #a-3, d) #a-4, and e) #a-7, overlapping
electrophoretograms (indicated by arrow) are notable immediately upstream of the PAM, indicating
the presence of genome-edited and unedited sequences. The PAM (TGG) is shown as a quadrant
filled with red. WT, wild-type. (B) Direct sequencing of PCR products obtained from murine fetal
whole bodies (fetal portion except for heart) (WT and #a-1, -3, -4, and -7). There is a similar pattern of
electrophoretograms as shown in A.

To examine the results of the DNA sequence analysis shown in Figure 3 in more detail, the PCR
products of fetal cardiac samples #a-1, -3, -4, and -7 were sub-cloned into a pTA cloning vector.
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After selection via blue–white colony screening, DNA sequencing of the plasmids isolated from the
white colonies using a primer MHC60-1S (in some cases, MHC60-2S) demonstrated that of the 12
#a-1-derived clones examined, three clones (25%) had a 1-bp (G) deletion between the third and first
nucleotides upstream of the PAM; two clones (17%) had a 2-bp (AG or GA) deletion adjacent to the
PAM, or between the fourth and first nucleotides upstream of the PAM; one clone (8%) had a 1-bp
(G to C) replacement at the second nucleotide flanking the PAM (Table S2; Figure S2A-a). Six of the 12
clones (50%) examined had a normal sequence (Table S2). Sequencing of PCR products derived from
the whole body sample of #a-1 also demonstrated the presence of 1-bp (G) deletion between the third
and first nucleotides upstream of the PAM with an efficiency of 20% (2/10) (Table S2; Figure S2B-a).
In the case of sample #a-3, of the eight sub-clones examined, two (25%) had a 2-bp (AG or GA) deletion
adjacent to the PAM, or between the fourth and first nucleotides upstream of the PAM, and one (13%)
had a 1-bp (G to C) replacement of the second nucleotide flanking the PAM (Table S2; Figure S2A-b).
Five of the eight clones (63%) examined had a normal sequence (Table S2). As for the whole body
sample, 11% (1/9) of the sub-clones had a 2-bp (AG or GA) deletion immediately next to the PAM,
and 11% (1/9) had a 1-bp (G to C) replacement involving the second nucleotides adjacent to the PAM
(Table S2; Figure S2B-b). These results suggested that similar modes of mutation at the target locus
occur in both the fetal heart and the whole body tissues. A similar result was also obtained for the
other sub-clones derived from samples #a-4 and #a-7 (Table S2; Figure S2).

Notably, among the transgene-positive samples (#a-1 to -10; Figure 2; Table S1), the sequences
of the target MHCα genomic DNA from samples #a-2, -5, -6, and -8 to -10 were normal (Figure 2;
Table S1). These results suggested that there might have been no expression of Cas9 or that of the
gRNA targeted to MHCα genomic DNA in these samples. Alternatively, expression might have been
weak, or exhibited low frequency of “indel” detection, which might have contributed to the generation
of extremely small numbers of genome-edited cells.

3.3. Off-Target Effects

Off-target effects are a serious problem when the CRISPR/Cas9 system is applied to HGD-based
TPGD-GEF. We checked possible sites amenable to Cas9 endonuclease-mediated DNA cleavage using
a Cas-OFFinder program (http://www.rgenome.net/cas-offinder/). We identified two candidate genes
(Figure S3). We prepared each primer set to amplify a target site by PCR, and the resulting PCR
products were subjected to direct sequencing. We used four fetal cardiac samples (#a-1, -3, -4, and -7),
all of which had been judged to show genome editing (Figure 3; Table S2). Direct DNA sequencing
demonstrated that, in all of these samples, no obvious indels were noted for each candidate gene
(Figure S3).

4. Discussion

In a previously study [11], we focused on the successful uptake of a FuGENE6-encapsulated
plasmid pCGSap1-EGFP (designed for the targeted disruption of EGFP cDNA) injected into the tail
vein of pregnant females on E12.5 by fetal cardiac cells, the expression of both Cas9 and gRNA in
those cells, and, finally, the induction of mutations in the chromosomally-integrated EGFP genomic
target sequence. This is based on our previous notion that DNA introduced through TPGD at E12.5
can be preferentially taken up by fetal cardiac cells [13]. Indeed, we found reduced expression of
EGFP-derived fluorescence in TPGD-treated hearts, and this event was closely associated with the
presence of the Cas9 gene and mutations in EGFP cDNA [11]. Based on this, we next sought to
target the endogenous MHCα gene [24–26], whose dysfunction is known to cause HCM and DCM in
humans [27,36]. In this case, we employed another gene delivery approach, termed HGD, which relies
on the introduction of a large volume of DNA solution at once and is a powerful method for the efficient
transfection of murine hepatocytes [29,30]. Based on the original study [29], this technology used naked
DNA and does not require any gene delivery reagents with potential cytotoxicity. The application of
HGD to TPGD has been previously reported by two groups [14,19] using plasmid DNA. For example,

http://www.rgenome.net/cas-offinder/
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Wu et al. [14] used naked plasmid or plasmid complexed with PEI for TPGD. They observed successful
gene delivery in various tissues of pregnant females and fetuses only when naked DNA complexed
with PEI was subjected to HGD-based TPGD. Unlike the approaches taken by the above two groups,
we chose to use TransIT-EE, a polyamine-based solution which is commercially available with proven
efficacy for transfecting hepatocytes in vivo [31]. Polyamine exists naturally in living organisms and
is also found in milk. In this sense, the use of TransIT-EE for HGD-based TPGD-GEF appears to be
a novel and safer approach when gene editing is targeted to the fetal genome. Notably, we failed
to obtain genome-edited fetuses when conventional TPGD was applied using naked plasmid DNA
(pCGSap1-MHCα) dissolved in TransIT-EE (data not shown). Efremov et al. [19] reported a similar
result (unpublished data) whereby that introduction of naked DNA via conventional TPGD failed to
transfect fetuses.

In this study, indel occurrence was observed at the endogenous MHCα locus in some of the fetuses
carrying pCGSap1-MHCα, when HGD-based TPGD-GEF was performed on pregnant females at E9.5.
Although the mode of mutation in the obtained fetuses was mosaic (as shown by the presence of
edited and unedited cells) (see Figure 3), evidence of genome editing in some of the fetal cells indicated
that the uptake and expression of CRISPR/Cas9-related components by fetal cells indeed occurred
after HGD-based TPGD-GEF. Details of the nucleotide sequences of the successfully genome-edited
fetuses after sub-cloning analysis are summarized in Table S2. Notably, data shown in Table S2 were
found to be consistent with those obtained when CRISP-ID analysis was applied using the Sanger
sequence chart [37]. In this case, the chromosomal integration of the CRISPR/Cas9 vector is not always
required; in other words, transient expression of this vector is sufficient for that purpose, as indicated
by Sato et al. [8].

The most interesting finding clarified by the present study is that HGD is useful to transfect E9.5
fetal cells, which was shown to be ineffective by our previous method (based on the general (not HGD)
tail vein injection of FuGENE6-encapsulated plasmid DNA) [11,13]. According to Kikuchi et al. [13],
the plasmid DNA introduced into the tail vein of pregnant mice on E12.5 is preferentially taken
up by fetal cardiac cells. They speculated that this might be closely associated with placental
establishment, through which exogenous DNA might be delivered to fetuses via the circulatory system.
However, as discussed in our previous paper [10], placental development at E9.5 of pregnancy still
appears to be poor. Thus, incorporation of plasmid DNA by fetal cells at E9.5 appears to occur
via other placenta-independent routes, although the detailed mechanisms involved are still unclear.
Furthermore, whole body, as well as the fetal heart tissue, can be successfully genome-edited by our
present HGD-based TPGD-GEF (see Figure 3; Table S2). This enables us to investigate the effects of
CRISPR/Cas9-based genome editing on various types of cells or tissues (in addition to fetal cardiac
cells) in offspring obtained after HGD-based TPGD-GEF. Notably, in agreement with our present
findings, Tsukamoto et al. [12], who developed TPGD technology for the first time, reported that the
tail vein introduction of a liposome-encapsulated β-actin promoter-based lacZ expression plasmid
vector into pregnant female mice at E8.5, using a general method, caused broad expression of lacZ
throughout an entire fetus when cells were collected 2 days after gene delivery.

One of the concerns associated with HGD-based TPGD-GEF is the low success rate (Figure 2).
For example, of the three pregnant females tested, only one had Tg fetuses, and the other two had
non-Tg fetuses when HGD was performed at E9.5 (Table S1). Similarly, HGD at E12.5 and E15.5 failed
to deliver CRISPR/Cas9 components to fetuses (Figure 2; Table S1). Although the reproducibility of the
method is important for establishing HGD-based TPGD-GEF, low reproducibility has always been
associated with the TPGD system [13]. Probably, this failure may be associated with the establishment
of the nascent placental system as discussed previously [10]; however, at present it is not clear how to
increase the reproducibility. To gain robust results in a timely manner, we attempted to introduce large
amounts of DNA using HGD as a preliminary test. When HGD-based TPGD-GEF was performed by
administrating increased amounts of plasmid DNA (60 µg/mouse; n = 2) dissolved in TransIT-EE to
pregnant female mice at E9.5, E12.5, and E15.5, both of the females treated at E9.5 had numerous dead
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fetuses. Under these poor conditions, we were able to collect two fetuses from one female and one
fetus from the other female. All these fetuses collected appeared morphologically normal. Only the
former two fetuses were found to have introduced pCGSap1-MHCα vector, and one of those exhibited
genome editing at MHCα locus (data not shown). From the females treated at E12.5 and E15.5, several
normal-looking fetuses were obtained, but all were judged to be non-Tg (data not shown). We thought
that the frequent fetal deaths observed when HGD was performed at E9.5 might be partly caused by
applying a large amount (3-fold higher than the amount used in this study) of plasmid DNA. Probably,
administration of a large amount of plasmid DNA is toxic to fetuses at early stages of development.
As another trial, we are now testing another round of gene delivery reagents (i.e., biodegradable
nanoparticles) allowing efficient delivery of NAs (20 µg/mouse) and using increased numbers of
pregnant females.

It is also important to explore the factors affecting the low reproducibility in TPGD-GEF.
For example, there is a need to examine the livers of pregnant mothers in order to determine the
frequency of genome editing in a target gene in that organ. Its frequency may be a useful indicator for
predicting the efficiency of HGD-based TPGD-GEF. This may also be needed to examine relationships
between the copy number of transgenes introduced into fetuses and the degree of successful editing,
since there is a close correlation between fetuses with exogenous DNA and those presenting genome
editing at a target locus (see Figure 2; fetuses #a-1 to -10 in Table S1 and Figure S1). A gRNA search,
aided by bioinformatics, can provide a high degree of genome editing efficiency, and will be helpful for
increasing success in HGD-based TPGD-GEF.

In this study, we detected indels in both the heart and in the “whole body” (which is a part of a
fetus except for heart) when fetuses were identified as carrying the pCGSap1-MHCα vector (see Figure
S1; Tables S1 and S2). This suggests that HGD-based TPGD enables the transfection of all types of fetal
cells, just not fetal cardiac cells. The use of mice produced through HGD-based TPGD-GEF in future
studies will be important to examine the types of fetal cells transfected by this procedure. Previously,
we used lacZ gene-floxed Tg mice who were later injected with a Cre expression plasmid [13]. In this
way, we found that fetal cardiac cells and other vertebral cells are mainly stained by X-Gal, a substrate
for β-galactosidase. If HGD-based TPGD is applied to these lacZ gene-floxed mice, the localization
of cells with gene switching can be easily monitored. Alternatively, it will be possible to confirm
this using mice obtained after HGD-based TPGD, because segregation of internal organs is easy and
possible at this stage.

As mentioned previously, HGD-based TPGD-GEF was shown to elicit CRISPR/Cas9-mediated
mutations at the endogenous MHCα locus in fetal cells (including cardiac cells), although it produced a
mixture of both unedited and edited cells. This suggested the possibility of manipulation of embryonic
cardiac cells through attenuating the expression of MHCα via HGD-based TPGD-GEF. For example,
HCM, a disease caused by the expression of mutant MHCα, can be improved, when the level of
mutant MHCα is reduced to ~75% in experimental mice [38]. In this context, the present HGD-based
TPGD-GEF may be applicable to the production of mouse models for HCM. As inhibition of HCM was
achieved by only a 25% reduction in the levels of the mutant transcripts, we suggest that the variable
clinical phenotype in HCM patients reflects allelic-specific expression and that partial silencing of
mutant transcripts may have therapeutic benefit [38]. A recent study using an RNAi-based knockdown
of mutated MHCα gene expression made it possible to cure such genetic disorders [38]. In this study,
we aimed to create HCM model mice with a genome-edited MHCα locus by HGD-based TGD-GEF.
This attempt appears to be the first of such, and we believe that our trial will succeed. This is because,
theoretically, the generation of HCM is sufficient to achieve this and only 30% of cardiac cells can
exhibit a dysfunction in MHCα locus. If these model mice are obtained, it may be possible to develop a
strategy based on RNAi technology (mentioned above) or knock-in technology for the treatment of
such diseases.
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HGD-based TPGD-GEF theoretically enables genome editing at multiple target loci of a fetus
when appropriate vector(s) are prepared, which enables the expression of multiple gRNAs. If realized,
the usability of this system would increase substantially.

5. Conclusions

We sought to introduce a single plasmid conferring expression of both Cas9 and gRNA targeted
to the endogenous MHCα locus into fetuses using HGD-based TPGD-GEF in pregnant females at E9.5,
E12.5, and E15.5 of gestation. When the dissected hearts and the other remaining tissues (designated
as whole body) were analyzed 2 days after transfection, one of three pregnant mice at E9.5 was found
to have Tg fetuses. Of these, 100% (10/10) were found to possess the introduced DNA. Of those,
40% exhibited successful genome editing of the target sequence, although the embryonic cardiac cells
comprised a mixture of genome-edited and unedited cells. HGD-based gene transfer failed to transfect
fetuses on E12.5 and E15.5. This study has novelty, which is clearly different from other similar research
including our previous paper in view that: 1) successful genome editing was achieved when HGD was
employed without using any gene delivery reagents, and 2) mutations are induced successfully at
the target endogenous MHCα locus. In addition, against our expectations, cells with genome editing
were found in cardiac cells, and in other non-cardiac cells. E9.5 appears to be the appropriate stage for
manipulating the function of embryonic cells by the HGD-based TPGD-GEF, although there is still
room for improvements to this system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1744/s1,
Table S1: Summary of analysis of fetuses obtained after HGD-based TPGD-GEF on E9.5, 12.5 or 15.5. Table S2:
Nucleotide sequences of a region spanning a sequence recognized by gRNA in pCGSap1-MHCα in sub-clones
from #a-1, #a-3, #a-4, and #a-7 samples. Figure S1: PCR analysis of genomic DNA isolated from fetal samples (#a-1
to -10) derived from recipient #A (Figure 2; Table S1). Figure S2: Sequencing of PCR products derived from the
genome-edited fetuses sub-cloned into a pTA cloning vector. Figure S3: Off-target analysis of 2 candidate genes
for fetal hearts exhibiting indels.
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Abbreviations

Ampr ampicillin resistance gene
α-GalT α-1,3-galactosyltransferase
BPB blood-placental barrier
B6C3F1 mouse hybrid between C57BL/6 and C3H/H
CAG chicken ß-actin-based promoter
Cas9 clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease
CRISPR clustered regularly interspaced short palindromic repeats
E embryonic day
EGFP enhanced green fluorescent protein
GGTA1 α-1,3-galactosyltransferase
gRNA guide RNA
HCM hypertrophic cardiomyopathy
HGD hydrodynamics-based gene delivery
lacZ β-galactosidase
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MHCα myosin heavy-chain α

NAs nucleic acids
NC negative control
oligos oligonucleotides
PAM protospacer adjacent motif
PC positive control
PEIs polyethylenimines
Sry sex-determining region Y
Tg transgenic
TPGD transplacental gene delivery
TPGD-GEF transplacental gene delivery (TPGD) for acquiring genome-edited fetuses
U6 human U6 promoter
WT wild-type
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