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Background: Periodic leg movements (PLM) during sleep consist of involuntary periodic 
movements of the lower extremities. The debated functional relevance of PLM during sleep 
is based on correlation of clinical parameters with the PLM index (PLMI). However, periodicity 
in movements may not be reflected best by the PLMI. Here, an approach novel to the field of 
sleep research is used to reveal intrinsic periodicity in inter movement intervals (IMI) in patients 
with PLM. Methods: Three patient groups of 10 patients showing PLM with OSA (group 1), 
PLM without OSA or RLS (group 2) and PLM with RLS (group 3) are considered. Applying the 
“unfolding” procedure, a method developed in statistical physics, enhances or even reveals 
intrinsic periodicity of PLM. The degree of periodicity of PLM is assessed by fitting one-parameter 
distributions to the unfolded IMI distributions. Finally, it is investigated whether the shape of 
the IMI distributions allows to separate patients into different groups. Results: Despite applying 
the unfolding procedure, periodicity is neither homogeneous within nor considerably different 
between the three clinically defined groups. Data-driven clustering reveals more homogeneous 
and better separated clusters. However, they consist of patients with heterogeneous demographic 
data and comorbidities, including RLS and OSA. Conclusions: The unfolding procedure may be 
necessary to enhance or reveal periodicity. Thus this method is proposed as a pre-processing 
step before analyzing PLM statistically. Data-driven clustering yields much more reasonable 
results when applied to the unfolded IMI distributions than to the original data. Despite this 
effort no correlation between the degree of periodicity and demographic data or comorbidities 
is found. However, there are indications that the nature of the periodicity might be determined 
by long-range interactions between LM of patients with PLM and OSA.

Keywords: periodic leg movements during sleep, inter movement intervals, degree of periodicity, long-range and short-
range interactions, unfolding procedure, similarity clustering

constitutes periodicity may have a significant impact on the final 
result. According to the new standards PLM occur in a series of at 
least four LM and are separated by 5–90 s (Zucconi et al., 2006). An 
increased number of PLM during sleep with a PLM index (PLMI, 
i.e., the number of PLM per hour of total sleep time) of five or more 
is considered abnormal (American Academy of Sleep Medicine, 
2005). Though the PLMI is taken to reflect periodicity in PLM in 
most studies, periodicity is not always obvious and PLMI may fail 
to report it. The definition of a period implicit in the PLMI encom-
passes inter movement intervals (IMI) from 5 to 90 s. This range 
of IMI may not be sufficiently restrictive to identify periodicity 
in LM and could allow randomly occurring LM to be considered 
periodic. On the other hand, IMI may change across the night 
(Coleman et al., 1980; Pollmächer and Schulz, 1993; Nicolas et al., 
1998; Ferri et al., 2009) and PLM will be missed if period criteria 
are too narrow. Varying IMIs during night may lead to broad IMI 
distributions or to a distribution showing several local maxima. 
This makes a wide range of periods appear similarly prevalent, 
and thus hides intrinsic periodicity. Another way intrinsic perio-
dicity may become difficult to detect is when pooling data from 
patients with different average periods of PLM. The definition of 
periodicity of LM is problematic and may not be sensitive enough. 

Introduction
Periodic leg movements (PLM) during sleep are a sleep related 
phenomenon with periodic episodes of repetitive stereotypical move-
ments of the lower extremities (American Sleep Disorder Association, 
1993). PLM are more frequent in several sleep disorders, including 
restless legs syndrome (RLS, Montplaisir et al., 1997), narcolepsy 
(Moscovitch et al., 1993), rapid eye movement sleep behavior disor-
der (Fantini et al., 2002) as well as in disorders not primarily affecting 
sleep such as end stage renal disease (Benz et al., 2000). PLM during 
sleep are also documented in normal subjects (Pennestri et al., 2006) 
giving rise to the debate about functional relevance.

To determine the functional significance of PLM, the criteria 
used to score PLM during sleep are pivotal. Thus the criteria of 
detecting single leg movements (LM) as well as determining what 

Edited by:
Idan Segev,  
The Hebrew University of Jerusalem, 
Israel

Reviewed by:
Gabriella Panuccio,  
McGill University, Canada
Anda Baharav, Hypnocore LTD, Israel

*Correspondence:
Christian Rummel, qEEG Group, 
Department of Neurology, Inselspital, 
3010 Bern, Switzerland.  
e-mail: crummel@web.de

Abbreviations: AHI, apnea hypopnea index; BMI, body mass index; CPV, cluster 
participation vector; EEG, electroencephalogram; EMG, electromyogram; ESS, 
Epworth Sleepiness Scale score; H-test, Kruskal–Wallis H-test; IMI, inter movement 
interval; KS test, Kolmogorov–Smirnov test; LM, leg movement; LMI, leg move-
ment index; OSA, obstructive sleep apnea; PLM, periodic leg movements; PLMI, 
periodic leg movement index; PLMD, periodic leg movement disorder; PI, perio-
dicity index; RLS, restless legs syndrome; RMT, Random Matrix Theory; U-test, 
Mann–Whitney–Wilcoxon U-test.



Frontiers in Neuroscience  |  Neuroscience Methods	 	 September 2010  | Volume 4  |  Article 58  |  2

Rummel et al.	 Assessing periodicity of PLMS

2.	 Does periodicity differentiate between the clinical conditions 
of RLS, of OSA and of PLM without RLS or OSA?

3.	 Does data-driven clustering separate patients into different 
groups and are such groups clinically homogeneous?

Answering these questions could potentially provide further infor-
mation about the clinical relevance of PLM during sleep.

Methods
Patients and setting
Thirty patients were retrospectively evaluated at the Inselspital Bern 
Sleep Laboratory, all having a PLMI >15/h. Ten patients were diag-
nosed with PLM and OSA (group 1) with 10 or more obstructive 
apneas or hypopneas per hour of total sleep time. Ten patients 
were diagnosed with PLM without RLS or OSA (group 2). Five of 
these patients fulfilled the diagnostic criteria for PLMD (American 
Academy of Sleep Medicine, 2005). The last 10 patients had in 
addition RLS (group 3), fulfilling the minimal criteria accepted 
for the diagnosis of RLS (Allen et al., 2004). The presence of the 
following medical conditions was recorded: chronic cardiac or 
pulmonary disease, snoring, systemic hypertension, depression, 
obesity, Parkinsonism, headaches, fatigue, epilepsy, non-rapid eye 
movement parasomnia, idiopathic hypersomnia, and insomnia.

The case history analysis revealed that 17 of 30 patients were 
taking at least one medication on a regular basis at the time of 
evaluation. In group 1 (PLM with OSA) 2 patients out of 10 were 
not taking any medication, 2 patients were treated with opioids, 1 
patient was taking betablocker and 1 patient paroxetin. The remain-
ing 4 patients were taking medication not known to influence PLM. 
In group 2 (PLM without OSA or RLS) 6 patients out of 10 were 
not taking any medication, 1 patient was taking dopamine, 1 patient 
venlafaxine, trimipramin and betablocker and 1 patient mirtazap-
ine and olanzapine. In group 3 (PLM with RLS) 5 patients out of 
10 were not taking any medication, 1 patient was taking gabapentin 
and 1 patient was treated with mirtazapine and trazodone. The 
remaining 3 patients were taking medication not known to influ-
ence PLM. Tricyclic antidepressants, selective serotonin reuptake 
inhibitors and betablockers are considered to exacerbate PLM, 
whereas dopamine agonists, opioids, gabapentin, apomorphine 
are considered to reduce PLM (Allen et al., 2004).

Characteristics of patient groups are shown in Table  1 and 
Figure 1. The studied cohort shows a broad distribution of demo-
graphic data and sleep parameters. To assess statistical differences 
between the groups first a Kruskal–Wallis H-test for different cen-
tral tendencies in the three groups (Siegel, 1956) was performed. If 
the differences were significant pairwise Mann–Whitney–Wilcoxon 
U-tests (Siegel, 1956) were subsequently performed in order to reveal 
where medians are different. Both tests were performed on signifi-
cance level α = 0.01. For the Epworth Sleepiness Scale score (ESS) 
the H-test was not significant and for the PI it was only marginally 
significant (p = 0.049). With a few exceptions (see Figure 1) most 
pairwise U-tests were not significant. The reason is that the within 
group variability of the small groups (N = 10) was rather large and 
overshadowed the between group differences in most cases. However, 
these characteristics are representative for a typical patient cohort in 
a sleep clinic. Note that the highly significant differences with respect 
to AHI are due to the clinical a priori definition of the groups.

This lack of sensitivity could be one of the reasons for the ongoing 
debate about their functional relevance (Ancoli-Israel et al., 1991; 
Mendelson, 1996; Hornyak et al., 2004; Carrier et al., 2005; Högl, 
2007; Mahowald, 2007).

A new statistical approach to analyze PLM was developed by 
Ferri et al. (2006b) who recommend to study the entire distribu-
tions of IMI rather than parametric measures as mean and standard 
deviation. They examined periodicity with a metric, termed the 
Periodicity Index (PI) measuring the percentage of LM appearing 
in series of periodic events. Instead of focusing on IMI frequency 
distributions the PI accounts for certain dependencies between 
subsequent IMIs. The PI was investigated for homogenous patient 
groups with RLS, narcolepsy/cataplexy and rapid eye movement 
sleep behavior disorder and without further potentially sleep rel-
evant comorbidities or medication (Ferri et al., 2006a,b; Manconi 
et al., 2007). Based on different levels of the PI patients were divided 
into subgroups. For patients with narcolepsy/cataplexy and RLS 
a significantly different median of the PI was found (Ferri et al., 
2006a). Very recently increased PI was also detected in a subgroup 
of patients with insomnia, for which no apparent cause could be 
found and enabled diagnosis of periodic leg movements disorder 
(PLMD, Ferri et al., 2009). Quantifiable aspects of PLM such as 
periodicity may serve to differentiate between clinical conditions 
and may eventually help capturing the nature of the underlying 
biological phenomenon (Rye, 2006). However, as afore mentioned, 
quantitative assessment of the periodicity of LM/PLM as measured 
by IMI is difficult because the empirical probability distribution 
may obscure underlying periodicity.

To date no study uses methods to enhance and reveal intrinsic 
periodicity before analyzing the statistics of IMI. We here employ the 
so-called unfolding procedure, which potentially uncovers intrinsic 
periodicity of LM data that is confounded by external influences. 
The unfolding procedure was originally developed in a branch of 
statistical physics called Random Matrix Theory (RMT) to study and 
compare the correlation between energy levels of heavy atomic nuclei 
and other complex quantum systems (see Brody et al., 1981; Guhr 
et al., 1998; Mehta, 2004, for comprehensive reviews). In the context 
of neurophysiology the concept was recently applied to the eigen-
value spectrum of the cross-correlation matrix calculated from multi-
channel EEG (Seba, 2003; Müller et al., 2006; Baier et al., 2007).

In the present study we use the unfolding concept to assess the 
intrinsic periodicity of IMI of PLM examining a typical clinical 
patient cohort with PLM during sleep and different comorbidities 
from our database. Instead of studying the absolute IMI sizes, IMI 
are locally normalized to unit mean event spacing. Under these 
conditions the distribution of the spacings of randomly distrib-
uted events decays exponentially (Poisson distribution). In con-
trast, for strictly periodic systems the events are equally spaced. 
Fitting intermediate distributions, which interpolate between 
these extreme cases, to unfolded IMI distributions we quantify 
PLM periodicity.

Specifically, the goal of our study is to answer the 
following questions:

1.	 Does applying the unfolding procedure enhance and reveal 
periodicity that is not obvious from the measured IMI 
distribution?
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Table 1 | Patient characteristics of group 1 (PLM with OSA), group 2 (PLM without OSA or RLS), and group 3 (PLM with RLS). Given are mean values 

and standard deviations. In Figure 1 the data is shown in box plot form.

Group	 Male	 Age (years)	 BMI	 AHI	 LMI	 PLMI	 ESS	 PI

1	 10	 60 ± 11	 32 ± 6	 46 ± 26	 96 ± 42	 88 ± 45	 11 ± 5	 0.66 ± 0.13

2	 7	 42 ± 11	 23 ± 5	 3 ± 1	 70 ± 42	 62 ± 43	 10 ± 7	 0.60 ± 0.15

3	 7	 43 ± 15	 23 ± 4	 2 ± 1	 39 ± 14	 27 ± 9	 11 ± 5	 0.52 ± 0.12

BMI, body mass index; AHI, apnea hypopnea index; LMI, leg movement index; PLMI, periodic leg movement index; ESS, Epworth Sleepiness Scale score; PI, 
periodicity index.
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Figure 1 | Box and whisker plots of the group-wise patient characteristics 
summarized in Table 1. The lower and upper lines of the boxes are the 25th and 
75th percentiles (delimiting the “interquartile range”) of the sample and the line 
in the middle of the box represents the sample median. The “whiskers” are the 
lines extending above and below the box and show the extent of the rest of the 

sample. Outliers are shown as open circles. Significant differences of the 
medians (uncorrected pairwise Mann–Whitney–Wilcoxon U-tests) are indicated 
as follows: *p < 0.01, **p < 0.001, ***p < 0.0001. BMI, body mass index; AHI, 
apnea hypopnea index; LMI, leg movement index; PLMI, periodic leg movement 
index; ESS, Epworth Sleepiness Scale score; PI, periodicity index.

Polysomnography
Each patient underwent a diagnostic full night polysomnography 
(PSG). Patients had given their written informed consent for using 
their data for scientific purposes. Retrospective use of clinical data 
was approved by the local ethic committee.

Parameters recorded were electroencephalogram (EEG, minimal 
leads C4-M1, C3-M2, O2-M1, O1-M2, and additional F4-M1, 
F3-M2) respiration (nasal and oral airflow with thermistors, 

nasal pressure with a cannula, thoracic and abdominal respiratory 
movements with strain gauges, and oxygen saturation with finger 
oximetry), left and right electrooculogram, and three electromy-
ogram (EMG) channels (submentalis muscle and right and left 
tibialis anterior muscles). EMG signals were sampled at 200 or 
500 Hz, high pass filtered at 10 Hz and low-pass filtered at 45 or 
100 Hz, respectively. Before the beginning of a recording a sleep 
technician checked that the amplitude of the EMG signal from the 
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pendulum remains a periodic system. Solely, its intrinsic periodicity 
is obscured by an outer influence [its varying length l(T)] such that 
it can hardly be detected by measuring the spacing distribution 
P

1
(S) in the most straight forward way.

Formal development
Instead one has to make use of a method designed for revealing and 
quantifying intrinsic fluctuations regardless of systematic trends 
of possibly unknown nature and origin. Originally it was intro-
duced in the context of nuclear physics to put energy spectra of 
different atomic nuclei on the same footing before making com-
parison of certain fluctuation properties. Nowadays this method 
is extensively used in the field of quantum chaos. The crucial point 
consists in performing the so-called “unfolding procedure” (Brody 
et al., 1981; Haake, 1992; Guhr et al., 1998; Mehta, 2004) where the 
event times are transformed T

i
 → t

i
 such that the average distance 

(or time interval) between adjacent events becomes unity. Whereas 
a simple normalization can attain this goal on the global level, 
unfolding is designed to assure unit average spacing also locally. 
Different to the spacings S

i
 of the directly measured event times 

T
i
 the spacings s

i
 = t

i+1
 − t

i
 of the unfolded t

i
 can be used to reveal 

intrinsic periodicities.
To develop the unfolding procedure formally, one starts from 

the density of n discrete events – in our case LM times:

ρ δ ρ ρ( ) ( ) ( )T
n

T T T Ti
i

n

= −( ) = +
=
∑1

1
smooth fluct

	
(1)

Here δ(·) denotes the delta-distribution, i.e., a function that is very 
narrowly peaked at zero with unit integral. In the second identity we 
have split the event density into a smoothly T-dependent part that 
will subserve the unfolding distribution and a fluctuating residual. 
It is obvious that the probability P

1
(S) of finding a neighboring 

event at a distance S from a selected one crucially depends on the 
event density r(T). Neighboring events will in general be closer if 
the event density is high than for low event density. To eliminate 
this influence, which may affect the inference of the system’s perio-
dicity, one has to correct all spacings for the local smooth event 
density r

smooth
(T).

Estimates of the event density r(T) from a finite amount n of 
data typically involve parameters like bin width and bin number. 
To avoid such influences it is more convenient to work with the 
parameter free cumulated event density:

N T dT T N T N T
T

( ) ( ) ( ) ( )= ′ ′ = +
−∞∫ ρ smooth fluct 	

(2)

that counts the number of events in the interval [  −∞,T], see 
Figure 2A for an illustration. At every event time T

i
 the so-called 

“staircase function” makes one step up. The unfolded events t
i
 are 

obtained from the smooth part of the cumulated event density by 
the transformation:

t N Ti i= smooth( ).	 (3)

By definition the mean spacing 〈s〉 of the t
i
 is locally equal to one 

along the whole unfolded event series.
The crucial issue of unfolding an event series is to find an 

appropriate estimate of N
smooth

(T). In some physical cases an 
analytical formula for r

smooth
(T) or N

smooth
(T) is known and can 

two tibialis anterior muscles was below 2 μV at rest and impedance 
was kept less than 5 kΩ. Sleep stages were scored by an experienced 
scorer (H. Gast) visually in 30 s epochs according to Rechtschaffen 
and Kales (1968).

Leg movement detection and computation of indices
Leg movements were first detected by the software Somnologica, 
Version 5.0.1. (Embla N7000 Recording Systems, Embla, Broomfield, 
CO, USA). The detections proposed by the automatic analysis were 
then edited by an experienced scorer (H. Gast) before comput-
ing the various parameters. All LM during sleep were included 
irrespective of association with arousals or apneas or hypopneas. 
LM while awake were not considered and thus a PLM sequence 
was terminated by intervening wakefulness. Otherwise the WASM 
standards for recording and scoring PLM during sleep were applied 
(Zucconi et al., 2006). A LM duration was at least 0.5  s and no 
longer than 10 s and IMI were calculated as the time elapsed from 
onset to onset of subsequent movements. LMs in the right and 
left leg were considered as simultaneous LMs and counted as only 
one LM if the separation between termination of the earlier and 
onset of the latter was equal or less than 0.5 s. LM were included 
in periodicity analysis if they occurred in a series of four or more 
events and if they were separated by IMI of more than 5  s and 
equal or less than 90 s.

The unfolding transformation
To characterize and quantify the intrinsic periodicity of PLM 
regardless of confounding systematic influences the “unfolding 
procedure,” which originates from RMT, was introduced to the 
field of PLM analysis for the first time. In the following a simple 
example is given, illustrating why unfolding may become necessary 
to reveal intrinsic periodicity. Thereafter the unfolding transforma-
tion is developed formally. Finally its usefulness is illustrated by 
applying it to model data.

Motivation
The ideal pendulum often serves as the paradigm of a periodic 
system. Event times T

i
 (i = 1,…,n) are defined as whenever the 

pendulum crosses the equilibrium from the left to the right. In the 
absence of any disturbing influences the events are equally spaced 
in time: T

i+1
 = T

i
 + S. Here S = ∆T is the fundamental period of 

the pendulum which is related to the frequency f and the length 
l of the pendulum by ∆T f l= ∼1/ . According to this equation 
a shorter pendulum l′ < l has a higher frequency f ′ and a smaller 
period ∆T′. If the pendulum is disturbed by environmental influ-
ences of any kind the spacings S

i
 = T

i+1
 − T

i
 are no longer strictly 

equal but follow a distribution P
1
(S), which we assume centered 

at ∆T. The characteristic of a (quasi-)periodic system is the nar-
rowness of this distribution P

1
(S). In contrast, broad distributions 

P
1
(S) are identified with aperiodic systems where a characteristic 

frequency is absent.
To extend the example, suppose that the length of the pendu-

lum becomes time dependent: l = l(T). If the length of the pendu-
lum suffers a sudden change from l to l′ < l the distribution P

1
(S) 

becomes bimodal with two centers at ∆T and ∆T′. If, however, a 
continuous but slow variation of l takes place over a large time 
period a broad distribution may result for P

1
(S). Without doubt, the 
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Here we proceed as follows, see Figure  2: according to the 
definition of PLM during sleep (Zucconi et al., 2006) we select LM 
runs of n ≥ 4 events occurring with IMI between 5 and 90 s from 
the whole series of LM times. An odd low order polynomial is fitted 
independently to each of these pieces. In order to prevent overfitting 
the staircase function with a polynomial of too high degree m, this 
parameter is given a logarithmic dependence on n:

m

n

n
n

=
≤ <





 +





− ≥







1 4 10

2
10

1 1 10

if

iflog

	

(4)

Here the floor function b·c denotes the largest integer smaller than 
the argument. Eq. 4 guarantees that 1 ≤ m < n. It must be checked 

be used in Eq. 3. Otherwise N
smooth

(T) must be approximated 
from the experimentally measured data. To this end different 
strategies can be used, see e.g., discussion by Bruus and Anglés 
d’Auriac (1997). A common procedure consists of the so-called 
Gaussian broadening, where the delta-distributions in Eq. 1 are 
replaced by Gaussians. The constant or event-dependent widths 
are used as fit parameters. It has been found that Gaussian 
broadening tends to artificially introduce periodicity into event 
series at larger scales (Guhr et al., 1999; Gómez et al., 2002). To 
avoid this problem one can use a low order polynomial fit to 
the experimentally or numerically obtained cumulated event 
density N(T). The polynomial that minimizes square deviation 
from the staircase function of Eq. 2 is then used to perform the 
unfolding transformation Eq. 3, see e.g., Flores et al. (2000).
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Figure 2 | Top: Principle of the unfolding procedure. (A) In the inset the 
cumulated LM density (staircase function) is displayed for the whole night. 
Variations of the steepness of the curve due to varying event density r(T ) are 
clearly visible. In the main part a detail of the staircase function is shown. LM runs 
of four or more spacings with IMI between 5 and 90 s are highlighted as fat curves. 
These pieces are fitted by low order polynomials (thin curves, here ∆m = 4) which 
are subsequently used for the unfolding transformation Eq. 3. (B) Shows the 
unfolded cumulated LM density for the same data. Bottom: Demonstration of the 

unfolding for model data, see text. (C,F) The cumulated event densities are shown 
for abrupt and continuous linear change of the fundamental period ∆T. (D,G) are 
the measured IMI distributions for both cases. For the abrupt change of ∆T the 
intrinsic periodicity of the system is obscured by two pronounced peaks at S = 15 
and 60 s whereas for the continuous linear decrease of ∆T a broad distribution 
results, where no significant peak can be identified. (E,H) show the unfolded IMI 
distributions of the same data. Here the intrinsic periodicity of the model becomes 
obvious in both cases from the single narrow peak.
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ing situation can be seen as a smooth version of the abrupt one 
with equal steepness at both ends of the curve. Comparison with 
Figure 2A shows that similar variations of the cumulated event 
density indeed occur in LM data.

In Figures  2D,G the measured IMI distributions P
1
(S) are 

shown. Here and in subsequent histograms the optimal bin width 
(Scott, 1979) is used, which balances bias and variance by minimiz-
ing the mean squared error between measured data and histogram 
bins. It scales like n−1/3 where n is the number of available data. The 
uncertainty of the number of events n(s) falling into a histogram 
bin centered at s is estimated by n s( ) and symbolized as gray bars. 
Finally histograms (and errors) are downscaled in order to have unit 
sum ∑ =s n s( ) .1  In the abrupt situation (Figure 2D) two distinct, 
narrow peaks are visible. For the linearly changing case (Figure 2G) 
both have merged into a common, broader distribution. Different 
to the directly measured IMI distributions the unfolding procedure 
is able to reveal the intrinsic periodicity of the underlying system in 
both cases, see Figures 2E,H. Here clear peaks at s = 1 become visible 
after normalizing to the locally defined event density. Note that a 
simple global normalization would not succeed in either case.

Quantifying the periodicity of the unfolded IMI distributions
Ferri et al. (2006b) have found that log-normal distributions fit the 
pooled measured IMI distributions best. Here it was investigated 
how the unfolded IMI distributions of individual patients can be 
fitted by standard distributions. To be independent of any kind 
of binning the least-squares fit was performed for the cumulated 

carefully that the dependence of the results on the particular choice 
of m is very weak. This can for example be done by lowering/rising 
m of Eq. 4 by ∆m ∈ [−4, 4] (but respecting m ≥ 1), see Figures 3B–D. 
In addition to the m-dependence of the nearest neighbor spacing 
distribution P

1
(s), which is extensively discussed in the present 

paper, also the next nearest neighbor distribution P
2
(s) and the 

number variance Σ2(l) (Guhr et al., 1998; Mehta, 2004) should be 
considered. It measures long-range correlations between events 
by quantifying the variance of the number of events in pieces of 
(unfolded) length l and is known to be much more sensitive than 
the spacing distributions.

Figure  2B shows the unfolded cumulated LM density after 
application of Eq. 3. Systematic trends are absent here. The data 
fluctuate around the function f(t) = t and the average event dis-
tance is 〈s〉  =  1 throughout the whole data set (reflecting local 
normalization).

Application to model data
The performance of the unfolding is illustrated at the example 
of the pendulum with variable length l and period ∆T discussed 
already above: n  =  400 events were sampled from a pendulum 
subject to strong environmental noise, which was modeled by a 
Gaussian distribution of width 7.5 s. In the first case the center of 
the distribution is abruptly changed from 15 to 60 s after 200 events, 
whereas in the second case the change is continuously modeled by 
linear interpolation between the limiting values. The cumulated 
event densities are different, see Figures 2C,F. The linearly chang-
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Figure 3 | Examples for the usefulness of the unfolding. (A) Distribution of 
IMI before the unfolding procedure for the data of Figure 2A. IMI across the 
night with more than 6 h of sleep. Series of four or more leg movements with 
separation between 5 and 90 s have a very broad IMI distribution, suggesting a 
sequence with high randomness. (B) Insensitivity of the number variance Σ2 to 
variations ∆m of the degree of the fit polynomials. (C,D) After unfolding, IMI 
distribution became clearly peaked at 1 and the periodicity was thus correctly 
revealed. The unfolding procedure was insensitive to moderate variations of the 
polynomial degree m. As fully drawn lines, the best Scharf–Izrailev fit 

distributions (see Eq. 8 in Appendix) are shown. (E–H) Comparison of measured 
(E,F) and unfolded IMI distribution (G,H) for two patients with PLM without 
OSA or RLS. In patient A measured IMI show a narrow peak near 15 s whereas 
patient B has a much broader distribution with maximum near 30 s. Pooling data 
from both patients would have led to an even broader distribution. Applying the 
unfolding procedure the IMI distribution of both patients became very similar 
such that pooling patients conserved the characteristics of the distribution. As 
fully drawn lines the best fitting log-normal distributions (see Eq. 6 in Appendix) 
are shown.
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ences between the groups. To quantify the similarity of two IMI 
distributions P

μ
 and Pν the KS test was employed again, now in 

its version for two samples (Siegel, 1956; Press et  al., 1992). As 
before, it results in a distance dµν

KS ≥ 0 and a significance 0 1≤ ≤pµν
KS . 

Here pµν
KS depends on dµν

KS  as well as on the sizes n
μ
 and nν of the 

distributions. In the present paper pµν
KS was used to quantify the 

similarity of two distributions with a single number in [0, 1] (0 for 
non-overlapping distributions and 1 for identical ones) in a size 
independent manner.

For automated similarity clustering on basis of the matrix with 
entries pµν

KS the contrast turned out too weak. To deal with this 
problem the transformation:

p x p p
p p

p

µν µν µν µν
µν µν

σ
KS KS KS

KS KS

→ = + −( ) −














max , tanh0 1





 	

(5)

was performed, where 〈 〉pµν
KS  and σ

p
 denote the average and stand-

ard deviation of the off-diagonal pµν
KS , respectively. This monotonic 

transformation sharpened the contrast by enlarging elements larger 
than average and decreasing elements smaller than average.

On the basis of these x
μν the recently developed cluster participa-

tion vector (CPV) algorithm (Rummel et al., 2007, 2008; Rummel, 
2008) was employed. It operates on the eigenvectors of the sym-
metric similarity matrix with elements 0 ≤ x

μν ≤ 1 (with ones on 
the diagonal) and performs two tasks in a fully data-driven manner. 
First, the number K of clusters present in the data can be estimated 
from features of all eigenvectors rather than pre-specifying it on the 
basis of previous knowledge. For this step another Kolmogorov–
Smirnov test must be carried out, for which a significance level 
of α = 0.01 was chosen. Second, the data sets are attributed to the 
clusters on basis of the components of suitable linear combinations 
of the eigenvectors belonging to the K largest eigenvalues of the 
similarity matrix. The CPV algorithm has been tested extensively 
and was shown to outperform traditional approaches especially in 
situations with clusters that show sizable inter-cluster similarities.

Results
Unfolding in single patient data
Applying the unfolding procedure Eq. 3 revealed periodicity and 
allowed pooling of data. Figure 3A shows the example of a meas-
ured IMI distribution of a 75-year-old male with PLM and OSA 
(BMI = 27.3, AHI = 63.4, LMI = 77.1, PLMI = 70.7, PI = 0.62). The 
distribution of measured IMI is broad and almost flat between 5 
and 60 s with only a small peak near IMI = 30 s. This distribution 
suggests a non-periodic system with all periods between 5 and 60 s 
appearing similarly often. Note that a small sample of IMI drawn 
with a random number generator (the prototype of a non-periodic 
system) from a uniform distribution between 5 and 60 s (and zero 
outside) could lead to a similar distribution. By definition such 
a LM series has PI = 1 although it is purely random (Ferri et al., 
2006b).

Unfolding the data showed a clear contrast with a distinct 
peak at 1, revealing periodicity of LM that was previously hidden 
(Figures 3C,D). The intrinsically periodic character of the data was 
obscured in Figure 3A by the different slopes of the staircase func-
tion (see this patients’ event times in Figure 2A), which represent dif-

event densities. Like the unfolded IMI distributions P
1
(s) all used 

fit distributions had mean 〈s〉 = 1. All of them depended on a single 
parameter, which controls the width of the distributions in monot-
onous manner. Consequently, these parameters could be used to 
quantify PLM periodicity. If an unfolded IMI distribution P sa

1
( )( ) 

was more narrow than a second distribution P sb
1
( )( ), we concluded 

that the PLM of P sa
1
( )( ) were intrinsically more periodic.

For the log-normal distribution the fit parameter σ
ln

 determines 
the width of the distribution directly, see Appendix for details 
and formulae. The log-normal distribution neither contains the 
exponentially decaying Poissonian case as a limit nor is it used in 
RMT for description of spacing distributions. Here it was used in 
order to tie in with previous work by Ferri et al. (2006b). Excluding 
one possible parametrization of the IMI distribution in favor of 
another might help to learn about the nature of the interaction 
(e.g., long-range vs. short-range) between subsequent LM in PLM 
series. Therefore we probed in addition two RMT spacing distribu-
tions that can be derived rigorously for classical one-dimensional 
particle gases on rings (Dyson gases), see Appendix for details and 
formulae. The Scharf–Izrailev distribution (Izrailev, 1988; Scharf 
and Izrailev, 1990) describes the spacings for Dyson gases with 
long-range interactions between all particles at temperature 1/β

SI
. 

Similarly, starting from Dyson gases with short-range interactions 
between neighboring particles at temperature 1/β

sP
 one arrives at 

the semi-Poisson distribution (Bogomolny et al., 1999). For both 
distributions a decreasing temperature (increasing fit parameters 
β

SI
 and β

sP
 in the present context) translates into decreasing width. 

Both distributions interpolate between the exponentially decaying 
Poissonian (β

SI
 = β

sP
 = 0) and peaked distributions (β

SI
, β

sP
 > 0).

To investigate which distribution fits the empirical distributions 
of unfolded IMI best, the non-parametric Kolmogorov–Smirnov 
(KS) test (Press et al., 1992) was employed. It gives a distance dKS ≥ 0 
between the cumulated density of the sample distribution and the 
one of the functions given in explicit form in the Appendix (Eq. 7 
for log-normal, the numerical integral of Eq. 8 for Scharf–Izrailev 
or Eq. 11 for semi-Poisson) and a significance 0 ≤ pKS ≤ 1. The latter 
depends on dKS as well as on the size n of the distribution and gives 
the probability that a distance dKS or larger is found although the 
null hypothesis of equal distributions is correct. We considered a 
fit as a good one if pKS ≥ 0.1 and discarded it otherwise.

In order to rank the performance of the fit distributions for 
clinical patient groups and automatically defined clusters (see 
Automated Similarity Clustering) we followed two approaches. 
The first one used the average p-value 〈pKS〉 of a fit distribution 
over the individuals of the selected group. For the second one we 
gave credits to the fit distributions in the following way: zero credits 
if for a patient’s unfolded IMI distribution pKS < 0.1, one credit if 
pKS ≥ 0.1, three credits for the best fit and two credits for the second 
best fit. In order to make the total number of credits comparable 
across groups or clusters it was divided by the number of group 
or cluster members.

Automated similarity clustering
Besides interpreting the distributions of measured and unfolded 
IMI for patients and clinically defined patient groups it was in 
addition investigated if it is possible to partition the total of the 
30 data sets in a way that maximizes similarity within and differ-
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The shape of all three distributions was clearly different. In contrast, 
the unfolded IMI distributions in groups 2 (PLM without OAS or 
RLS) and 3 showed much more similar shape.

The majority of the unfolded IMI distributions of indi-
vidual patients belonging to the three patient groups could 
be fitted well by the functions given in the Section “Methods.” 
Patient group 3 (PLM with RLS) could be fitted best by the 
log-normal distribution according to both ranking crite-
ria (Table 2). This result confirmed a finding by Ferri et al. 
(2006b) who successfully fitted the pooled measured IMI dis-
tributions of RLS patients by log-normal distributions. For 
patient group 1 (PLM with OSA) the Scharf–Izrailev distribu-
tion turned out as a much better fit than the semi-Poisson or 
the log-normal distribution, implying that long-range inter-
actions between LM could play a role in this patient group. 
For patient group 2 (PLM without OSA or RLS) there was 
disagreement between the maximum number of credits and 
the maximal average p-value 〈pKS〉 thus implying fundamental 
differences in the shape of the unfolded IMI distributions 
within these patient groups. These differences were accounted 
for best by describing the data of different patients with dif-
ferent fit distributions. Overall, unfolded IMI distributions 
were fitted best by the Scharf–Izrailev distribution closely 
followed by the semi-Poisson distribution, see Table 2. With 
the exception of the RLS group the log-normal distribution 
led to the worst fits.

A Kruskal–Wallis H-test was carried out for group-wise dif-
ferent central tendency of the accepted (pKS ≥ 0.1) fit parameters 
σ

ln
, β

SI
, and β

sP
 without finding significant differences (p > 0.1). 

Finally, it was found that the fit parameter σ
ln

 of the N = 17 good 
fits of the log-normal distribution anti-correlated significantly 
(non-parametric Spearman correlation, p < 0.01) with the patients’ 

ferent kinds of external influences on IMI duration such as, e.g., sleep 
stage or time elapsed after falling asleep. Both, the number variance 
∑2( )l  (Figure 3B) and the unfolded IMI distribution were rather 
insensitive to the particular choice of the polynomial degree of Eq. 
4. Increasing m for every piece by ∆m = 4 led to very similar results. 
For both versions of the unfolded IMI distribution the p-value of a 
Scharf–Izrailev fit [see Eq. 8 in Appendix] was largest as compared 
to the remaining fit distributions and exceeds 0.1. Therefore the 
Scharf–Izrailev fit was accepted for further analysis, see below.

Pooled IMI from different patients may become broad and there-
fore suggest high randomness, i.e., non-periodic distribution of IMI. 
The measured IMI distribution of two patients showing PLM with-
out OSA or RLS are given in Figures 3E,F. Patient A (67 years, male, 
BMI = 27.3, AHI = 1.0, LMI = 147.8, PLMI = 139.6, PI = 0.56) had 
a pronounced peak at 15  s whereas the distribution of patient B 
(45 years, male, BMI = 26.1, AHI = 2.4, LMI = 60.3, PLMI = 54.2, 
PI = 0.74) was much broader and peaked near 30 s. Pooling the meas-
ured data of these two patients would have led to an even broader 
distribution. After unfolding (Figures 3G,H) the IMI distribution 
of both patients became similar and the estimated values of the log-
normal fit parameters σ

ln
 were very close. Pooling them would not 

alter the character of the distribution. The log-normal distribution 
(see Eq. 6 in Appendix) turned out as the best fit distribution in both 
cases and is indicated as fully drawn lines in Figures 3G,H. Although 
the log-normal distribution fitted the data better than the alterna-
tives, both p-values remained below 0.1. Therefore these examples 
were excluded from our further analysis of the fit parameter σ

ln
.

Unfolding in patient groups 1 to 3
The pooled measured IMI of patient group 1 (PLM with OSA) 
showed the most peaked distribution whereas patient group 3 
(PLM with RLS) showed the broadest distribution, see Figure 4. 
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Figure 4 | Pooled measured (A–C) and unfolded IMI distribution (D–F) for three clinically defined patient groups.
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To address question 1 the CPV clustering algorithm on basis 
of the similarities between the measured IMI distributions was 
employed (see Methods). Figure 5A shows the similarity matrix 
of the original pairwise Kolmogorov–Smirnov significances pµν

KS. 
Data was ordered according to the clinically defined groups: PLM 
with OSA (a to j), PLM without OSA or RLS (k to t), PLM with 
RLS (u to δ). Apart from the diagonal and some exceptions in the 
group PLM with RLS, similarities were small. Application of Eq. 5 
sharpens the contrast (Figure 5B). However, using these x

μν for CPV 
clustering did not reveal a distinct cluster pattern. Determining the 
number of clusters in data-driven manner led to K = 10 clusters, 
the strongest one comprising the data sets o, w, y, and δ (data not 
shown). The second strongest cluster comprised data sets t, u, and 
x. Three clusters contained only two data sets, like, e.g., m and α. 
Figure 5B shows large elements of the similarity matrix x

μν con-
necting these data sets. However, most importantly, none of the 
clusters was homogeneous consisting of patients belonging to the 
same patient group or sharing any other clinical or demographical 
characteristic. In summary, clustering on the basis of the similarities 
of measured IMI distributions did not seem to lead to clinically 
conclusive results.

Cluster participation vector clustering was repeated on the basis 
of the similarity of the unfolded IMI distributions. The elements 
pµν

KS and x
μν of the similarity matrices shown in Figures 5C,D were 

in general much larger than for the measured data. For better visual 
representation the data sets were rearranged according to K = 5 
clusters that were found by the CPV algorithm. The clusters com-
prised data sets a to δ (cluster A, seven members), e to α (cluster B, 
six members), c to t (cluster C, eight members), y to x (cluster D, 
four members) and d and f (cluster E, two members). Data sets q, 
w, and b remained unclustered. Data set β (female, 21 years, RLS) 
had only slightly stronger similarities with cluster A than with B 
and therefore connected both clusters. Similarly, clusters A and E 
as well as C and D were strongly interconnected.

Figure 6 shows the pooled unfolded IMI distributions for the 
clusters A to E of Figures 5C,D. Clusters B and E had the nar-
rowest distribution notwithstanding a weak connection. Cluster 
E was more strongly connected with cluster A via data set d (male, 
49 years, OSA), see Figure 5D. The strongly connected clusters C 
and D had similar distributions.

Analyzing medical conditions or medication that exacerbate 
or reduce PLM within these clusters did not reveal any common 
cluster specific features. Only the Kruskal–Wallis H-test for cluster-
wise different central tendency of the PI (Ferri et al., 2006b) was 
significant on significance level α = 0.01. For the cluster medians 
of the PI significant pairwise differences between clusters A and 
D as well as between clusters B and D (U-test) were found. Note 
that these cluster pairs were especially weakly interconnected 
in Figure 5D. In addition PI medians were marginally different 
for the following combinations: C vs. D (p  =  0.016) and C vs. 
E (p = 0.044). The medians of the demographic data were only 
marginally significantly different. BMI and PLMI: cluster A vs. D 
(p = 0.042); AHI: cluster B vs. D (p = 0.038). It is interesting to 
note that Ferri’s PI was the only quantity that showed significant 
differences between the automatically found similarity clusters. 
Mind that for the clinically defined groups no significant differ-
ence of PI was found (Figure 1).

BMI, suggesting more overweight patients show a more narrow 
distribution, see Table 3. Investigation on a larger patient cohort 
is necessary to decide whether age, subjective sleepiness and PI 
(which turn out marginally significant, p  <  0.05) are also can-
didates for significant anti-correlation. Very similar tendencies 
toward non-parametric correlation are present for the N  =  19 
accepted fit parameters β

SI
 of the Scharf–Izrailev fit (now corre-

lation instead of anti-correlation). In contrast no significant cor-
relation with demographic data was found for the N = 18 accepted 
semi-Poisson fits.

Data-driven clustering
Visually comparing the measured and unfolded IMI distributions 
within clinically defined patient groups showed large dissimilari-
ties occasionally, see Figure 3E and F for an example of measured 
data. On the other hand very similar IMI distributions were found 
for patients from different clinically defined groups. Therefore the 
following questions arose:

1.	 Is it possible to define new groups according to the shape of 
the IMI distributions using cluster algorithms?

2.	 Is there a common/are there shared clinical or demographic 
features that may cause the cluster formation?

Table 2 | Ranking of the goodness-of-fit for the clinical groups. The left 

numbers are the group-wise average number of credits whereas the right 

number is the average significance of the KS test. The group-wise best fit is 

displayed in boldface.

	 Log-normal	 Scharf–Izrailev	 Semi-Poisson

PLM with OSA	 0.20 〈pKS〉 = 0.08	 1.70 〈pKS〉 = 0.26	 0.70 〈pKS〉 = 0.18 

(N = 10)

PLM without	 1.10 〈pKS〉 = 0.26	 1.10 〈pKS〉 = 0.17	 1.40 〈pKS〉 = 0.22 

OSA or RLS 

(N = 10)

PLM with	 2.30 〈pKS〉 = 0.50	 1.40 〈pKS〉 = 0.41	 1.90 〈pKS〉 = 0.42 

RLS (N = 10)

All groups	 1.13 〈pKS〉 = 0.28	 1.40 〈pKS〉 = 0.28	 1.37 〈pKS〉 = 0.28 

(N = 30)

Table 3 | Spearman’s rank-order correlation between the fit parameters 

of the log-normal, the Scharf–Izrailev and the semi-Poisson distribution 

and demographical data.

	 rln
	 pln

	 rSI
	 pSI

	 rsP
	 psP

Age (years)	 −0.57	 0.016	 0.50	 0.028	 0.31	 n.s.

BMI	 −0.64	 0.0054	 0.56	 0.013	 0.45	 n.s.

ESS	 −0.57	 0.017	 0.48	 0.038	 0.38	 n.s.

AHI	 −0.38	 n.s.	 0.07	 n.s.	 0.19	 n.s.

LMI	 −0.14	 n.s.	 0.23	 n.s.	 0.14	 n.s.

PLMI	 −0.39	 n.s.	 0.38	 n.s.	 0.34	 n.s.

PI	 −0.51	 0.038	 0.47	 0.042	 0.44	 n.s.

BMI, body mass index; AHI, apnea hypopnea index; ESS, Epworth Sleepiness 
Scale score; LMI, leg movement index; PLMI, periodic leg movement index; PI, 
periodicity index; n.s., not significant.
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For clusters B and D the log-normal distribution delivers clearly 
the best fit. However, this does not imply the fit parameter σ

ln
 

was the same in both clusters (see Figure 6): σ
ln

 = 0.25 ± 0.03 for 
cluster B and σ

ln
 = 0.55 ± 0.06 for cluster D (marginally signifi-

cant difference of medians, U-test: p = 0.029). Note that for the 
clinically defined patient groups differences in σ

ln
 were not sig-

nificant (p > 0.1). Note also that the apparently similar unfolded 
IMI distributions of clusters B and E were best fitted by different 

Subsequently the analysis of the goodness-of-fit of the one-
parameter fit distributions given in the Section “Methods” for the 
automatically defined similarity clusters was repeated, see Table 4. 
With the exception of cluster C there was agreement between both 
ranking methods for all clusters. In addition now the cluster-wise 
average p-value of the best fit distribution was larger, implying that 
clustering automatically groups patients whose IMI can be fitted 
best by the same distribution.
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Figure 5 | Matrix of similarities of the distributions. Top: Similarities pµν
KS (A) and 

xμν (B) of measured IMI distributions. Data sets were ordered according to patient 
groups and group boundaries are indicated by fully drawn lines: PLM with OSA (a to 
j), PLM without OSA or RLS (k to t), PLM with RLS (u to δ). The similarity in the group 
PLM with RLS was higher than for the remaining groups. Data-driven clustering 
predominantly depicted small clusters (see Methods). Bottom: Similarities pµν

KS 

(C) and xμν (D) of the unfolded IMI distributions were much larger. Data-driven 
clustering found several large clusters. For illustration purposes, the channels were 
ordered according to five automatically detected clusters comprising data sets a to δ 
(cluster A, seven members), e to α (cluster B, six members), c to t (cluster C, eight 
members), y to x (cluster D, four members) as well as d and f (cluster E, two 
members). Cluster boundaries are again indicated by fully drawn lines.
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their characteristics (Figures 3G,H). Technically, it is important to 
note that our choice of the degree m of the fit polynomial accord-
ing to Eq. 4 prevents overfitting the data. Allowing for variations 
∆m ∈ [−4, 4] we have shown in addition that the results are robust 
against variation of the particular choice of m (Figures 3B–D).

Here we investigated PLM periodicity by focusing on the shape 
of IMI distributions through the unfolding procedure. In patients 
with PLM and RLS Ferri et al. (2006b) found a bimodal distribu-
tion of measured IMI with the lower peak considerably below 10 s. 
This differs from our finding of a single-peaked distribution of 
measured IMI in patient group 3 (Figure 4C). The reason for this 
difference might be that in contrast to our analysis these authors 
based their calculation of LM distribution on all IMI intervals >0.5 s 
in contrast to the WASM definition of PLM during sleep applied 
to our data (Zucconi et al., 2006).

PLM associated with OSA and RLS show distinct IMI charac-
teristics (Culpepper et al., 1992; Briellmann et al., 1997). Therefore 
our second objective was to test whether periodicity could differenti-
ate between the clinical groups containing patients with PLM and 
OSA (group 1), PLM and RLS (group 3) and PLM without RLS 
or OSA (group 2). PLM periodicity was assessed by fitting one-
parameter distributions to the unfolded IMI distributions of indi-
vidual patients. The pooled IMI distributions of the three groups 
appeared very similar (Figures 4D–F) and none of the patients’ 
fit parameters σ

ln
, β

SI
, and β

sP
 was significantly different between 

the groups. These results suggest that the degree of periodicity as 
quantified by these parameters is not related to the comorbidity 
(OSA or RLS). However, patients within groups were heterogene-
ous in terms of medication and comorbidities, thus representing a 
typical patient cohort in a sleep clinic. This heterogeneity contrasts 
with other studies that investigated patients with RLS and/or PLM 
excluding patients with medication influencing motor activity dur-
ing sleep or significant sleep disorder or major comorbidities (Allen 
et al., 2004; Garcia-Borreguero et al., 2004; Hornyak et al., 2004; 
Ferri et al., 2006a,b, 2009; Manconi et al., 2007).

Non-parametric correlation between the fit parameters and 
demographic patient data showed a significantly more narrow IMI 
distribution, i.e., a more pronounced periodicity, for overweight 
patients. BMI of patient group 1 (PLM with OSA) was significantly 
higher compared to groups 2 (PLM with RLS) and 3 (PLM without 
RLS or OSA), see Figure 1.

In contrast to the degree of periodicity (as defined by the values 
of the fit parameters σ

ln
, β

SI
, and β

sP
), its nature (as defined by 

the best fit distribution) was different between patient groups. We 

fit distributions. This illustrates how automatic clustering reveals 
features of the data that cannot be obtained by visual inspection. 
For the unfolded IMI distributions of patients belonging to clus-
ters A and E the Scharf–Izrailev distribution had the best fit per-
formance. Here the fit parameters had different tendencies in both 
clusters (A: β

SI
 = 5.21 ± 1.26, E: β

SI
 = 9.76 ± 0.34), however, due 

to the small cluster sizes the difference did not reach significance 
(U-test: p = 0.095).

Discussion
In the present study, we applied for the first time the unfolding 
procedure of RMT to analyze PLM data. Our first objective was to 
test whether unfolding would enhance and reveal intrinsic perio-
dicity that is not obvious from the measured IMI distribution. 
Indeed, we found that applying this procedure in single patients 
improved detection of periodicity, which was hidden within a broad 
distribution of measured IMI (Figures 3A,C,D). Thus, this result 
underlines the usefulness of unfolding for the detection of periodic-
ity in neurophysiological time series. The broad range of measured 
IMI may be due to their dependence on the time of night and sleep 
stage (Coleman et al., 1980; Culpepper et al., 1992; Pollmächer and 
Schulz, 1993). In addition, the IMI probably may also depend on the 
time of intake of medication and its pharmacokinetics influencing 
motor activity in sleep.

Because unfolding may be necessary to enhance and reveal 
periodicity, we propose this method as an important pre-process-
ing step before analyzing PLM. Note that this recommendation 
holds independently from the method used for recording the LM, 
be it EMG (as in our study) or other methods like the recently 
applied Emfit sensor (Rauhala et al., 2009). Pooling of measured 
IMI may also broaden a group’s IMI distribution, whereas applying 
the unfolding procedure before pooling the patients’ data retains 
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Figure 6 | Pooled unfolded IMI distributions of the five automatically detected similarity clusters. The membership of the data sets in the clusters becomes 
transparent from the similarity matrices shown in Figures 5C,D.

Table 4 | Ranking of the goodness-of-fit for the automatically defined 

clusters. Displayed are the same quantities as in Table 2. The cluster-wise 

best fit is displayed in boldface.

	 Log-normal	 Scharf–Izrailev	 Semi-Poisson

Cluster A (N = 7)	 0.20 〈pKS〉 = 0.14	 1.80 〈pKS〉 = 0.38	 0.60 〈pKS〉 = 0.24

Cluster B (N = 6)	 1.20 〈pKS〉 = 0.30	 0.20 〈pKS〉 = 0.11	 0.80 〈pKS〉 = 0.19

Cluster C (N = 8)	 0.70 〈pKS〉 = 0.33	 0.70 〈pKS〉 = 0.07	 1.20 〈pKS〉 = 0.31

Cluster D (N = 4)	 1.00 〈pKS〉 = 0.43	 0.40 〈pKS〉 = 0.39	 0.60 〈pKS〉 = 0.37

Cluster E (N = 2)	 0.10 〈pKS〉 = 0.20	 3.00 〈pKS〉 = 0.55	 1.00 〈pKS〉 = 0.38
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long-range and short-range interactions, respectively. As a conse-
quence, excluding one distribution in favor of the other one, could 
help to understand mechanisms underlying LM series.

Log-normal distribution
Similar to Ferri et al. (2006b) the log-normal distribution is used 
(see e.g., Limpert et al., 2001) with mean 〈s〉 = 1 and a fit parameter 
σ

ln
 that controls the width:
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Its cumulated density is given by
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Scharf–Izrailev distribution
A heuristic formula for interpolating between the exponentially 
decaying Poisson and the peaked Wigner distribution results from 
the spacing statistics of Dyson gases with long-range interactions at 
temperature 1/β

SI
 (Izrailev, 1988; Scharf and Izrailev, 1990):
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(8)

Here increasing parameter β
SI

 (decreasing “temperature”) implies 
decreasing width of the distribution. The constants A

SI
 and B

SI
 must 

be calculated numerically for given β
SI

 by demanding normaliza-
tion ∫ =∞

0 1 1ds P s( )  and mean unit spacing 〈 〉 = ∫ =∞
s ds sP s0 1 1( ) . Also 

the cumulated density is integrated numerically. For integer values 
of β

SI
 the Scharf–Izrailev distribution coincides with well known 

distributions of RMT. For β
SI

 = 0 the Poisson distribution and for 
β

SI
 = 1 the Wigner distribution are reproduced.

Semi-Poisson distribution
The semi-Poisson distribution describes the spacing statistics of 
Dyson gases with short-range interaction at temperature 1/β

sP
 

(Bogomolny et al., 1999) as well as incomplete spectra of complex 
systems (Hernández-Saldaña et al., 1999). In addition it has been 
found empirically that distributions of (unfolded) car distances on 
highways can be fitted by the semi-Poisson distribution (Krbalek 
et al., 2001):

P s A s ssP sP sP
sP( ) exp .= − +( )( )β β 1

	 (9)

Also here increasing parameter β
sP

 (decreasing “temperature”) 
decreases the distribution’s width. The normalization is given by

AsP
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1

Γ
.
	

(10)

confirmed the result by Ferri et al. (2006b) that IMI distributions 
of patients suffering from RLS (here unfolded patient-wise dis-
tributions instead of pooled measured ones) can be fitted best by 
the log-normal distribution. On the contrary, the IMI distribu-
tions of patients in the OSA group could best be described by the 
Scharf–Izrailev distribution. Keeping in mind that this distribution 
can be derived for Dyson gases with long-range interaction between 
the particles (Izrailev, 1988; Scharf and Izrailev, 1990) this might 
imply a certain role of long-range interactions across several LM 
in these patients.

Our third objective was to test whether a data-driven cluster 
analysis would separate patients into different groups. Measured 
and unfolded IMI distributions showed considerable dissimilar-
ity within groups, while patients from different groups occasion-
ally showed similar distributions. Therefore a possible definition 
of data-driven group formation could be derived from the shape 
of the IMI distributions. Data-driven clustering of unfolded IMI 
distributions of PLM had not been described before and yielded 
five similarity clusters. We found that the PI (Ferri et al., 2006b) is 
the only quantity that shows significant differences between these 
clusters. This may be due to both approaches aiming at quantifying 
PLM periodicity.

However, the clusters were heterogeneous with respect to clini-
cal and most demographic data. It remains unclear, which patho-
physiological mechanism is responsible for the different shapes 
of the IMI distributions. One might speculate that the presumed 
neuronal central pattern generator responsible for the occurrence 
of PLM (Parrino et al., 1996, 2006; Guggisberg et al., 2007), is dif-
ferentially influenced by medication and comorbidities such as 
RLS or OSA.

Analysis of the goodness-of-fit of the one-parameter fit distribu-
tions for the automatically defined similarity clusters showed the 
log-normal distribution to yield the best fit for two of the clusters (10 
patients altogether). Also the Scharf–Izrailev distribution fitted two of 
the clusters best (9 patients altogether). Furthermore the apparently 
similar unfolded IMI distributions of two clusters (Figures 6B,E) 
were best fitted by different distributions. This finding indicates that 
subtle differences of periodicity may not be detected visually.

It remains to be investigated, whether and how applying the 
unfolding procedure to larger and more homogeneous patient 
groups allows the association between PLM and clinical signifi-
cance. Furthermore, an interesting question is whether application 
of more sophisticated RMT tools like, e.g., the number variance 
Σ2( )l  or the related but more stable Dyson–Mehta statistic ∆

3
(l) 

(not used in the present publication) helps to clarify the open ques-
tions of the clinical relevance of PLM and the nature of interaction 
between subsequent LM in PLM series. Both, Σ2( )l  and ∆

3
(l) can be 

used to measure long-range correlations between IMI and conse-
quently could complement the Markovian analysis carried out by 
Ferri et al. (2006a,b) from a methodological point of view.

Appendix
One-parameter fit distributions
Here we give the distributions used for fitting unfolded IMI distri-
butions in explicit form. The Scharf–Izrailev and semi-Poisson dis-
tributions can be derived rigorously from the model assumptions 
of one-dimensional particle gases on a ring (Dyson gas) with 
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