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Abstract: Alzheimer’s disease (AD) is a multifarious and developing neurodegenerative disorder.
The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms
is not up to the mark. In the context of existence, which is getting worse for the human brain, it is
necessary to take care of all critical measures. The disease is caused due to multidirectional patholo-
gy of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope
for  new drugs  for  AD,  summarized here  in  with  the  pyrimidine  based natural  product  inspired
molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant
to cure AD and screen them against various potential targets of AD. The synthesis of a highly func-
tionalized scaffold in one step in a single pot without isolating the intermediate is a challenging
task.  In  few  examples,  we  have  highlighted  the  importance  of  this  kind  of  reaction,  generally
known as multi-component reaction. Multi-component is a widely accepted technique by the drug
discovery people due to its high atom economy. It reduces multi-step process to a one-step process,
therefore the compounds library can be made in minimum time and cost. This review has highlight-
ed  the  importance  of  multicomponent  reactions  by  giving  the  example  of  active  scaffolds  of
pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of
bio-relevant molecules.
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1. INTRODUCTION
Alzheimer’s  disease  (AD)  is  a  silent  and  dangerous

problem in  the  world,  which  is  worsening  day  by  day.  In
most of the cases, it is affecting the cognitive zone and lead-
ing to dementia [1]. Most of the Alzheimer’s disease cases
suffer from the sporadic form of the disease in which aetiolo-
gy is still unknown. It involves multiple genetic, metabolic
and environmental risk factors [2].

The global scenario of the Alzheimer based dementia is
anticipated to be high.  It  is  expected to double every year
therefore making it the most expensive for the government
to deal  with in the upcoming decades [3].  A report  on the
growth of AD has indicated the burden of the disease. It is
estimated to be more than 74 million till 2030. The number
will likely double by the end of year 2050. Apart from this,
the prevalence of the disease is high in East Asia and Africa
with around 10 million people as compared to Western Eu-
rope with 7.5 million people. This is a quite depressive num-
ber for health personnel [4]. Based on a report on the role of
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genomics in AD, it was revealed that there are nine genetic
factors  associated  with  the  occurrence  and  progression  of
AD [5].

The progression of the disease is one of the main factors
of attraction. This disease is comparable to cancer in terms
of the number of people affected throughout the world. How-
ever, currently, the funding for AD is 1/12 th of the total fund-
ing for  cancer.  Throughout  research on AD, only 1% cost
has been implemented till now [ 6 ]. Research on this dis-
ease is a need in today’s age.

1.1. Pathogenesis of AD
The microscopic observation reveals that the formation

of  amyloid  and  senile  plague  appears  in  the  hippocampus
and  cerebral  cortex  during  the  progression  of  AD.  More-
over,  it  gives  the  progressive  expression  as  it  crosses  the
age. AD gradually leads to deformation of Tau protein, re-
sulting in neuronal degeneration, which eventually leads to
permanent damage of neuronal cell and turns into dementia
(Fig. 1) [7-10].

Few research papers  have reported  the  involvement  of
genetic factors and one of apolipoprotein E in AD. They al-
so described the mechanism of oxidation processes culminat-
ing in neurodegeneration [10-12]. The damage of the neuron-
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al cell mainly involves two mechanisms; oxidative damage
and inflammation (Fig. 2) [13].

Fig. (1). Pathogenesis of AD. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).

Fig. (2). Factors responsible for Neurodegeneration. (A higher reso-
lution / colour version of this figure is available in the electronic
copy of the article).

The inflammation response of the body is the result of
the sequence of over production of amyloid proteins. The in-
flammation leads to the destruction of neuronal cells (Fig. 3)
[14,  15].  There  are  reports  that  shed  light  on  the  involve-
ment of inflammation in the degeneration of neurons or the
progression of AD [16].

It  is  known from decades that  COX-2 enzymes are in-
volved in the inflammation process.  However,  recently its
role  has  been  explored  and  a  relationship  has  been  estab-
lished with the pathogenesis of a number of diseases other
than pain related to inflammation [17-19] such as schizophre-
nia [20], depression [21], epilepsy [22], parkinsonism [23,
24], ischemic brain injury [25] and diabetic peripheral neuro-
pathy [26].

Extensive clinical studies reported during the last decade
revealed  that  COX-2  expression  has  been  implicated  in  a
number  of  pathophysiological  conditions  related  with  the
brain.  It  is  evident  that  COX-2  plays  a  crucial  role  in  the
pathogenesis  of  various  degenerative  diseases  like
Alzheimer's  disease  (AD),  Schizophrenia,  Parkinson's  dis-
ease (PD), amyotrophic lateral sclerosis (ALS) and multiple
sclerosis (MS) [27-29]. It has been found that COX-2 slows
down the clearance of amyloid beta (Aβ) peptides, which is
responsible  for  the  progressive  degeneration of  brain  neu-
rones  [30].  Inflammatory  reactions  in  brain  neurons  often
lead to neurodegeneration and further loss of cognitive abili-
ties. Now a days the term “neuroinflammation” is used to de-
scribe any inflammation that is occurring in brain neurons.

Fig. (3). Inflammation mediated Neurodegeneration. (A higher res-
olution / colour version of this figure is available in the electronic
copy of the article).

Selective COX-2 inhibitors are being investigated for the
treatment of these neurological disorders [31]. The approach
of  targeting  COX-2  has  become  an  alternative  therapy  to
treat  some of  the afore mentioned diseases  [32].  Selective
targeting of COX-2 to treat some of the diseases other than
inflammation  mediated  pain  has  opened  a  new horizon  of
disease management. This could provide a convincing alter-
native therapeutic regimen for a variety of diseases. Many
new synthesis molecules or pure active constituent isolated
from plant sources are widely available and reported in com-
pound list which are not explored for pharmacological activi-
ties [33, 34].

1.2. Heterocyclic Scaffolds
Heterocycles are the most abundant scaffold used in the

pharmaceutical  field.  Among  them  N-based  heterocyclics
(Fig. 4) cover more than 90%, so their synthesis has been a
special arena to be exploited by drug discovery scientists.

Fig. (4). N-based heterocyclics. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).
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Fig. (5). Pyrimidine based Drugs. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

1.3. Pyrimidine
The pyrimidine ring system occupied 15% of the pharma-

cophores  which  comprised  of  N-heterocycles.  Although  it
comes next to pyridine ring system in terms of importance,
among the fused ring system pyrimidine ring predominates
[35]. Since pyrimidine is a key component of nucleotide bas-
es, an integral part of genetic material (DNA), therefore, the
pyrimidine ring has been the centre of attraction for synthet-
ic chemists [36]. Apart from this pyrimdine moiety is an inte-
gral  part  for  many  drugs/lead  such  as  anti-malarial  [37],
HMG- CoA reductase inhibitors [38], antibacterial [39], etc.
The relevance of the pyrimidine scaffold is further demons-
trated by the versatile biological activities exhibited by vari-
ous substituted pyrimidines. These include pyrimidinylpipe
rdinyloxypyridones  as  GPR119  modulators  [40],  indoly-
lurea-pyrimidine conjugate as PKCα inhibitors [41], functio-
nalised  pyrimidines  as  antimicotic  agents  [42]  and pheny-
laminopyrimidines  as  ABL-kinase  inhibitors  [43].  Pyrimi-
dine containing marketed drugs like pyrimethamine, rosuvas-
tatin, pipemidic acid etc and recently Imitinib [44] and Nilo-
tinib  [45],  a  tyrosine  kinases  inhibitors  were  licensed  for
treatment of patients with chronic myeloid leukaemia by the
U.S. Food and Drug Administration (FDA) (Fig. 5).

1.4. Pyrimidines for AD
The importance of pyrimidine nucleus in the AD man-

agement has been proven and reported by several scientists.
The  most  important  among  them  are  the  trisubstituted
pyrimidine moiety which was functionalized through vari-
ous electron-withdrawing (Nitro, Cyano etc) and electron-do-
nating  groups  (Methoxy,  Methyl  etc)  as  multi-targeted
Alzheimer’s  disease  (AD)  therapeutics  [46-50].

The  substituted  pyrimidine  derivatives  were  generally
found  with  the  multi  target  approaches  like  anti-cho-

linesterase  (AChE  and  BuChE),  anti-Aβ-aggregation
(AChE- and self-induced) and anti-β-secretase (BACE-1) in-
hibitory activity, in an effort to identify lead, multifunctional
candidates as part of our multi-targeted approach to treat AD
[51].

A series of piperazinyl pyrimidines as γ-secretase modu-
lators are of potential use in the treatment of Alzheimer’s dis-
ease. This novel class of piperazinyl pyrimidines were dis-
covered  with  the  potent  and  selective  inhibition  of  Fb42
over Ab40 production with 180-fold selectivity over inhibi-
tion of Notch cleavage. The structure-activity relationship of
the  derivatives  was  found  to  be  significantly  improved  in
Fb42/Ab40 selectivity via introduction of the gem-dimethyl
group. Hydroxymethyl substituted derivative was the most
potent which may be due to the gain of a hydrogen bond in-
teraction (Fig. 6) [52].

Fig. (6). Pyrimidine based Drugs. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).

Scientists from another lab revealed the activity of fused
azole-pyrimidine  for  phosphotidylinositol-3-kinase  (PI3K)
inhibition, especially for PI3K-γ inhibition and can be used
for the prophylaxis and treatment of diseases associated with
PI3K,  particularly  with  PI3K-γ  activity.  These  derivatives
were found effective in the treatment of inflammation and
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immuno regulatory disorders, such as asthma, atopic dermati-
tis, rhinitis, allergic diseases, chronic obstructive pulmonary
disease  (COPD),  septic  shock,  joint  diseases  and  autoim-
mune pathologies such as rheumatoid arthritis, grave’s dis-
ease,  cancer,  myocardial  contractility disorders,  heart  fail-
ure, thromboembolism, ischemia, and atherosclerosis. More-
over, they showed to be useful for pulmonary hypertension,
renal failure, cardiac hypertrophy, as well as neurodegenera-
tive  disorders  such  as  PD  and  AD,  diabetes  and  focal  is-
chemia, since the diseases also relate to PI3K activity in a
human or animal subject [45].

1.5. Synthetic Approach
The  importance  of  the  pyrimidine  nucleolus  is  to  gain

popularity to get the optimized structure for the concern dis-
ease. Moreover, many strategies were reported for the labora-
tory synthesis of substituted pyrimidine derivatives as depict-
ed in (Fig. 7). Synthesis of pyrimidine in an economical way
was a challenging task for organic chemists. At this point,
the  natural  source  derived  molecules  and  their  synthesis
come  into  the  picture.

The  reported  procedures  for  the  construction  of  the
pyrimidine scaffold may be classified under two main cate-
gories;  cyclo-condensation  of  di-electrophile  with  di-neu-
cleophile (Two nucleophilic centre), and cyclopropane ring
opening by di-nucleophilic system. Cyclo-condensation reac-
tion generally involves condensation of di-neucleophile like

amidine  derivative  with  synthetic  equivalent  of  1,3  di-
caronyl compound like alpha-beta unsaturated carbonyl [53]
(Route I),  enaminone [46,  54] (Route II),  Ethynyl ketones
[55-58]  (Route  III),  Enammide  [59]  (Route  IV),  β-  bro-
movinylaldehyde [60] (Route V), propargylic alcohol [61]
(Route VI) (Fig. 7).

The challenge for the synthesis of naturally fused com-
pound with the other nucleolus is still a mystery. It has been
tried by various groups for targeting various diseases. The fo-
cus here is to emphasize on the natural product inspired com-
pound for AD. It is described in a systematic manner.

1.6. Synthetic Approach for the Bioactive Pyrimidine
Pyrimidine  ring  based  anti-cancer  drug  methotrexate

(MTX) was used as a standard for the new series of pyrimi-
dine derivatives for AD and anti-cancer activity [62].

The  construction  of  highly  functionalized  bio-relevant
heterocyclic scaffolds in convenient and cost-effective way
has been a challenge for drug discovery scientists from the
industry and academia. Various methods have been adopted
for the synthesis of highly functionalized heterocycles. How-
ever, all the processes need longer steps to get highly functio-
nalized heterocycles, which is costlier. This will effect the
drug discovery process, because it requires a library of com-
pounds for the HTS (high-throughput) screening to get the
optimum activity scaffold out of a thousands of molecules
[55-61].

Fig. (7). Synthesis of substituted pyrimidine derivatives. (A higher resolution / colour version of this figure is available in the electronic
copy of the article).
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Fig. (8). pyrimidine derivatives (5a-m). (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Senthil kumar et al. synthesized a pyrimidine ring. The
substrate  for  the  reaction  was  4-flourobenzaldehyde  (1),
thiourea  (2)  and  ethylcyanoacetate  (3)  in  methanol  with
K2CO3 base. The pyrimidine scaffold (4) was further functio-
nalised through three steps to get the final pyrimidine deriva-
tives (5) (Fig. 8) [62].

More et al. synthesized 5-carbonitrile derivatives by mul-
ti component reaction. They developed two methods for the
synthesis.  First  was  the  conc.  H2SO4  in  ethanol  and  other
was dodecylbenzenesulfonic acid (DBSA) in water. The sub-
strate  was  p-chlorobenzoylacetonitrile  (6),  aldehydes  (7),
and urea derivatives (8) for the multicomponent reactions to
get the different derivatives of pyrimidine-5-carbonitrile (9).
The  method  with  DBSA in  water  was  more  efficient  than
the  first  one.  Bioactive  of  pyrimidine  derivatives  was  as-
sessed through in-vitro studies (Fig. 9) [63].

Warekar  et  al.  synthesized  3,4-dihydropyrimidines-2
(1H)-one  1,3-indanedione  (10),  aldehydes  (11)  and  ure-
a/thiourea (12) derivatives by Biginelli type reactions, where
P2O5  was  used as  acid  catalyst  and dehydrating agent  was
taken in a pot with ethanol. Di-hydro pyrimidine derivatives
(13) were synthesized with good to excellent yield. It was an-
ticipated that the reaction proceeded through Knoevenagel

condensation reaction of 1,3-indanedione (10) and aldehy-
des (11) followed by Michael reaction (Fig. 10) [64].

Patravale  and  group  utilized  multicomponent  reaction
for  the synthesis  of  substituted indenopyrimidine.  The ap-
proach for multicomponent synthesis was greener. One pot
synthesis  using  1,3-indandione  (14),  aromatic  aldehydes
(15) and guanidine hydrochloride (16) in the presence of cat-
alytic  amount  of  NaOH in  ethanol:water  gave different  2-
amino-4-phenyl-5H-indeno[1,2-d] pyrimidine-5-one deriva-
tives (17) (Fig. 11) [65].

Loidreau and group synthesized two series of novel N-
aryl-7- methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and
their  N-aryl-7-  methoxybenzo[b]thieno[3,2-d]pyrimid-
in-4-amine analogues. Their inhibition potential on five dif-
ferent  kinases-CDK5/p25  (cyclin-dependent  kinase),  CK-
1δ/ε (casein kinase 1), GSK3α/β (glycogen synthase kinase
3), DYRK1A (dual-specificity tyrosine phosphorylation reg-
ulated kinase) and CLK1 (cdc2-like kinase 1) were studied.
The most effective compounds on these two kinase families
are  the  benzo-thieno[3,2-d]  pyrimidines  (18,  19)  which
showed interesting sub-micromolar inhibition and selectivity
towards CLK1 and DYRK1A over the other tested kinases
[66].
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Fig. (9). pyrimidine-5-carbonitrile derivatives (9a-k). (A higher resolution / colour version of this figure is available in the electronic copy of
the article).

Fig. (10). Di-hydro pyrimidine derivatives (13). (A higher resolution / colour version of this figure is available in the electronic copy of the
article).

The  same  group  also  tried  with  the  N-aryl  ben-
zo[b]thieno[3,2-d]pyrimidin-4-amines and synthesized their
pyrido and pyrazino analogues (20-22). The inhibitory poten-

cy of the final products was tested against same five Ser/Thr
kinases,  and  some  of  the  lead  was  taken  up  for  further
studies  [66].
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Fig. (11). Synthesis of 2-amino-4-phenyl-5H-indeno[1,2-d] pyrimidine-5-one derivatives (17). (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

A patent based on the synthesis of naturally inspired az-
abicyclic fused Pyrimidine derivatives (23) for the targeting
MAP-activated protein kinase 2 (MK2), which reduced the
rate of neurodegeneration was published [67].

The 4,6-Diphenylpyrimidine derivatives (the most active
compounds (24-26) were also found effective for the inhibi-
tion of the Monoamine Oxidisase and Acetylcholinesterase
for the treatment of AD. The work was conducted by Kumar
B and co-workers [68].

Recently, a research group found the magical activity of
pyrimidine-based  compound  (27)  for  the  inhibition  of
CSK-3,  which  is  a  potential  target  for  AD  [69].

One of the pioneer research groups found the effective-
ness of 6-cyclylmethyl- and 6-alkylmethyl-substituted pyra-
zolo[3,4-d] pyrimidines (28) for the improvement of learn-
ing  and  memory.  These  are  the  major  symptoms  of  AD.
Moreover,  one  of  the  research  based  on  the  tricyclic
pyrimidines  revealed  their  anti-AD  action  through
DYRK1A/DYRK1B  inhibition  [70].

Another  patent  was  published  on  tricyclic  pyrimidines
(29) as inhibitors of DYRK1A/DYRK1B for the treatment
of AD by Gerard Rosse [71].

Recently  in  2019,  a  research  group  developed  a
molecule  “BMS-932481”  (30)  for  the  treatment  of
Alzheimer’s  which  gave  hope  to  AD  patients.  This  was
through the reduction of Aβ1–42 and Aβ1–40 in the plasma,
brain, and cerebrospinal fluid. It is in clinical trial and gave
a lot of hope to the world. [72].

The anti-Alzheimer activity of some synthesized hetero-
cyclic pyrimidine and thiopyrimidine derivatives fused with
steroidal structure was reported and conveniently screened
for their anti-Alzheimer activities using of Flurbiprofen as
the reference drug compound (31) was demonstrated to ex-
hibit remarkable activity and amyloid (A) lowering results
[73, 74] (Fig. 12 for compound 18-31).

The present scenario related to the pyrimidine ring based
natural product or inspired molecule created an open plat-
form for research of the multi targeting plant extract, which

is not discovered so far. The future related to the plant and
Alzehimer’s  treatment  showed a  positive  direction  for  the
drug discovery scientists to work on for the wellbeing of suf-
ferer. The present review is sufficient in providing an attrac-
tive area for research to get the data of all the chemical ingre-
dients of the plant and further screen them against various
potential targets of AD.

Library of compounds cannot be made by a multi-step
process. To overcome this challenge a multi-component reac-
tion is needed. It is given below with examples for the synth-
esis of highly functionalized scaffold in one step in one pot
without isolating the intermediate. Thus, the multi-compo-
nent  reaction came into  existence  and quickly  gained mo-
mentum in the field of drug discovery. The multi-component
is widely used by drug discovery scientists due to its high
atom economy. It also reduces multi-step process to one step
process, so the compounds library can be made in minimum
time and cost.

The pyridopyrimidines are class of 6–6 bicyclic systems
containing  two  or  three  nitrogen  atoms  in  both  six-mem-
bered rings. The compounds are also named as diaza- or tri-
aza-naphthalenes (Fig. 13).

Multicomponent reactions were used in the synthesis of
pyridopyrimidines and in the last  years,  the interest  in the
synthesis of pyrido[1,2-a]pyrimidines from the condensation
of 2-aminopyridines with different nucleophiles is growing
due to their highly efficient and adequate products. Ettar and
co-workers  reported  the  diverse  methodologies  that  have
been reported on the chemistry of pyrido[1,2-a]pyrimidines
[75].

Three-component  condensation  reaction  of  equimolar
amounts of 2-aminopyridines (32), aldehyde or ketone deri-
vatives (33) and cyclohexanone (34) gave a mixture of pyri-
do[1,2-a]pyrimidines (35, 36) as reported by Yang and co-
workers in 2013, (Fig. 14) [76].

Multicomponent  reactions  of  2-aminopyridines  (37),
aldehyde (38), and aldehyde/ketones (39) in aqueous solu-
tion of sodium dodecyl sulfate (SDS) gave substituted 4H-
pyrido[1,2-a]pyrimidines (40) (Fig. 15) [77].
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Fig. (12). Bioactive Pyrimidines. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (13). The pyridopyrimidines. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

4H-Pyrimido[1,6-a]pyrimidines  are  a  type  of  6–6  bi-
cyclic systems which are rarely reported despite the fact that
they provide an exceptional ring structure and multiple sub-
stitution designs, polarities, and H-bonding proficiencies.

Alizadeh et  al.  reported a  very proficient  route  for  the
synthesis  of  diarylhexahydro-2H-pyrimidopyrimidines

through  a  multicomponent  procedure.  (2-nitroethene-  1,1-
diyl)bis(methylsulfane) (42) with propane-1,3-diamine (43)
or 2,2-dimethylpropane-1,3-diamine (44) followed by reac-
tion with N,N’-(arylmethylene)bis(1-arylmethanimine) (41)
yielded  the  desired  diarylhexahydro-2H-pyrimidopy-
rimidines (45-a,b, 46-a,b). This is an alternative technique
for application in drug discovery (Fig. 17) [78].
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Fig. (14). Synthesis procedure for the mixture of pyrido[1,2-a]pyrimidines. (A higher resolution / colour version of this figure is available in
the electronic copy of the article).

Fig. (15). Synthesis of substituted 4H-pyrido[1,2-a] pyrimidines. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).
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Fig.  (16).  4H-Pyrimido[1,6-a]pyrimidine.  (A  higher  resolution  /
colour version of this figure is available in the electronic copy of
the article).

Fig.  (17).  multicomponent  synthetic  route  for  diarylhexahy-
dro-2H-pyrimidopyrimidines. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).

A detailed review was published by Elattar et al. for the
synthesis  of  substituted  pyrimidopyrimidine,  pyrimi-
do[1,6-a]pyrimidin-diones and pyrimidoquinazolines by vari-
ous routes. Common among them are from acyclic reactants,
multicomponent  synthesis,  from 4-aminopyrimidines,  ring

annulation,  from  6-aminopyrimidine-2,4-diol,  pyrimidine
-2,4(1H,3H)-dione,  from  4,6-dichloropyrimidine  and  vari-
ous other methods are available [79].

Another review was published by Monier and co-work-
ers for the various synthetic routes for pyrimidopyrimidines
or tetra-azanaphthalenes. These were the two fused pyrimi-
dine rings with four possible structural  isomers.  The main
emphasis was on the chemistry and biological significance
of pyrimido[4,5-d] pyrimidine and pyrimido[5,4-d]pyrimi-
dine analogs as types of bicyclic [6 + 6] systems. They fo-
cused  on  synthetic  methods,  the  reactivities  of  the  sub-
stituents linked to the ring carbon and nitrogen atoms and bi-
ological  applications.  The  potent  bioactive  components  of
the class are compound (47-49) (Fig. 18) [80].

A rewiew was published earlier in 2016 by Ettar and his
co-workers.  It  summarized the developments in the chem-
istry of bicyclic 6-6 systems with more emphasis was on the
structural features, reactions, and synthetic methodologies of
pyrido[4,3-d]pyrimidines.  5,6,7,8-Tetrahydropyrido[4,3-d]
pyrimidine (Fig. 19). Related compounds have been used as
starting  materials  for  the  multi-step  synthesis  of  tetrahy-
dropteroic acid derivatives [81].

Pyrido[3,4-d]pyrimidines is another class of derivatives
which is one of the most important heterocyclic compounds
with remarkable synthetic, biological and medical applica-
tions. Recently, an overview was published by Monier et al.
They elaborated  the  chemistry  of  heterocyclic  compounds
which  incorporated  the  pyrido[3,4-d]pyrimidine  scaffold
(50-52)  (Fig.  20)  [82].

This review has highlighted the importance of multi-com-
ponent reactions by using the example of active scaffolds of
pyrimidine/fused pyrimidines. This would highlight the im-
portance of the fast as well as smart synthesis of the bio-rele-
vant molecules. The multi-component reactions are widely
accepted in academia, the pharmaceutical sciences, and phar-
maceutical industries. It is probable in the future that multi-
component reactions will be a powerful tool in synthesis for
drug discovery scientists.

Fig. (18). Structure of the potent bioactive components of Pyrimidopyrimidines. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article).
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Fig.  (19).  Pyridopyrimidine  derivatives.  (A  higher  resolution  /
colour version of this figure is available in the electronic copy of
the article).

The aim of this review is to bridge the gap between the
naturally inspired pyrimidine ring analogues and their role
in  the  treatment  of  the  Alzheimer’s  disease  (AD) (53-65).
We need to understand how Alzheimer’s disease occurs and
what factors induce Alzheimer’s with comorbidities. Vari-
ous  natural  plants  are  available  in  the  list  of  medicinal
plants, but few of them are explored for CNS activities. Al-
kaloids are one of the famous categories of active constitutes
useful for the treatment of Alzheimer’s disease. Few plants
unexplored for brain treatment are mentioned in Table (1).

Fig. (20). Biologically active pyrido[3,4-d]pyrimidines. (A higher resolution / colour version of this figure is available in the electronic copy
of the article).

Fig. (21). Naturally inspired Pyrimidine alkaloids. (A higher resolution / colour version of this figure is available in the electronic copy of
the article).
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Table 1. Unexplored plants for the treatment of alzheimer disease.

S. No Plant Sources Chemical Name Str.
No.

Chemical
Constituent

Pharmacological
Activity

Ref.

      1. Albizzia Julibrissin
(Non-Proteinogenic

Amino Acid)

2-amino-3-ureidopropanoic acid 53 Albizziin Anxiety, Depres-
sion, Insomnia,

Cancer,

[83-85]

      2. Tadehagi Triquetrum (5-(4-[(methylcarbamoyl) amino]-2-oxopyrimidin-1(2H)-yl)
Tetrahydrofuran-2-Yl) Methyl Methylcarbamate

54 New pyrim-
dine alkaloid

Anti oxidant [86]

      3. Annona foetida Pyrimidine-β-carboline alkaloid 55 N-hydroxy an-
nomontine,

Annomontine,

Anti acetyl cho-
linesterase

[87,88]

      4. Heterostemma brownii 6-methoxy-4-(N-methylamino)-2-(N,N-dimethylamino)-5-(N-methylformamido)pyrimidine,
6-methoxy-2,4-bis(N-methylamino)-5-(N-methylformamido)pyrimidine, and 2-ami-

no-6-methoxy-4-(N-methylamino)-5-(N-methylformamido)pyrimidine

56,
57,
58

Heteromine A
and

Heteromine B

Treatment of Can-
cer,

Anti convulsants

[89,90]

      5. Kirkpatrickia varialosa 9-Amino-5-(2-aminopyrimidin-4-yl)pyrido 59 Variolin ana-
logues

Antiviral activity,
neurodegenerative

disorders

[91,92]

      6. Dichroa febrifuga 3-{3-[(2R,3S)-3-Hydroxypiperidin-2-yl]-2-oxopropyl}quinazolin-4(3H)-one 60 Febrifugine Antimalaria, neu-
roprotective

[93,94]

      7. Alchornea javanensis Hexahydroimidazo [1,2-a]pyrimidine 61 Alchorneine,
alchornidine

Antifungal [95]

      8. Glycyrrhiza uralennsis 3-methy-6,7,8-trihydro-pyrrolo [1,2-a]pyrimidine-2-one 62 uridine Cytotoxic activity
against human

cancer cell

[96]

      9. Acanthostrongylophora
Ingens

Pyrimidine-β-carboline alkaloid 55 Acanthomine
A, Ingenines

A and B

Anti leishmanial [97,98]

      10. Eudistoma vannamei 1-(4-Hydroxy-5-hydroxymethyl-tetrahydro-furan-2-yl)-5-methyl-1H-pyrimidine-2,4-dione 63 staurosporine Cytotoxic [99]
      11. Monanchora arbuscula 3-Nonyl-6,7-dihydro-5H-pyrrolo [1,2-c]pyrimidin-1-ylideneamine, 8-Butyl-7-methyl-4,5-di-

hydro-1H-cyclopenta[de]quinazolin-2-ylideneamine
64,
65

monalidine A,
arbusculidine

A

anti-parasitic ac-
tivity

[100,101]

Fig. (22). SAR for trisubstituted Pyrimidine. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle).
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CONCLUSION
This review highlighted the pyrimidine alkaloids isolat-

ed from natural products for the development of multifunc-
tional potential anti-AD agents because of their basic struc-
ture  pyrimidine  ring  and  fused  counter  parts.  Alzheimer-
based dementia is anticipated to increase globally and dou-
ble every year. Treatment of this disease will be the most ex-
pensive  to  deal  with  for  the  government  in  the  upcoming
twenty  years.  This  review  is  comprised  of  many  studies
which may show the importance of curing AD with a multi
targeting approach. Naturally occurring pyrimidine is so far
not in the market or research. Many natural plants are hav-
ing pyrimidines alkaloids which are unexplored and hidden
for the treatment of Alzheimer’s disease. This review gives
a platform to researchers for further study so a novel com-
pound which adds advantage to drug therapy for treatment
of  neurodegenerative  diseases  can  be  developed.  Further,
preclinical and clinical experimental data requires establish-
ing an evidence to develop a formulation.

LIST OF ABBREVIATIONS

AD = Alzheimer’s Disease
DNA = Deoxyribonucleic Acid
CSK-3 = C-Terminal Src Kinase
CDK5 = Cyclin-dependent Kinase
CK1 = Ccasein Kinase 1
GSK-3 = Glycogen Synthase Kinase 3
DYRK1A = Dual-specificity tyrosine phosphorylation

Regulated Kinase
CLK1 = Cdc2-like Kinase 1
MK2 = MAP-activated protein Kinase
DBSA = Dodecylbenzenesulfonic Acid
COX = Cyclooxygenase
PI3K = Phosphotidylinositol-3-ki
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