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ABSTRACT The chemistry underpinning microbial interactions provides an integra-
tive framework for linking the activities of individual microbes, microbial communi-
ties, plants, and their environments. Currently, we know very little about the func-
tions of genes and metabolites within these communities because genome
annotations and functions are derived from the minority of microbes that have been
propagated in the laboratory. Yet the diversity, complexity, inaccessibility, and irre-
producibility of native microbial consortia limit our ability to interpret chemical sig-
naling and map metabolic networks. In this perspective, we contend that standard-
ized laboratory ecosystems are needed to dissect the chemistry of soil microbiomes.
We argue that dissemination and application of standardized laboratory ecosystems
will be transformative for the field, much like how model organisms have played
critical roles in advancing biochemistry and molecular and cellular biology. Commu-
nity consensus on fabricated ecosystems (“EcoFABs”) along with protocols and data
standards will integrate efforts and enable rapid improvements in our understanding
of the biochemical ecology of microbial communities.
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There are few studies more fascinating, and at the same time more ne-
glected, than those of the teeming populations that exist in the dark
realms of the soil. We know too little of the threads that bind the soil or-
ganisms to each other and to their world, and to the world above.
Rachel Carson, Silent Spring, 1962

Microorganisms are on us and around us, catalyzing reactions on which we critically
depend yet poorly understand. Their metabolism has been driving earth’s climate

(1), building soils (2), and governing biogeochemical cycles for billions of years (3). The
realization that each plant and animal in an ecosystem have evolved in the presence of
microorganisms and is influenced by microbes greatly complicates understanding,
predicting, and managing ecosystems. The health of many ecosystems is intimately
connected to the health of soils, which are central to nutrient cycling in terrestrial
ecosystems (4) and represent a vast reservoir of biodiversity (5).

Scientists have been studying soils for well over a hundred years. Each technical
advance has seemingly revealed additional critical soil variables, including complex
mineralogy, hydrology, pore architecture, chemistries, and biology, making soils one of
the most heterogeneous biological systems on earth (6). Of the estimated 1012 micro-
bial species on earth (7), soils are thought to support the greatest diversity of microbes,
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presumably as a result of the range of microenvironments found therein (8). Indeed, the
spatial heterogeneity of soil facilitates a plethora of ecologic interactions that enable
the evolution and maintenance of bacterial diversity (9, 10). How soil microbial com-
munities living in diverse micron-scale niches interact with particles, various organisms,
and plant roots to cycle roughly 50% of global organic carbon is still unclear (11).
Simple models of homogeneous habitats cannot explain the speciation, dispersal, and
biological interactions that exist in soil.

CHEMISTRY IS THE LANGUAGE AND CURRENCY OF MICROBIAL COMMUNITIES

Chemistry is what integrates the activities of individual microbes, microbial com-
munities, plants, and other organisms and provides an important integrative framework
for understanding soil microbiota (Fig. 1A). Individual cells consume and release small
organic molecules (metabolites) and enzymes that modify their environment. These
metabolites and enzymes are, in turn, modified by other organisms, and it is therefore
the collective chemistry of microorganisms (12) that drives global processes (13).

Microbial metabolites range from simple molecules that serve as nutrients for other
microbes or plants to complex molecules, like flavonoids, nonribosomal peptides, and
polyketides that are associated with communication and antagonism of microbes
within the environment (14). Metabolomic methods are now being directly applied
to study soils and other complex environments (15). Unfortunately, most metabolites
detected by mass spectrometry cannot be readily identified. This is because metabolite
identification using tandem mass spectrometry, a leading approach, is based on
comparison to reference compounds (16, 17). Hence, our understanding of earth’s
chemical diversity is constrained to what we already know and have previously
cataloged in various databases.

Yet we still have much to learn about the biological functions of known metabolites
in situ. For example, even relatively simple metabolites such as phenazines, represen-
tatives of an extensive class of redox-active metabolites, can play very different roles
depending on the microenvironment, from serving as antibiotics, to acting as signaling
molecules, to facilitating energy generation, and mediating iron acquisition (18, 19).
Whether an organism would be expected to resist, be harmed, or even benefit from
phenazines depends not only on the state of the environment it inhabits (e.g., oxic or
anoxic) but also on its metabolic state and biochemical ecology, i.e., whether it
expresses specific phenazine-responsive genes that predict a particular fitness outcome

FIG 1 (A) Metabolites are the currency and communication for microbial communities. (B) Model
laboratory ecosystems for discovering causal mechanisms of connections between genes and metabolites
governing plant-microbe interactions.
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and/or its proximity to other organisms that may degrade or chemically modify
phenazines (20).

Each organism’s metabolic state thus represents a result of complex interactions
between species and the environmental chemical landscape. Ultimately, the range of
metabolites a microbe can produce and consume are encoded by its genome. Genomic
analysis of the extremely small fraction (�1%) of soil microbes that have been culti-
vated in the laboratory (21) has revealed that a significant fraction of their genomes (up
to 25%) is likely dedicated to the production of secondary metabolites (22), suggesting
that these metabolites play a vital role for life in soil environments.

METABOLIC “DARK MATTER”

Our understanding of microbial metabolism is largely based on a set of reductionist
studies of model organisms, such as Escherichia coli, Bacillus subtilis, or Saccharomyces
cerevisiae. Even for these well-studied microbes, more than 30% of their gene functions
are currently unknown (23). Using DNA sequence homology, lessons from studies of
these organisms have been extrapolated to all other microbes, including those ob-
served in complex environments. Thus, essentially all metabolic processes we recognize
are under the lamppost of characterized isolates that typically are grown quickly in the
laboratory under nutrient-replete conditions. However, life in soil is restricted by many
challenges, and thus, it would not be surprising if a vast yet uncharacterized metabolic
“dark matter” associated with novel microbial metabolism and metabolic processes
were to underpin the survival of soil microorganisms.

In the remainder of this perspective, we lay out a vision of integrated laboratory
ecosystem experiments, experimental approaches, modeling, and analytic technologies
that we believe have the potential to systematically advance our understanding of the
biochemical ecology of microbial communities in complex environments. Included in
this effort will be the integration of cutting edge omics techniques, including recon-
struction of genomes from metagenomic sequences, which have proven valuable in
advancing our understanding of the microbial potential in the environment (24). In
addition, measurement of the metabolic activities and chemistry of metabolomes
through metabolomic techniques will be critical. Yet omics approaches alone will not
enable discovery of completely new functions and must be integrated with other
approaches, such as classical physiology, genetics, and biochemistry.

FABRICATING MODEL MICROBIAL ECOSYSTEMS IS NEEDED TO ADVANCE OUR
UNDERSTANDING OF THEIR BIOCHEMICAL ECOLOGY

Sixty years ago, in the now classic review entitled “Biochemical ecology of soil
microbes,” the eminent soil scientist M. Alexander suggested that the small size and
relatively rapid generation time of microbes (versus higher organisms) naturally lends
them to laboratory ecologic studies (25). However, while great advances have been
made in environmental microbial genomics, our understanding of microbial commu-
nity assembly, community structure-activity relationships, and responses to environ-
mental perturbations is nascent. Studies of native microbial communities (e.g., in field
studies) are limited by the high cost, complexity, and difficulty in controlling variables
that present major challenges to deducing causal relationships, especially in ecosys-
tems where sampling and measurements at temporal and spatial scales relevant for
microbes are often not feasible. The most direct way to identify causal connections
between members of the community and metabolites is to modulate a community and
study its response. Yet, direct methods, such as deleting a prospective biosynthetic
cluster of interest to determine its impact on other organisms, have been limited to
laboratory environments.

Coupling advances in three-dimensional (3D) printing, sensors, and analytic and
imaging technologies has the potential to enable ecosystem fabrication, producing
“EcoFABs” that serve as a much-needed middle ground between model organisms and
highly complex communities (26). The successful development of standardized, low-
cost, and reproducible EcoFABs would greatly accelerate the discovery of the functional
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connections between microbes and metabolites. There are already a number of elegant
studies on simple ecosystems that have provided important insights into the biochem-
ical ecology of relatively simple environmental microbial communities (27–31). The
further development of these approaches would provide a powerful complement to
studies of native communities.

Native communities will be the inspiration and benchmark for EcoFABs, which in
turn would enable perturbation, manipulation, and detailed observation not possible in
native environments. Development of EcoFABs will depend on the formation of groups
of investigators such as those that have coalesced around the study of single model
organisms, such as the fly, mouse, worm, and zebrafish (32). However, not all microbial
communities lend themselves to laboratory study due to the slow generation times of
their members and/or the extreme conditions needed for them to grow. Adoption of
reproducible standard model ecosystems that could be disseminated between scien-
tists would greatly advance our understanding of biochemical ecology. Shared usage of
model ecosystems would enable researchers to focus on their areas of interest and
expertise, while permitting systematic comparisons with the results of others. Use of
synthetic biology and genetic tools within these controlled laboratory environments
would enable reductionist studies to determine gene and metabolite functions and
discover new biochemistry. Principles and models developed could inform and be
tested by field studies in an iterative fashion.

We believe that plants and their associated soil microbiota represent particularly
attractive targets for ecosystem fabrication and synthetic community design. Such
systems would enable investigation of diverse gene and metabolite functions relevant
to microbe-microbe and plant-microbe interactions (Fig. 1B) (33). Initially, it would be
desirable to build these EcoFABs using model plant species, such as Arabidopsis or
Brachypodium, to leverage extensive knowledge of their biology, powerful genetic tools
that have been developed, and advanced imaging technology. For example, the
GLO-Roots technology enables visualization of the root system through thin soil
sections (34).

Selecting community members for construction of standardized model ecosystems
will require careful consideration to make the model ecosystems suitable for diverse
lines of investigation. This will require achieving a balance of environmental relevance
and experimental tractability (Table 1). Relevance should be based on observations of
keystone species, known interactions, functional groups, and impact on important
ecosystem properties in natural environments that are of broad interest and impor-
tance to the scientific community. To be tractable, microbes should be able to grow
readily as isolates and be transformable. There is probably no group of isolates that will
satisfy all of these criteria, so tradeoffs will be required and expedience is important.
Significant effort has already been made to establish synthetic communities (28, 30, 35),
and these findings and initial isolates may enable rapid progress. As the composition
of these model communities is refined, it will be desirable to capture the dominant

TABLE 1 Balancing environmental relevance with experimental tractability: examples of
microbial features when selecting community members for construction of standardized
model ecosystems

Selection criterion and microbial feature

Microorganisms should be relevant to natural ecosystems
Keystone species
Known biotic interactions
Impact on important ecosystem properties
Encompass major phyla and functional groups
Dominance across rhizosphere and soils

Microorganisms should be experimentally tractable
Grow in isolation
Genetically tractable
Existing resources and interest
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microbial taxa that have recently been correlated with specific environmental predic-
tors across the globe (36). Yet we acknowledge that the question motivating any given
study ultimately will dictate the organisms chosen as most relevant.

Microfabrication technologies that permit control over the “microbial microenviron-
ment” would provide a much-needed experimental platform for deconstructing micro-
bial interactions. While this may sound futuristic, advances in 2D and 3D fabrication of
biomaterials could rapidly enable the construction of microbial communities with
carefully controlled microenvironments (37, 38), including those that capture aspects of
real soil systems (39, 40). Critically, laboratory ecosystems can be constructed at a range
of scales (e.g., aggregate scale, plant scale) and would permit application of existing
genetic tools to test the roles of individual taxa and combinations of genes and
microbes in more realistic laboratory conditions and associations, thus allowing cau-
sality to be probed.

PROBING CAUSALITY WITHIN COMMUNITIES

Use of advanced technologies in the context of laboratory ecosystems will enable
discovery of the relationships underpinning interactions within complex microbial
networks. Critically, defined laboratory ecosystems will also help generate a common
knowledge base, since all research is performed on a defined system with potentially
modified parameters and conditions, allowing for expansion of compatible data and
information. However, elucidation of who is communicating with whom requires
innovative computational tools. Taking advantage of genomic and metabolomic infor-
mation and data, genome-scale models have been deployed successfully to unravel
complex and intertwined interaction in cocultures and simple communities (27, 41).
These community systems biology approaches (42) benefit from decades of progress in
the field of systems biology for single organisms (43). While community systems
biology tools have been applied to predict interaction networks based on metabolite
exchanges in cocultures and communities dominated by a few members (27, 44, 45),
solving interaction networks of communities harboring tens or hundreds of members
has been computationally challenging and will require the development of new
algorithms and solvers.

To rapidly advance our understanding of the biochemical ecology of microbiomes,
we envision the workflow depicted in Fig. 2, where analysis of native ecosystems is used
to design EcoFABs that in turn enable mechanistic studies and development of
predictive models. The resulting predictions can then be tested in the field. Discrep-
ancies identified between EcoFAB-derived predictions and field data can be used to
iteratively refine the computational models. Starting small and systematically adding in
new variables (both biological and abiotic) once the relationships between actors at the
simplest scale are understood represents a rational approach to dissecting complex
systems.

We see opportunities to integrate a range of innovative technologies within Eco-
FABs to discover and characterize the connections within communities and chemistry
within soils. These techniques include, for example, sequence-based methods (46, 47),
metabolomics (48), stable isotope probing (49–53) and metabolic labeling methods (54,
55), as well as trace gas analysis (56), advanced imaging techniques (57, 58), and DNA
synthesis technologies (59). The latter is especially powerful in the context of EcoFABs,
since low-cost DNA synthesis enables direct synthesis of genes and even whole
biosynthetic pathways from metagenomes (60–64), allowing interrogation of these
gene products in the lab. Whole pathways can now be cloned into host genomes and
characterized using metabolomics to discover novel metabolites (63, 64) and enzyme
activities (23, 61, 62, 65–68). Having defined consortia in these laboratory ecosystems
would enable discovery of the ecologic effects of these metabolites. In addition,
molecular engineering tools, such as transposon insertion sequencing (Tn-seq) and
dual barcoded shotgun expression library sequencing (Dub-seq) (69, 70), and CRISPR-
Cas9 tools (71, 72) could enable large-scale discovery of gene and metabolite functions
within specific community and environmental contexts.
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CONCLUSION

The chemical signaling and metabolic webs of soil microbial communities are
largely unexplored. To investigate the biochemical ecology of these environments, we
need new technologies supporting reproducible ecosystem fabrication to enable use of
observational and reductionist tools. Community consensus on a few EcoFABs along
with protocols and data standards will enable discovery and detailed investigation of
the “dark biochemistry” of microbial interactions. Specifically, it will support reproduc-
tion of the same microbial ecosystems in labs around the world, enabling researchers
to build on each other’s results to advancing microbiome science much as model
organisms have advanced our understanding of molecular and cellular biology. How-
ever, a critical challenge will be recapitulating sufficient complexity from native micro-
bial communities to provide relevant insights, while at the same time making them
experimentally tractable. Striking this delicate balance will require the engagement of
scientists with diverse skills to design a series of model ecosystems designed with the
appropriate level of complexity need to gaining a predictive understanding of how soil
microbial ecosystems function.
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