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Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites,
including the gut, may also be its minor source. Melatonin regulates various functions,
including circadian rhythm, reproduction, temperature regulation, immune system,
cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured
bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable
modulation of bone metabolism by melatonin. This narrative review gives a comprehensive
account of the current understanding of melatonin at the cell/molecular to the systems
levels. Melatonin predominantly acts through its cognate receptors, of which melatonin
receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-
forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of
MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic
differentiation of hematopoietic stem cells. Produced from osteoblastic cells,
osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand
(RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the
osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a
strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors
osteogenic function and antagonizes the osteoclastogenic function with the
participation of SIRT signaling, various miRNAs also mediate the effects of the
hormone on bone cells. In rodent models of osteoporosis, melatonin has been
unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate
the bonemass conserving effect of melatonin in aging/postmenopausal osteoporosis. This
review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis
therapy through the critical assessment of the available literature.
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INTRODUCTION

Melatonin (Mel) is a bioamine (N-acetyl-5-methoxytryptamine)
produced primarily in the pineal gland that critically regulates the
sleep–wake cycle. In addition, Mel regulates diverse functions,
including seasonal reproduction, immunity, protection of retinal
pigment epithelial cells against oxidative damage, and glucose
homeostasis (Amaral and Cipolla-Neto, 2018). Mel is also
produced in the gut and other peripheral tissues (Jones et al.,
2012; Soderquist et al., 2015). It is a highly conserved molecule
synthesized in proteobacteria and cyanobacteria. As these
bacteria became part of the mitochondria of eukaryotes
through endosymbiosis and retained the ability to synthesize
melatonin, all organisms (plants and animals) produce this
hormone albeit with variations in synthetic pathways (Zhao
et al., 2019). Mel is highly soluble in both lipid and water and
thus easily diffuses through the cell membrane and the
blood–brain barrier (Yu et al., 2016). It has a half-life of about
30 min and is metabolized in the liver and excreted through urine
as 6-sulfatoxymelatonin that serves as a surrogate of circulatory
Mel levels (Paakkonen et al., 2006; Gooneratne et al., 2012).

Mel signals through G protein-coupled receptors (GPCR),
including melatonin receptor 1 (MT1R) andmelatonin receptor 2
(MT2R); however, the free radical scavenging effect of Mel is
independent of the receptors (Tan et al., 2007; Cecon et al., 2018).
GPCRs play a critical role in bone homeostasis. There are 92
GPCRs known to be associated with bone diseases and
dysfunction, out of which 36 cause diseases in humans and 72
in animals (Luo et al., 2019). The type 1 receptor for parathyroid
hormone (PTH1R), a GPCR upon activation by PTH and PTH-
related protein (PTHrP), acts on osteoblasts to stimulate bone
formation (Trivedi et al., 2010). On mesenchymal stem cells
(MSCs), PTH stimulates the formation of osteoblasts and
suppresses adipocyte formation concomitantly (Rickard et al.,
2006). Given the bone anabolic effect of PTH1R, the N-terminal
fragments of PTH (teriparatide) and PTHrP (abaloparatide) are
in clinical use for treating postmenopausal osteoporosis to reduce
the risk of spine and hip fractures (Bhattacharyya et al., 2019).
Other hormones that signal via the GPCRs and regulate bone
homeostasis include follicle-stimulating hormone and
norepinephrine, and both cause bone loss (Takeda et al., 2002;
Sun et al., 2006). In contrast, the thyroid-stimulating hormone
stimulates bone mass by suppressing bone remodeling (Abe et al.,
2003).

Bone remodeling is the central regulatory event that underlies
bone homeostasis in adult mammals and is required to replace
old and damaged bone with new bone. The active bone
remodeling cycle occurs in all weight-bearing bones, including
the lumbar spine, femur, and tibia. This cycle broadly has four
stages: 1) activation, when osteoclasts are activated and resorb
bone to form a resorption pit; 2) reversal, after the completion of
resorption when osteoblast precursors are recruited to the
resorption pit; 3) formation, when osteoblasts deposit bone
mineral and matrix to fill the pit; and 4) quiescent, when the
viable osteoblasts after filling the pit become lining cells and
osteocytes to regulate calcium homeostasis and mechanosensing,
respectively (Feng and McDonald, 2011). Under physiologic

conditions with normal gonadal function, bone remodeling is
balanced; in other words, the removal of the old/damaged bone is
replaced almost by the same amount of new bone. However,
when gonadal function declines, which is defined by the decrease
in sex steroid levels, as in cases of menopause and andropause, the
bone remodeling cycle displays an imbalance with greater bone
resorption than formation, which leads to net bone loss. When
net bone loss becomes uninhibited, it gives rise to osteoporosis
with the consequent increase in fracture risk (Manolagas et al.,
2002).

Available therapies for osteoporosis are classified under
remodeling suppressors (anti-resorptive), remodeling
enhancers (bone anabolic), and mixed (both anti-resorptive
and bone anabolic) (Langdahl, 2021). Bisphosphonates,
selective estrogen receptor modulators, and neutralizing
antibody against RANKL are anti-resorptive, of which
bisphosphonates are the first-line therapy of osteoporosis
(Langdahl, 2020). Teriparatide and abaloparatide are bone
anabolic drugs prescribed to patients with a high risk of
osteoporotic fracture (Trivedi et al., 2010; Bhattacharyya et al.,
2019). A neutralizing antibody against sclerostin (romosozumab)
is claimed to be both anti-resorptive and bone anabolic. However,
this has not been attested in clinical trials. Romosozumab is
considered a bone anabolic like PTH1R targeted drugs. Although
bone anabolic therapy is most desirable to restore the lost bone,
given its mode of action on the remodeling cycle, which is to
stimulate both formation and resorption, the anabolic effect is
lost after an initial phase of increase (Bhattacharyya et al., 2018).
Therefore, a therapy that stimulates bone formation without
increasing resorption or suppressing it would represent a
major advancement over the existing anti-osteoporosis therapy.

Mel may possess both bone-forming and anti-resorptive
effects, as shown by in vitro and preclinical animal studies.
Herein, we discuss the pharmacology of Mel receptors in
general and the effect of Mel on bone cells, its downstream
signaling, skeletal effects in preclinical models of bone loss,
and clinical studies assessing its skeletal impact in aging and
postmenopausal subjects.

PHARMACOLOGY OF MELATONIN
RECEPTORS

MT1R and MT2R have considerable sequence homology in the
transmembrane region (Reppert et al., 1994). Both receptors are
mainly coupled to Gαi/o proteins, and, consequently, decrease
intracellular levels of the second messenger cAMP, which is the
most commonly observed signaling pathway activated by Mel
(Dubocovich et al., 2010). Additional intracellular cascades
activated by Mel include MEK/ERK kinases and the
recruitment of β-arrestins (Chen M. et al., 2020). GPR50 is an
orphan receptor with 50% sequence homology with MT1R and
MT2R but does not bind with Mel or any other known ligands
(Reppert et al., 1996).

In HEK-293 cells, MT1R co-immunoprecipitated
preferentially with Gαi2 and Gαi3 proteins and to a lesser
extent with Gq/11, but not with Gαi1, Gαz, Gαo, Gα12, or Gαs,
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which suggested that MT1R is coupled with Gαi2 and Gαi3
proteins (Brydon et al., 1999). Mel activated the JNK pathway
when MT1R or MT2R was co-transfected with Gα16 in COS-7
cells, indicating coupling of both melatonin receptors to Gα16
(Chan et al., 2002). Coupling of MTRs with Gq/11 has been
reported in the myometrium (Sharkey et al., 2010), MSCs (Lee
et al., 2014), prostate epithelial cells (Shiu et al., 2010), and
pancreatic cells (Bahr et al., 2012), and the consequent
downstream events include production of diacylglycerol,
inositol trisphosphate, and intracellular rise in Ca2+ levels. The
heterogeneity of coupling of Mel receptors with G proteins and
consequent modulation of cellular events is shown in Figure 1.

At their physiological expression levels, human MT1R and
MT2R have a high potential to homo- and heteromerize in a
constitutive fashion (Ayoub et al., 2002). The possibility for
homo- and heteromer formation is variable as MT1R
homomer, and MT1R–MT2R heteromer formations are much
greater than MT2R heteromer (Ayoub et al., 2004). The
functional outcome of MT1R and MT2R heteromer is mostly
unknown except that such event occurs in retinal rod cells and
activates PLC/PKC pathway (Baba et al., 2013). Current evidence
strongly suggests that the signaling by the Mel receptors is highly

cell- and tissue-dependent, supporting the existence of system
bias regulating the functional outcome that is further dependent
on the differences in the expression of receptor-associated
proteins, including the formation of homo- and heteromeric
receptors. G proteins coupling selectivity of Mel receptors vis-
à-vis dimerization is shown in Figure 2.

There are several small molecule antagonists and agonists used
to understand the pharmacologic actions of Mel in finer detail.
Luzindole (N-acetyl-2-benzyltryptamine) is a competitive non-
selective receptor antagonist widely used to examine the
membrane effect of Mel. 4-Phenyl-2-propionamidotetralin
(4P-PDOT) is an MT2-selective antagonist used to
discriminate the effects between MT1R and MT2R. A specific
MT1R antagonist is not yet available. The agonist of Mel
receptors includes ramelteon ((S)-N-[2-(1,6,7,8-tetrahydro-2H-
indeno-(5,4-b)furan-8-yl)ethyl]propionamide), agomelatine (N-
[2-(7-methoxynaphthalen-1-yl)ethyl]acetamide), and
tasimelteon (N-[[(1R,2R)-2-(2,3-dihydro-1-benzofuran-4-yl)
cyclopropyl]methyl]propanamide). All agonists are non-
selective and have similar affinities for human MT1R and
MT2R (Millan et al., 2003; Kato et al., 2005). Despite being
non-selective, ramelteon has a higher affinity for MT1R over

FIGURE 1 | Diverse coupling of Mel receptors with G proteins and consequent activation of the downstream cellular signaling that mediates the effects of Mel.
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MT2R (Kato et al., 2005), and agomelatine and tasimelteon show
a higher affinity to MT2R over MT1R (Lavedan et al., 2015). Of
these agonists, ramelteon is used for the treatment of insomnia
and the other two are used for the treatment of sleep and
circadian disturbances.

EFFECT OF MELATONIN ON BONE CELLS
AND ASSOCIATED SIGNALING

In human adult MSCs, functional melatonin receptor was
demonstrated by radioreceptor assay, and upon the induction
of osteogenic differentiation, the binding of melatonin and its
differentiation promoting function were increased. In these cells,
Mel stimulated osteogenic differentiation by transactivation of
epidermal growth factor receptor (EGFR) through the activation
of metalloproteinase, which resulted in the downstream
activation of MEK1-Erk1/2, leading to osteogenic
differentiation (Radio et al., 2006). ROS accumulation results
in oxidative damage to mitochondrial function and contributes to
the etiology of osteoporosis. In humanMSCs, Mel restored H2O2-
mediated oxidative stress-inhibited osteoblast differentiation by
activating AMPK signaling, which then activated FOXO3a and
Runx2, the master osteogenic transcription factor (Lee et al.,

2018). When human peripheral blood mononuclear cells
(PBMCs, precursor of osteoclasts) were exposed to Mel,
oxidative stress was significantly mitigated with the attendant
restoration of manganese superoxide dismutase (MnSOD)
activity (Emamgholipour et al., 2016). Similar to the findings
in MSCs, Mel ameliorated H2O2-induced oxidative stress in MG-
63, human osteosarcoma cells, and maintained mitochondrial
ATP production and mitochondrial function (She et al., 2014).
Moreover, Mel also inhibits PPARγ expression in MSCs, thereby
suggesting that it favors osteogenic over adipogenic
differentiation in bone marrow (Maria et al., 2018) and
confirming the findings of Zhang et al. (2010). Accumulation
of fatty acids, particularly triglycerides (TG) in osteoblast
precursors, inhibits osteogenic differentiation and switches
these cells to adipocytes (Diascro et al., 1998). Mel inhibits TG
accumulation in osteoblasts (ROS17/2.8 cells) with or without
oleic acid (Sanchez-Hidalgo et al., 2007).

Inflammation is known to inhibit osteoblast functions.
Inflammation diseases, including IBD, RA, and COPD, have
been associated with osteoporosis (Hardy and Cooper, 2009).
One of the major inflammatory cytokines that become
abundant in the blood is tumor necrosis factor alpha
(TNFα). Mel protected BMSCs from TNFα-induced ROS
generation, reductions in osteogenic differentiation by

FIGURE 2 | Dimerization of the different types of Mel receptors regulates the preference for G protein binding and signalling.
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upregulating antioxidases (SOD, catalase, and glutathione)
and downregulation of oxidases (NADPH oxidases 1 and 2).
Furthermore, Mel phosphorylates p65 protein and blocks the
degradation of inhibitor of κBα (IκBα), resulting in the
reduced activity of the nuclear factor kappa B (NF-κB)
pathway (Qiu et al., 2019), which favors osteogenic
differentiation. Mel also suppresses the function of NF-kB
action by upregulating Wnt4 by the ERK1/2-Pax2-Egr1
pathway. Increased production of Wnt4 has an osteogenic
effect through the canonical Wnt-β-catenin and non-
canonical Wnt-p38-JNK pathways. The canonical pathway
activation by Mel was mediated by Wnt4-Fzd1-LRP5 and
Wnt4-Fzd6-LRP6, whereas the p38-JNK pathway was
mediated by Wnt4-Fzd2 interaction (Li X. et al., 2019). In
addition to mitigating the activity of the NF-κB pathway (Qiu
et al., 2019), Mel also rescued the attenuation of TNFα-induced
SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1)
expression that then protected SMAD1 protein from being
degraded by the SMURF1-mediated ubiquitination, resulting
in the maintenance of bone morphogenetic protein (BMP)
SMAD1-mediated osteogenic signaling in MSCs (Lian et al.,
2016).

Mel potentiated the function of osteogenic growth factor, that
is, BMP-4. In the C2C12 pre-myoblast cell line, Mel alone did not
stimulate osteoblast differentiation. However, in the presence of
BMP-4, Mel stimulated osteogenic differentiation by increasing
osterix, a zinc finger containing transcription factor that
promotes osteoblast differentiation in a Smad-dependent
mechanism. One of the mechanisms of Mel-mediated increase
in osterix expression involved stabilization of osterix protein by
the inhibition of the ubiquitin–proteasome pathway. Moreover,
in C2C12 cells, both PKA and PKC pathways are involved in the
transactivation of osterix by Mel (Han et al., 2017).

Mel has been reported to regulate osteogenic differentiation by
a transcriptional mechanism involving miRNA and circular
RNA. In mouse bone marrow stromal cells, Mel stimulates
osteogenic differentiation by increasing the expression of miR-
92b-5p that directly targets intracellular adhesion molecule-1
(ICAM-1). Because ICAM-1 inhibits osteogenesis of BMSCs,
Mel-induced upregulation of miR-92b-5p serves to augment
osteogenesis. Moreover, miR-92b-5p is downregulated in the
BMSCs of osteopenic mice, and the resultant impairment of
osteoblast differentiation of these cells in response to Mel
could be rescued by overexpressing miR-92b-5p (Li Y. et al.,
2019). Human BMSCs, upon treatment with Mel followed by
deep RNA sequencing, identified a circular RNA, circ_0003865,
that was repressed by Mel. circ_0003865 sponges miR-3653-3p,
which suppresses growth arrest specific-1 (GAS1) protein to
enhance osteogenic differentiation of BMSCs. Hence, by
repressing circ_0003865, Mel favors osteogenic differentiation.
These in vitro observations were confirmed in OVX mice, where
sh_circ_0003865 delivery by AAVs protected against the
development of osteopenia by upregulating miR-3653-3p
(Wang et al., 2021).

In addition to affording protection against inflammation
and ROS-induced suppression of osteoblastic cells, Mel
protects osteoblasts against glucocorticoid (GC)-induced

and glucose-induced suppression of differentiation. In
MC3T3-E1 murine osteoblasts, Mel prevented GC
(dexamethasone)-mediated inhibition of differentiation via
the proximal phosphoinositide-3-kinase (PI3K)/Akt (protein
kinase B) and downstream BMP/SMAD pathway (Zhao et al.,
2020). Moreover, Mel prevented glucotoxicity-induced
osteoblast apoptosis by attenuating endoplasmic reticulum
(ER) stress by regulating PERK–eIF2α–ATF4-CHOP
signaling. Mel action was mediated by both MT1R and
MT2R (Zhou R. et al., 2020). Elucidation of this mechanism
is important as oxidative stress resulting in the generation of
free radicals has been linked to ER stress in diabetic patients,
ultimately leading to loss of osteoblast population due to
apoptosis (Burgos-Moron et al., 2019). Ferroptosis is a
novel type of programmed cell death that impairs glucose-
stimulated insulin secretion by damaging pancreatic β-cells as
these cells are vulnerable to oxidative damage due to the lack of
a strong antioxidant defense mechanism (Sha et al., 2021).
Table 1 gives the summary of various events in osteoblasts that
Mel regulates.

In addition to suppressing osteoblast viability and
differentiation, oxidative stress favors osteoclastogenesis.
Given that Mel protects osteoblasts and osteoblast precursor
cells against apoptosis and inhibition of differentiation, it is
surmised that Mel could inhibit osteoclastic differentiation of
the precursor cells. Mel inhibits osteoclastogenesis of bone
marrow macrophages at the pharmacological concentrations
(1–100 μM) but not at the physiological concentration
(0.1–10 nM). The mechanism appears to be the suppression
of receptor activator of NF-κB ligand (RANKL)-induced ROS
production by bone marrow macrophage (BMM) through the
inhibition of NF-κB activation. Unlike the involvement of
silent information regulator-1 (SIRT-1) in osteogenic
differentiation of MSCs, the inhibition of osteoclastogenesis
by Mel was SIRT-1 independent (Zhou et al., 2017). In a
murine monocyte/macrophage cell line, RAW264.7 Mel first
decreases miR-882 expression that results in the increase of the
expression of transcription regulator of the circadian clock
Rev-erbα and decreases cathepsin K expression, ultimately
inhibiting osteoclast formation and function (Tian et al.,
2021). In a co-culture system using human MSCs and
PBMCs, Mel via MT2R increased osteoblastogenesis and
decreased osteoclastogenesis by increasing osteoprotegerin
(OPG) and decreasing the OPG: RANKL ratio. The
underlying mechanism involved the modulation of pERK1/2
pERK5, integrin-β1, NFκB, and GLUT4. In addition to
upregulating the anti-osteoclastogenic cytokine, OPG
production from osteoblasts, Mel directly inhibits
osteoclastogenesis (Maria et al., 2018). These reports suggest
that Mel suppresses osteoclastogenesis by both direct and
indirect mechanisms.

Studies on the effects of Mel on bone cells suggest that the
hormone has multiple salutary effects, including stimulation of
osteogenic differentiation, an increase in osteoblast survival, and
inhibition of adipocyte and osteoclast formation and is likely to
culminate in protecting bones against the development of
osteoporosis.
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SKELETAL EFFECTS OF MELATONIN IN
PRECLINICAL DISEASE MODELS

Pinealectomy and the Role of Melatonin
Scoliosis is a condition characterized by deformity in the lumbar
and thoracic spine and causes osteopenia or osteoporosis in
young individuals (Sadat-Ali et al., 2008). Experimental
scoliosis can be modeled in chickens by pinealectomy (PNX).
Newly hatched chicks given Mel for 8 weeks show an increase in
bone accrual and better microarchitecture in the spine. PNX of
newly hatched chicken and maintained for 8 weeks resulted in
vertebral (scoliotic) deformity, decreased length and weight of the
vertebral bodies of the spinal column, and reduced spinal BMD
compared with non-PNX chicks (Turgut et al., 2005). Similar to
that in the ovariectomized (OVX) condition, PNX results in high
turnover bone loss characterized by increased osteoblast and
osteoclast surface and number that accompanied decreased
trabecular bone volume and poor microarchitecture when
mid-portion of vertebrae was studied (Aota et al., 2013). Mel
treatment to PNX chicks maintained bone volume, trabecular
microarchitecture, and osteoblast number to the sham level.
However, the osteoclast number in the bones was not altered
by PNX (Kono et al., 2011). From these data, Mel derived from
the pineal gland contributes to skeletal homeostasis in birds.

Deleting the pineal gland-specific gene, tryptophan
hydroxylase (Tph1), the enzyme in the synthetic pathway of
Mel results in mice deficient in this hormone. These mice
displayed a low bone mass phenotype due to a defect in bone
formation. Furthermore, mice lacking MT2R and not MT1R
displayed a low bone mass phenotype caused by reduced
osteoblast proliferation and differentiation (Sharan et al.,
2017). The effect of PNX in a large animal was studied in
sheep. Static histomorphometry measurements at the iliac
crest biopsy showed equivalent loss of trabecular bones in
PNX and OVX animals. Bone resorption markers measured by
collagen degradation products, including serum pyridinoline and
urinary deoxypyridinoline, increased transiently at 3 and
6 months after PNX (Egermann et al., 2011).

Ovariectomy and the Effect of Melatonin
Bilateral ovariectomy removes the source of estrogen and is a
widely used model for postmenopausal osteoporosis. When
ovariectomy is performed in laboratory rodents, similar to
postmenopausal women, it induces a rapid trabecular bone
loss followed by cortical bone loss, ultimately resulting in loss
of bone mechanical strength (Kushwaha et al., 2014).
Furthermore, bone turnover markers, including the bone
resorption and formation markers in OVX rodents a similar
trend as in postmenopausal women with a rise in the resorption
markers. However, bone formation markers were initially
elevated but decline with time (Szulc et al., 2017; Pal et al., 2020).

In OVX mice, Mel had a dual favorable action of inhibiting
bone resorption and stimulating bone formation, resulting in
complete restoration of trabecular bone mass at a 100 μM dose.
This effect was achieved by increasing hepatocyte growth factor
(HGF) production from BMSCs, which then activated the
osteogenic Wnt-β-catenin pathway by downregulating
phosphatase and tensin homolog (PTEN). The mediatory role
of HGF has been elegantly shown by infusing si-HGF to OVX
mice treated with Mel, which showed abolition of the bone-
promoting effect of the hormone. Mel also upregulated various
osteogenic molecules, including BMP-2, BMP-4, osteocalcin,
Runx2, and sp2 (Zhang et al., 2021). In OVX mice, Zhou Y.
et al. (2020) reported the anti-osteoporotic effect of Mel at a
10 mg/kg dose but not at 100 mg/kg, similar to the case with the
osteogenic serum marker, procollagen type 1 N-terminal
propeptide (P1NP); diminished OVX level compared with
sham was increased by only the lower dose of Mel. However,
at the higher dose of Mel, the expression levels of osteogenic genes
in bones, including Runx2, osterix, type I collagen, osteocalcin,
and alkaline phosphatase (ALP), were significantly increased over
the corresponding OVX levels. Osteoclastogenic markers in the
blood, including type I collagen cross-linked C-telopeptide (CTX-
1) and tartrate-resistant acid phosphatase (TRAP), were
completely decreased by the higher Mel dose similar to that of
the lower dose. The underlying mechanism appears to be the
downregulation of inflammatory response in bone marrowMSCs

TABLE 1 | Osteogenic pathways and molecular mediators.

Cellular event Signaling mechanisms References

Stimulation of differentiation EGFR transactivation and Mek-Erk1 activation; activation of AMPK
signaling followed by the upregulation of FOXO3a and Runx2;
increase in miR-92b-5p and inhibition of ICAM-1; downregulation of
circ_0003865; suppression of GAS1

Radio et al. (2006), Lee et al. (2018), Li et al. (2019b), Wang
et al. (2021)

Inhibition of bone marrow adipogenesis Downregulation of PPARγ; upregulation of lnc RNA H19 to
spongemiR-541-3p

Maria et al. (2018), Han et al. (2021)

Protection against ROS and
inflammation

Upregulation of antioxidases; activation of canonical and non-
canonical wnt pathway; inhibition of NF-κB pathway; attenuation of
SMURF1 and maintenance of BMP-Smad1 signaling; suppression
of Erk activation

Emamgholipour et al. (2016), Qiu et al. (2019), Li et al.
(2019a), Lian et al. (2016), Zhang et al. (2016)

Protection against glucotoxicity Attenuation of ER stress through PERK–eIF2α-ATF4-CHOP
signaling; attenuates senescence by downregulating p16, p21, p53,
and γH2AX; upregulation of Sirt-1; activation of Nrf2-HO-1 pathway

Zhou et al. (2020a), Gong et al. (2021), Ma et al. (2020a)

Protection against glucocorticoid-
induced osteoblast differentiation

Activation of PI3K/Akt and BMP-Smad signaling Zhao et al. (2020)
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resulting in higher OPG-to-RANKL production that in turn leads
to a decrease in osteoclastogenesis. Given the equivalent decrease
in osteoclastogenic response and increase in the osteoblastogenic
response by lower and higher doses of Mel in OVXmice, a lack of
improvement in bone mass and volume in the higher dose of Mel
group is incomprehensible (Zhou Y. et al., 2020). The anti-
resorptive effect of Mel is observed in estradiol (E2) deficient
but not in the E2 replete condition. Accordingly, in ovary intact
rats, Mel did not inhibit the serum CTX-1, but it did in OVX rats.
Although this effect was lesser than E2, combining Mel with E2
had an additive effect as CTX-1 was suppressed more than E2 or
Mel-lone treatment given to OVX rats. This additive effect
translated into the skeletal response as the spine and tibial
bone area and whole-body bone mass were significantly higher
than either hormone (Ladizesky et al., 2003).

E2 deficiency, such as that after menopause, results in the
increased formation of adipocytes from the bone marrow MSCs
at the expense of osteoblasts. As a result, bone formation is inhibited
while osteoclast-stimulating cytokines from adipocytes are increased,
and together these two events contribute to bone loss. Canonical
Wnt pathway through β-catenin has reciprocal effects, favoring
osteogenesis and inhibiting adipogenesis. Accordingly, in OVX
rats, bone marrow adipogenesis is increased with a concomitant
decrease in osteogenesis, and Mel activated the canonical Wnt
pathway to reverse these events and restore bone mass that
involves complex participation of lnc RNA, mi-RNA, and Wnt
pathways. In this regard, Han et al. (2021) showed that Mel
upregulated lnc RNA H19 (having an osteogenic effect) that
sponged miR-541-3p (having an adipogenic effect), caused a
decrease in the adipogenic differentiation, and enhanced the
osteogenic differentiation of bone marrow MSCs. Since miR-541-
3p targets adiponectin, its downregulation upregulates adiponectin
levels in BMSCs. Given the osteogenic effect of adiponectin (China
et al., 2017; Pal China et al., 2018), it is surmised that, by favorably
regulating the H19-miR-541-3p-adiponectin axis, Mel promoted
bone formation in osteopenic rats.

The levels of inflammatory cytokines are increased after
menopause. One of the major mediators of inflammatory
cytokines in bone is the nucleotide-binding domain and the
leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome,
which, upon activation, inhibits osteogenic differentiation and
favors adipogenic differentiation of MSCs (Wang et al., 2017). In
OVX femoral bones, the levels of NLRP3 components, including
NLRP3, apoptosis-associated speck-like protein containing CARD
(ASC), pro-caspase-1, caspase-1 (p10), pro-IL-1β, and active IL-1β,
were increased over the sham, and Mel treatment significantly
inhibited their levels in the OVX bones. NLRP3 inflammasome
signaling inhibits osteogenic differentiation, and Mel stimulated the
event by suppressing the activation of the inflammasome by
activating the Wnt/b-catenin pathway (Xu et al., 2018).

Aging-Induced Bone Loss and the Effect of
Melatonin
Aging displays loss of bone mass, deterioration of bone
microarchitecture, and reductions in biomechanical strength,
thereby leading to increased fracture risk (Demontiero et al.,

2012). In 20-month aged male rats, Mel (50 mg/kg i.p.) treatment
for 12 weeks increased bone mass, improved trabecular
microarchitecture, decreased urinary loss of calcium and
phosphate, increased the serum osteogenic markers (bone-
specific ALP and osteocalcin), increased bone formation rate,
increased the osteogenic differentiation, and reduced adipogenic
differentiation of bone marrow stromal cells. These data
suggested that Mel acts as a bone anabolic hormone in aging-
induced bone loss (Chu et al., 2017). In adult mice (4 months), a
long duration Mel treatment (up to 20 months) via the oral route
increased the plasma Mel levels and preserved bone mass and
bone strength of the femur to the levels of the adult mice
(Igarashi-Migitaka et al., 2020). In aged rats (22 months,
equivalent to 60 years of human age), 10-week treatment of
Mel protected against age-related loss of bone mass and
strength by stimulating osteoblast markers in bone
(Tresguerres et al., 2014). These reports suggest that Mel
supplementation could inhibit natural aging-induced bone loss.

Diabetes-Induced Bone Loss and the Effect
of Melatonin
Diabetic osteoporosis is a common type of metabolic disease in
which bone quality is impaired due to senescence caused by high
glucose (Farr et al., 2016; Eckhardt et al., 2020). Mel alleviates
osteoblast senescence induced by high glucose (HG) and protects
against diabetes-induced bone loss. In murine osteoblastic cell
line, MC3T3-E1, HG caused concentration-dependent loss of
proliferation, and it was rescued by Mel by reversing the HG-
induced increase in cells in the G1 phase and decreased
population in the S phase. Mel downregulated the senescence
proteins, including p16, p21, p53, and γH2AX, caused by HG by
upregulating Sirt-1. Furthermore, in vivo, in male mice with type
1 diabetes (induced by streptozotocin), the aforementioned
senescence proteins were increased, and Mel treatment
mitigated their levels with a concomitant increase in bone
mass and improvement of microarchitecture. Sirt-1 was also
increased in the bone of diabetic rats treated with Mel, thus
suggesting that this NAD+-dependent histone deacetylase has a
crucial role in imparting anti-senescence and anti-DNA damage
effects in osteoblasts and serves as an important mechanism to
protect against bone loss (Gong et al., 2021). HG is also known to
cause oxidative stress, which stimulates autophagy in several cell
types by activating the Erk pathway (Hung et al., 2016; Mi et al.,
2016; Yeh et al., 2016). HG-induced oxidative stress is particularly
relevant in diabetes conditions. In a type 2 diabetes rat model
induced by a low dose of streptozotocin (30 mg/kg instead of
60 mg/kg), Mel treatment for 12 weeks protected diabetic rats
from developing osteopenia with attendant stimulation of
osteoblast function by mitigating HG-induced ROS
production, autophagy induction, and suppression of Erk
activation (Zhang et al., 2016).

HG also induces ferroptosis in osteoblasts assessed by
morphological hallmarks such as reduced mitochondrial
volume, disappearance of cristea, and downregulation of GPx
and cystine glutamate antiporter (SLC7A11). In addition, HG
caused lipid peroxidation and reduced osteoblast apoptosis. Mel
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prevented these events culminated in the mitigation of HG-
mediated decrease in osteoblast differentiation. Furthermore,
Nrf2-HO-1, the endogenous antioxidant pathway, was
suppressed by HG, and Mel reversed this effect. In an insulin-
resistant rat model (induced by feeding high fat and high sugar)
that represents T2DM, Mel mitigated the development of
osteopenia by increasing Nrf-2 (Ma H. et al., 2020).

Bone marrow MSCs (BMMSCs) from osteopenic animals
display poor antioxidant defense repertoire, including reduced
SOD1, SOD2, GPX1, and SIRT-1, with an attendant impairment
in osteoblast differentiation compared with animals with normal
bone mass. Mel treatment to osteopenic rats not only preserved
the antioxidant machinery in BMMSCs downstream of SIRT-1
but also maintained the bone mass and architecture (Chen W.
et al., 2020). Through SIRT3/SOD2 signaling, Mel has been
shown to ameliorate mitochondrial oxidative stress to increase
osteogenesis and improve bone mass around prostheses, thereby
implying that Mel could be useful in total joint arthroplasty for
increasing the lifespan and stability of the prostheses (Zhou et al.,
2019). Rapamycin, an immunosuppressive drug that induces
autophagy by inhibiting mTOR, is a suppressor of autophagy.
Rapamycin has been shown to increase bone mass in the senile
male osteoporosis model by activating osteocyte autophagy (Luo
et al., 2016). In senile female rats, a combination of rapamycin
andMel afforded greater protection of bone mass and strength by
favorable modulation of the OPG-to-RANKL ratio through
regulation of osteoblast function (Tao et al., 2020).

Emerging data suggest that citrate is an integral component of
apatite nanocrystal and accounts for 5.5% (wt%) of the organic
matter of the bone. Citrate is a major provider of carboxylate for
calcium bonding in the bone and critically contributes to bone
strength and resistance to fracture (Costello et al., 2012). In a
randomized, double-blind placebo-control trial on healthy
elderly persons, supplementation of potassium citrate for
2 years significantly increased BMD and improved
microarchitecture over the placebo group (Jehle et al., 2013).
OVX rat bones have significantly reduced citrate content than the
sham (ovary intact) control, suggesting that citrate is directly
related to bone loss. Mel treatment to OVX rats increased the
bone citrate content back to the level of the sham. In cultured
osteoblasts, Mel stimulated mineralized matrix formation by
upregulating Zn2+-transporter-1 (ZIP-1), as silencing ZIP-1
abrogated the mineralizing action of Mel. Moreover, ZIP-1
was downregulated in OVX bones, and Mel treatment
completely restored it to the sham level (Da et al., 2020).

Gelatine methacryloyl-dopamine (GelMA-DOPA) has been
widely used in bone tissue engineering due to its efficient adhesive
capability on wet surfaces and biocompatibility (Schuurman et al.,
2013; Ma D. et al., 2020; Keri et al., 2020). The success of
implanted biomaterials to remain adherent is diminished when
the viability of osteoblasts is reduced due to oxidative stress
response at the fracture site, mostly due to vasculature. To
address the issue, Mel was combined with GelMA-DOPA to
fabricate a composite implantation material to stimulate
osseointegration in the osteoporotic conditions through the
sustained release of Mel. In OVX rats, this composite implant
material decreased osteoblast apoptosis caused by oxidative stress

and improved bone formation around the prosthesis by signaling
through Sirt3/SOD pathway, thus indicating a potential use of
Mel in biomaterial implants for accelerated healing of fractures
and remaining secure at the fracture site (Xiao et al., 2020).

Table 2 summarizes the skeletal effects of Mel in various
preclinical disease models.

CLINICAL ASSESSMENT OF MELATONIN
IN DISEASES OF BONE LOSS

Diurnal changes are known to affect bone metabolism as studies
suggest a negative correlation of BMD (Kawabata, 1990),
increased association of fracture (Feskanich et al., 2009), and
increased bone turnover markers (Vasikaran et al., 2011) with
circadian disruption by long-term night shift work. Although
none of the studies report Mel levels, an a priori decrease in Mel
levels contributing to impaired bone response in the night-shift
workers can be considered the cause. These human studies were
sufficiently compelling to investigate the effect of Mel in diseases
of bone loss.

In postmenopausal osteopenic women (n = 11), Mel (5 mg) in
combination with 450 mg strontium (citrate), 2000 IU vitamin
D3, and 60 μg vitamin K2 (MSDK) favorably modulated bone
remodeling and increased BMD at the lumbar spine and femur
neck compared to the placebo group.Women treated withMSDK
also showed a decrease in serum CTX-1 and an increase in serum
P1NP. Although women in the MSDK arm had higher urinary
melatonin sulfate than the placebo group, whether the positive
skeletal effect of MSDK was solely due to Mel cannot be
ascertained (Maria et al., 2017). A highly enriched population
of BMMSCs (CD34−/CD31−) from young and old women was
obtained, and a transcriptome profile was carried out. Mel
pathway was altered in BMMSCs of older women along with
mTOR, gap junction, calcium, and NFAT signaling pathways,
which indicates an important function of Mel in age-associated
loss of osteoblast population in the bone marrow, which is an
important cause of osteoporosis (Roforth et al., 2015).

In CKD patients undergoing hemodialysis (HD), Mel was
reduced in those with osteoporosis than in those who are not. In
addition to reduced Mel, HD patients with osteoporosis display
higher serum inflammatory cytokines, including TNFα, IL-1, and
IL-6, and oxidative stress markers, including higher advanced
oxidation protein products and malondialdehyde produced by
the peroxidation of unsaturated fatty acids in the cell membrane
due to superoxide anion in the body. This study concludes that
inflammatory cytokines and oxidative stress markers are
negatively correlated, and Mel is positively correlated with
BMD (Ren et al., 2018).

In a pilot randomized study, perimenopausal women (n = 13)
given nightly Mel (3 mg p.o.) for 6 months had no significant
effect on BMD and bone turnover markers (NTX and
osteocalcin) while improved menstrual cycling (mean cycles
and duration of menses) (Kotlarczyk et al., 2012). In a double-
blind RCT, Mel (1 and 3 mg p.o.) dose-dependently increased
femur neck areal BMD (assessed by DXA) after 1-year treatment.
In addition, trabecular thickness at the tibia measured by high-
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resolution peripheral quantitative computed tomography
(HRpQCT) was increased in the (combined) Mel group
compared with placebo. Simulated failure load assessed by
finite element analysis of HRpQCT images showed no effect of
Mel treatment on tibia and radius. None of the BTMs, including
osteocalcin, P1NP, CTX-1, and BSAP, was different between the
Mel and the placebo groups. There was a significant decrease in
urinary calcium in the Mel group compared with the placebo,
which could be explained by the increased osteogenic effect of
Mel, resulting in increased mineralization (Amstrup et al., 2015).

Girls with anorexia nervosa (AN) have significantly higher
nocturnal Mel accompanied by a significantly decreased OPG/
RANKL ratio compared with healthy age- and sex-matched
control suggesting increased resorption and bone turnover rate
to be the possible outcomes of AN. Surprisingly, the bone
turnover markers, including CTX-1 and osteocalcin, were both
suppressed in AN compared with control. Osteocalcin and CTX-
1 levels were, respectively, >300% and 13% reduced in AN,
reflecting a disproportionate suppression of osteoblast function
in AN. Because mechanical loading positively contributes to
osteoblast differentiation, a ~30% decrease in the body weight
in girls with AN could cause reduced osteocalcin levels
(Ostrowska et al., 2010).

SUMMARY AND FUTURE PERSPECTIVES

As discussed earlier, Mel has diverse actions on bone cells (for
summary, see Table 1). The pathogenesis of osteoporosis and the
cellular targets of Mel’s action in the context of the bone
remodeling cycle are schematically shown in Figure 3.

In MSCs, Mel promotes osteogenic differentiation by multiple
mechanisms that include receptor-mediated signaling to

stimulate osteogenic genes (Runx2 and osterix), support BMP
signaling, upregulate OPG, and downregulate PPARγ expression
(Maria et al., 2018; Zhou Y. et al., 2020; Zhang et al., 2021). These
effects are achieved by Mel receptor-dependent signaling that
involves not only the classical signaling molecules and
antioxidant effects of the hormone but also RNAs (miRNAs
and lncRNAs) (Li Y. et al., 2019; Wang et al., 2021). As a
result, Mel stimulates osteoblast formation and downregulates
osteoclast and adipocyte formation. Mel also protects osteoblasts
from inflammation and glucose-induced toxicities. In osteoclasts,
Mel inhibits differentiation and function by suppressing RANKL-
induced ROS production by BMM through the inhibition of NF-
κB activation (Maria et al., 2018).

Bone marrow cells produce Mel that appears to protect cells
from endogenous and exogenous oxidative stress (Tan et al.,
1999). Indeed, in rats, Mel provides a myeloprotective action to
bone marrow cells exposed to a cytotoxic drug, aracytin (Anwar
et al., 1998). However, the cellular source of Mel in bone marrow
is unknown. Future research should identify the Mel positive cells
in the bone marrow and explore the paracrine bone-specific effect
of this hormone by taking a mouse genetic approach. Moreover,
mitochondrial dysfunction inhibits osteogenesis and favors
osteoclastic function, together contributing to bone loss during
aging. Mitochondria is the major organelle for the generation of
free radicals and oxidative stress contributing to aging-related
diseases, including osteoporosis (Dobson et al., 2020).
Conventional antioxidants such as α-tocopherol, ascorbate,
and flavonoids have limited efficacy in mitigating the severity
of ROS-related events due to their inability to concentrate in
mitochondria and achieve sufficient levels. Mel could serve as an
endogenous mitochondria-targeted antioxidant to diminish
oxidative stress in bone cells more efficiently and thereby
prevent bone loss. Future studies should address the link

TABLE 2 | Skeletal effects of Mel in preclinical models of bone loss.

Disease model Effects References

PNX a) In newborn chicks, it caused vertebral (scoliotic) deformity and reduced
spinal BMD

Turgut et al. (2005), Aota et al. (2013),
Egermann et al. (2011)

b) In young chickens, it caused high turnover bone loss and loss of trabecular
microarchitecture in the vertebra

c) In adult sheep, it caused trabecular bone loss at the iliac crest equivalent to OVX
animals

Tph1 deletion in the pineal gland Low bone mass phenotype and exogenous Mel restored bone mass Sharan et al. (2017)
Mel receptor deletion MT2R but not MT1R deletion has osteopenic phenotype Sharan et al. (2017)
OVX a) In mice, OVX caused bone loss at both tissue and serum marker levels and Mel

reversed both
Zhang et al. (2021), Zhou et al. (2020b), Xu et al.
(2018)

b) In rats, OVX caused osteopenia and Mel maintained bone mass Han et al. (2021), Da et al. (2020)
Prosthesis model developed in
OVX rats

Mel in a composite hydrogel system was applied at the distal femur around titanium
implant for the sustained release of the hormone, resulting in the increased
osteogenesis around prosthesis

Xiao et al. (2020)

Aging a) In 20-month-old rats, Mel treatment for 12 weeks increased bone mass and bone
formation markers

Chu et al. (2017)

b) In 22-month-old rats, Mel treatment for 10 weeks preserved bone mass and
strength

Tresguerres et al. (2014)

c) Long duration Mel (starting at 4 months until 20 months) maintained bone mass
equivalent to adult animals

Igarashi-Migitaka et al. (2020)

Streptozotocin-induced
diabetes

Mel protected diabetes-induced bone loss Gong et al. (2021), Zhang et al. (2016)
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between the roles of Mel and mitochondrial function in bone cells
in the context of aging.

Mammalian aging is associated with the weakening of
rhythmic activities, such as circadian sleep/wake rhythms
(Kondratova and Kondratov, 2012). Several genes that have
diurnal patterns, including Clock, Bmal1, Per1, Per2, Cry1,
and Rev-erb-α, are expressed in calvaria and long bones of
mice. In vitro, the expression of these genes has also been
reported in osteoblasts and osteoclasts [for a recent
comprehensive review, refer to Winter et al. (2021)]. Genetic
disruption of clock genes affects bone metabolism. For example,
Per2Brdm1 mice (carrying a single mutant Per2) display
increased bone formation, and Cry2−/− mice decreased bone
resorption (Maronde et al., 2010). In a study on 600 geriatric
individuals living in China, 14 tag single nucleotide
polymorphisms (SNPs) in seven circadian clock-associated
genes, including clock, Per1, Per 2, Per 3, Cry 1, Cry 2, and

MTNR1B (melatonin receptor 1B) were analyzed. The findings of
the study suggest that the Cry 2 rs2292910 and MTNR1B
rs3781638 SNPs are predictors of osteoporosis risk in the
Chinese population residing in a certain locality (Li et al.,
2016). More studies, such as the one on the Chinese geriatric
population, are required to better understand the association of
circadian genes on osteoporosis risk and the connection of Mel in
the process.

As a consequence of the direct effects of Mel in bone cells, it
has bone anabolic and anti-resorptive effects in preclinical models
of bone loss, including E2-deficient conditions, diabetic animals,
and aged animals (for summary, see Table 2). Mel downregulates
senescence proteins in bone cells that contribute to its anti-aging
effect and hold potential in treating age-related diseases besides
osteoporosis. Mel also synergizes the effects of rapamycin on
bone, resulting in stimulating bone mass in OVX and aging
conditions (Tao et al., 2020). An increase in bone mass by Mel in

FIGURE 3 | Schematic diagram showing the pathogenesis of osteoporosis and the sites of action of Mel. (A)Optimum biomechanical function of bone is achieved
by removing old bone and subsequent replacement by new bone through a bone remodeling cycle. In healthy adults, the remodeling cycle begins first by removing old/
damaged bones bymultinucleated osteoclasts (OC) (stage 3) by the fusion of mononuclear osteoclast precursors such asmonocytes andmacrophages in the activation
phase (stage 2). Pre-osteoblasts formed from MSCs are then recruited to the resorption sites (stage 4), an event known as the reversal stage, followed by their
differentiation to osteoblast (OB) that then form new bones (stage 5) to fill the resorption pits. The amount of bone formed in healthy adults is nearly equal to the amount of
bone resorbed. (B) In women with postmenopausal osteoporosis, while bone resorption becomes exaggerated (indicated as an unequal relationship between stage 3
and stage 4) due to the activation of osteoclasts as a result of a fall in estrogen level, bone formation is concurrently diminished due to a fall in osteoblast differentiation and
survival. Mel favorably acts at four stages of the remodeling, inhibits resorption (stages 2 and 3), and promotes bone formation (stages 4 and 5).
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osteopenic animals in many reports has been shown to
accompany an increase in bone strength, which suggests that
Mel has a positive effect on bone quality (Taylor et al., 2013; Cakir
et al., 2016; Igarashi-Migitaka et al., 2020). Mel also has potential
for biomaterial application as when combined with Gel-MA-
DOPA to fabricate a composite implantation material, it
stimulates osseointegration in the osteoporotic condition
through the sustained release of Mel (Xiao et al., 2020).

One of the attractive features of Mel action is its ability to
reduce the RANKL/OPG ratio, which has a direct therapeutic
implication (Renn et al., 2018). A higher RANKL/OPG ratio
over the normal controls promotes bone resorption and is
elevated in osteoporosis. A human neutralizing antibody
against RANKL (denosumab) is clinically used for the
treatment of postmenopausal osteoporosis (Cummings
et al., 2009). Because RANK is indispensable for osteoclast
formation and function, denosumab completely renders bone
resorption inactive. As bone resorption triggers the process of
the bone remodeling cycle, which is required for maintaining
bone quality, denosumab’s action affects bone quality in the
long run. Mel would allow the restoration of the bone
remodeling cycle to normal by suppressing RANKL instead
of completely inactivating it, thereby preventing overactive
bone resorption observed in osteoporosis patients. Another
limitation of anti-osteoporosis therapy is the limited window
of stimulated bone formation by the osteoanabolic therapies
(teriparatide and abaloparatide) (Bhattacharyya et al., 2019).
This limitation stems from the stimulatory effect of these
drugs on osteoblastic RANKL production that is concurrent
with the stimulation of osteoblast survival and differentiation.
The stimulatory effect on RANKL production limits the
osteoanabolic “window” of these drugs. Mel could be used
as a therapy adjunct to teriparatide/abaloparatide to widen the
anabolic window of these drugs. Both osteoanabolic therapies,
although very effective in increasing vertebral BMD, are not as
effective in increasing hip BMD (Bhattacharyya et al., 2019).

Therefore, combining Mel with any of these anabolic
therapies could provide an additive effect by increasing
BMD at both vertebra and hip. Moreover, given the
osteogenic effect and anti-resorptive effects of Mel in
several preclinical studies, this hormone also holds the
potential for standalone anti-osteoporosis therapy. Future
human clinical trials could establish Mel as a new class of
anti-osteoporosis therapy.

Preclinical studies have shown that the bone anabolic effect of
Mel is mediated by MT2R (Sharan et al., 2017). Although the
clinically used Mel receptor agonists, agomelatine, and
tasimelteon are non-selective between MT1R and MT2R, both
have relatively higher affinity to MT2R (Zlotos et al., 2014).
Therefore, the likely bone improving effect of these two drugs
could be assessed in osteoporosis patients. Moreover, as
agomelatine and tasimelteon are used to treat sleep and
circadian disturbances, patients using these drugs could be
retrospectively assessed for their BMD levels, which would
serve as a pointer to their bone mass-promoting effect.
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GLOSSARY

Mel: Melatonin

MT1R: Melatonin receptor 1

MT2R: Melatonin receptor 2

PTH1R: Type 1 receptor for parathyroid hormone

PTHrP: PTH-related protein

MSCs: Mesenchymal stem cells

RANKL: Nuclear factor kappa B ligand

OPG: Osteoprotegerin

GPR 50: G protein-coupled receptor 50

4P-PDOT: 4-Phenyl-2-propionamidotetralin

EGFR: Epidermal growth factor receptor

MnSOD: Manganese superoxide dismutase

SOD: Superoxide dismutase

PPARγ: Peroxisome proliferator-activated receptor gamma

TG: Triglycerides

SMURF1: SMAD-specific E3 ubiquitin protein ligase 1

EGR1: Early growth response 1

BMP: Bone morphogenetic protein

ICAM-1: Intracellular adhesion molecule-1

GC: Glucocorticoid

ER: Endoplasmic reticulum

elF: Translation initiation factors

PERK: Protein kinase RNA-like endoplasmic reticulum kinase

ATF4: Activating transcription factor 4

CHOP: C/EBP homologous protein

SIRT-1: Silent information regulator-1

PBMCs: Peripheral blood mononuclear cells

OVX: Ovariectomy

PNX: Pinealectomy

AN: Anorexia nervosa

GLUT4: Glucose transporter 4

Tph1: Tryptophan hydroxylase

HGF: Hepatocyte growth factor

PTEN: Phosphatase and tensin homolog

P1NP: Procollagen type 1 N-terminal propeptide

CTX-1: Collagen cross-linked C-telopeptide

NLRP3: Nucleotide-binding domain and the leucine-rich repeat pyrin 3
domain

IL: Interleukin

γH2AX: Gamma H2A histone family member X

HG: High glucose

GPx: Glutathione peroxidase

ROS: Reactive oxygen species

Nrf2: Nuclear factor-erythroid factor 2-related factor 2

ZIP-1: Zn2+-transporter-1

GelMA-DOPA: Gelatinmethacryloyl-dopamine

HD: Hemodialysis

DXA: Dual-energy x-ray absorptiometry

HR-pQCT: High-resolution peripheral quantitative computed
tomography

Per1 and Per2: Period

Cry1 and Cry2: Cryptochrome

SNPs: Single nucleotide polymorphisms

MTNR1B:

Melatonin receptor 1B.
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