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Ischemic stroke (IS) and multiple sclerosis (MS) are two pathologies of the central
nervous system (CNS). At the first look, this appears to be the only similarity between
the two diseases, as they seem quite different. Indeed IS has an acute onset compared
to MS which develops chronically; IS is consecutive to blood clot migrating to
cerebral blood vessels or decrease in cerebral blood flow following atherosclerosis
or decreases in cardiac output, whereas MS is an immune disease associated with
neurodegeneration. However, both pathologies share similar pathologic pathways and
treatments used in MS have been the object of studies in IS. In this mini-review we will
discuss similarities between IS and MS on astrocytes and neuroinflammation hallmarks
emphasizing the potential for treatments.
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INTRODUCTION

Ischemic stroke (IS) and multiple sclerosis (MS) are two pathologies of the central nervous
system (CNS). It has been proposed that the two pathologies may share similar pathological
pathways involving particularly glutamate release, oxidative stress, and reactive oxygen species
(ROS). During IS, activation of glutamate receptors following the release of this excitatory
neurotransmitter leads to an increase in intracellular calcium and activation of nitric oxide
synthase and NADPH oxidase pathways. The resulting increases in ROS contribute to
neuronal death, increases in blood–brain barrier (BBB) permeability and ischemic lesion
development (for review see Forrester et al., 2018). Similarly, glutamate may be involved in
MS development. Oligodendrocytes, the myelin-producing cells of the CNS, are vulnerable to
glutamate excitotoxicity via glutamate receptors activation. ROS generated following glutamate
receptors activation may contribute to demyelination and neuronal degradation in MS (for review,
see Gilgun-Sherki et al., 2004; Iodice et al., 2017).

ASTROCYTES

Astrocytes and Stroke
For a long time, glia cells were believed to be only structural cells. It is now well known that
glia cells such as astrocytes or microglia play a role in the CNS functions in physiological
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and pathological conditions. Indeed, astrocytes regulate ion and
neurotransmitters homeostasis, metabolically support neurons,
and monitor synaptic activity (for review, see Parpura et al.,
2012). Astrocytes glutamate transporters play a major role in
glutamate clearance and excitotoxicity by removing glutamate
from the extracellular space and maintaining it below neurotoxic
levels (Rothstein et al., 1996). It has been reported that glial
glutamate transporter (GLT-1) may have a dual effect in stroke
by taking up glutamate and thus protecting neurons in the early
stages of ischemia and by releasing glutamate and triggering
neurons death with prolonged ischemia (Mitani and Tanaka,
2003). Furthermore, astrocytes form a functional syncytium
thanks to gap junctions composed of the channel protein
connexin43 (Giaume et al., 1991). Such syncytium may protect
the CNS during IS by dispersing potassium or glutamate released
from neuron in the extracellular space and accumulated by
astrocytes. Indeed, infarct volumes were significantly increased
in connexin43 heterozygous null mice compared to wild type
mice (Siushansian et al., 2001). Reactive astrogliosis also occurs
following CNS injury with beneficial and deleterious effects.
Astrogliosis involves morphological and functional changes and
contribute to glial scar that may protect preserved healthy
tissues from inflammation but also may decrease ischemic tissue
recovery by reducing axons regeneration. Actually, glial scar may
be beneficial in the early stages of stroke allowing to limit lesion
size but deleterious if not resolved by decreasing neuroplasticity
and CNS regeneration (Pekny et al., 2014). Several factors such
as p53 (Ahn et al., 2015), p38 mitogen-activated protein kinase
(Roy Choudhury et al., 2014), macrophage-derived osteopontin
(Gliem et al., 2015), acute-phase protein pentraxin-3 (Rodriguez-
Grande et al., 2014), and CD36 (Bao et al., 2012) are involved in
astrocytes activation (see Sofroniew, 2009 for more information).

Astrocytes and MS
In MS, microglia activation has been shown in all clinical
subtypes of the disease (Prineas et al., 2001), astrocytes produce
a glial scar when inflammation decreases. In recent studies, the
astrocytes are recognized as early and highly active players during
MS lesion formation and as having beneficial and detrimental
roles during MS lesion evolution. Studies indicate that astroglial
myelin phagocytosis is an early event that takes place before the
damaged myelin is removed by macrophages. Thus modulation
of early astroglia responses can be a possible target for MS
treatment (Ponath et al., 2017).

In MS, all aspects of glutamate homeostasis are impaired,
indicating that glutamate excitotoxicity is an essential mechanism
in the pathogenesis of the disease. Many studies have shown
that glutamate levels are increased in the cerebrospinal fluid
(CSF) (Sarchielli et al., 2003) and in acute lesions of MS patients
(Srinivasan et al., 2005). There is an increase of glutaminase
expression in macrophages and microglia in close proximity
to dystrophic axons. In addition, in experimental autoimmune
encephalomyelitis (EAE), an animal model of MS (Werner et al.,
2001), there is a correlation between glutaminase expression and
axonal damage.

Today, several mechanisms have been taken into account
that may link astrocytic glutamate release with the glutamate

excitotoxicity present in MS, and all these mechanisms involve
microglia activation; in fact, after activation, these cells release
adenosine triphosphate (ATP), which activates the P2Y1 receptor
on astrocytes, leading to glutamate release (Pascual et al.,
2012). Considering that in MS immunoinflammatory and
neurodegenerative processes coexist, the glutamate excitotoxicity
could be the missing link between them. This concept has
practical value in developing innovative therapy that should
take into account the immunosuppression as well as the
neuroprotection.

Astrocyte-Targeted Strategies
Astrocyte-Targeted Strategies in Stroke (Table 1)
Astrocyte-targeted-strategies may be an option for stroke
therapy. Increasing astrocyte survival during ischemic stress
is associated with an increased neuronal survival. Indeed,
astrocyte targeted overexpression of heat shock protein 72
and superoxide dismutase 2 increases astrocyte resistance to
ischemic stress and preserves CA1 neurons following forebrain
ischemia (Xu et al., 2010). Similarly, pyruvate increases the
synthesis of glutathione, an antioxydant protecting cells from
toxins such as free radicals. Pyruvate administration protects
against glutamate-induced toxicity in mixed culture of cortex
cells but not in pure neuronal cultures (Miao et al., 2011).
Furthermore, addition of astroglia to the pure neuronal cultures
restores pyruvate-associated neuronal protection (Miao et al.,
2011). Other experiments indicate that upregulation of GLT-1
expression in astrocytes with ceftriaxone (Ouyang et al., 2007;
Verma et al., 2010) or viral-mediated gene delivery (Weller et al.,
2008) protects neurons from ischemia. Another potential target
for stroke therapy is p53 as it has been shown that inhibition of
p53 activity prevents astrocyte activation and astrocyte impaired
glutamate intake (Ahn et al., 2015). Another potential targets for
astrocytes and ischemic protection are microRNAs. MicroRNAs,
some of them expressed in astrocytes, appear to be involved in
the regulation of cerebral ischemia and may be targets to improve
stroke outcome (Ouyang et al., 2014). Indeed increasing levels
of microRNA-29a, a microRNA strongly expressed in astrocytes,
protects neurons during forebrain ischemia (Ouyang et al., 2013).
Finally, some experiments also suggest that astrocytes may be
implicated in the induction of brain ischemic tolerance by
preconditioning. This was linked to an upregulation of P2X7
receptors by astrocytes following preconditioning (Hirayama
et al., 2015).

Astrocyte-Targeted Strategies in MS (Table 1)
The P2X7 receptor has also been implicated in the pathogenesis
of MS. P2X7R immunoreactivity is increased in activated
microglia/macrophages in spinal cord during MS (Yiangou et al.,
2006). In addition, pharmacological inhibition of the receptor
diminishes astrogliosis in rat EAE and reduces neurological
symptoms (Grygorowicz et al., 2016). However, conflicting
results have been obtained in this animal model of MS. In
fact P2X7 receptor knockout mice are more resistant to EAE
than wild-type mice (Sharp et al., 2008). On the other hand,
in another study, the P2X7 receptor knockdown mice have
a more severe EAE (Chen and Brosnan, 2006). Conflicting
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TABLE 1 | Common therapeutic targets for multiple sclerosis and ischemic stroke.

Targets Molecular patterns Consequences

Astrocytes - Overexpression of heat shock protein 72 ↑ astrocytes resistance to ischemic stress (Xu et al., 2010)

- Overexpression of superoxide dismutase 2 ↑ astrocytes resistance to ischemic stress (Xu et al., 2010)

- Pyruvate ↑ glutathione (antioxidant) synthesis (Miao et al., 2011)

- Ceftriaxone ↑ glial glutamate transporter (Ouyang et al., 2007; Verma et al., 2010)

- Inhibition of p53 ↓ astrocytes activation (Ahn et al., 2015)

- microRNA-29a ↑ neurons survival during ischemia (Ouyang et al., 2013)

- P2X7 receptors ↑ brain ischemic tolerance by preconditioning (Hirayama et al., 2015)

Blood–Brain Barrier - Insulin growth factor 1 ↑ BBB integrity (Bake et al., 2014)

- Overexpression of heat Shock protein 27 ↑ BBB integrity (Shi et al., 2017)

- Preservation of tight junction by Sac-1004 ↑ BBB integrity (Zhang H. et al., 2017)

- Blockade of α4 integrin ↓ peripheral immune cells infiltration Becker et al., 2001; Investigators, 2001;
Relton et al., 2001; Liesz et al., 2011b; Langhauser et al., 2014; Llovera et al., 2015;
Elkins et al., 2017)

Neuroinflammation - Fumarate Immunomodulatory and antioxidant properties (Lin et al., 2016)

- Fingolimod ↓ lymphocytes influx and thrombo-inflammation (Liesz et al., 2011a; Kraft et al., 2013;
Fu et al., 2014)

- Nrf2 activation ↓ microglia activation and CNS peripheral cells infiltration (Kuo et al., 2017)

- IL1 inhibitor ↓ inflammatory cytokines expression (Zhang D.D. et al., 2017)

- IL33 ↑ anti-inflammatory Th2 responses (Luo et al., 2014; Korhonen et al., 2015)

- IL4 Modulation of microglia activation (Korhonen et al., 2015; Xia et al., 2015; Zhao et al., 2015)

- Protein kinases inhibitors ↑ M2-polarized microglia (Lee and Suk, 2017)

- microRNA ↑ M2-polarized microglia (Ni et al., 2015; Hamzei Taj et al., 2016)

- TNF-α ↓ inflammation (mixed results) (Sumbria et al., 2012; Clausen et al., 2014; Pires et al., 2014;
Probert, 2015; Palle et al., 2017; Wu et al., 2017)

- IL6 ↓inflammation (Maimone et al., 1997; Beauchemin and Carruthers, 2016; Kleiter et al., 2016;
Wang et al., 2016)

results were also observed regarding P2X7 receptors and IS.
On one side, activation of P2X7 receptors appears necessary
for inducing ischemic tolerance by preconditioning (Bindra
et al., 2014; Hirayama et al., 2015) and attenuate brain
edema after IS (Kaiser et al., 2016). On the other side, P2X7
receptors are involved in microglial cell (Eyo et al., 2013) and
neuronal death (Arbeloa et al., 2012) during oxygen-glucose
deprivation.

NEUROINFLAMMATION

Immune Cells Infiltration/Blood–Brain
Barrier Dysfunction and Stroke
The brain initial innate response to stroke is essentially mediated
by microglia, the resident macrophage of the CNS. This initial
step is then followed by infiltration of immune cells such as
neutrophils, macrophage/monocytes, T cells (Ma et al., 2017).
In ischemic conditions, neurons release damage associated
molecular patterns (DAMPs) leading to glial (microglia and
astrocytes) activation and chemokines liberation. This will lead
to endothelial cells activation, with expression of adhesion
molecules allowing interaction between peripheral immune cells
and endothelial cells followed by diapedesis (Strecker et al.,
2017). Furthermore, microglia activation induces the production
of ROS through the activation of NADPH oxidase associated
with BBB disruption (Sumi et al., 2010). Other pro-inflammatory

cytokines, such as tumor necrosis factor (TNF-α) and interleukin
(IL)1β are also secreted by activated microglia and contribute
to BBB dysfunction (Da Fonseca et al., 2014). Microglia can also
express matrix metalloproteinase (MMP) following activation
(Del Zoppo et al., 2007). MMP also play a role in BBB
dysfunction during IS following degradation of tight junction
proteins (Liu et al., 2012; Li et al., 2013). This may contribute
to the deleterious role of MMP-9 in the development of brain
injury after focal cerebral ischemia (Asahi et al., 2000). Finally,
it has been reported that all microglia in the penumbra are
associated to endothelial cells within 24 h post reperfusion
and destroy endothelial cells by phagocytosis contributing
to BBB disruption (Jolivel et al., 2015). It has also been
reported that other cells than microglia, such as mast cells, are
potentially initiators of BBB dysfunction and neuroinflammation
(McKittrick et al., 2015). Peripheral immune cells infiltration
following BBB disruption release anti-microbial enzymes,
reactive oxygen/nitrogen species and chemokines responsible
for further inflammation and BBB dysfunction (Strecker et al.,
2017).

M1 Phenotype Versus M2 Phenotype and
Stroke
When activated, immune cells can acquire 2 phenotypes,
M1 activated phenotype and M2 activated phenotype (Olah
et al., 2011; Easton, 2013; Patel et al., 2013). The M1 phenotype is
characterized by high expression of destructive pro-inflammatory
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mediators and contributes to ischemic lesions extension.
In contrast, the M2 phenotype presents neuroprotective
properties. Furthermore, M2 phenotype facilitates phagocytosis,
thus reducing secondary inflammatory reaction and making
space for newborn neurons. It has been observed that microglia
and macrophages respond dynamically to ischemic injury with,
first, an increase in the protective M2 phenotype followed
by a transition to the pro-inflammatory M1 phenotype (Hu
et al., 2012). Several factors may contribute to immune cells
polarization. Ischemic neurons may contribute to M1 microglial
activation by releasing soluble FAS ligand (Meng et al., 2016). In
contrast, neurons in the penumbra produce IL4, a cytokine with
the ability to polarize macrophages to the M2 phenotype (Zhao
et al., 2015).

M1 Phenotype Versus M2 Phenotype and
MS
In both MS and experimental animal models of MS, intracerebral
M1 phenotype cells (Broholm et al., 2004) as well as
M2 phenotype (Boven et al., 2006) have been detected.
Reactive microglia/macrophages exert both neurodestructive and
neuroprotective effects in MS contributing to the most common
clinical presentation of MS, the relapsing-remitting form. It
has been observed that both M1 and M2 activation states can
occur at the same time in EAE, and that the M1 to M2 ratio
is a key factor in relapse of EAE (Miron et al., 2013). The
M1 state is associated with progressive EAE whereas the M2
state may suppress the clinical symptoms of EAE (Ransohoff
and Perry, 2009). It has also been observed that both MS
and EAE are characterized by predominance of M1 microglia
in the acute or early phase of the disease (Mikita et al.,
2011). M1 markers appear in normal-appearing white matter
and in active and inactive white matter lesions, whereas M2
markers are mainly expressed in the perivascular space (Zhang
et al., 2011). For both stroke and MS, considering M1 and
M2 polarization, the therapy must be developed to prevent
excessive microglial activities but also to preserve their protective
functions.

Cytokines and Chemokines Involved in
Stroke
In a recent review, Iadecola and Anrather listed mediators
of post-ischemic inflammation. They separated mediators
involved in the initiation, the amplification and the
resolution of IS (Iadecola and Anrather, 2011). Considering
cytokines, IL1α and IL1β and TNF-α are involved in the
initiation of post-ischemic inflammation. Then, IL1, 6,
10, 17, 20, and TNF-α contributes to the amplification of
the neuroinflammation whereas TGF-β, IL10, 17, and 23
contribute to its resolution (Iadecola and Anrather, 2011).
Numerous chemokines such as CCL5, CXCL4, CXCL7, CX3CL1,
(initiation) and CCL2, CCL3, CCL5, CXCL2/3, and CXCL8
(amplification) also contributes to post-stroke inflammation
(Iadecola and Anrather, 2011). Other mediators include
adhesion molecules, proteases, and small molecules such as
prostanoids and leukotriens for initiation and iNOS, C0X-2

and NADPH oxidase for amplification (Iadecola and Anrather,
2011).

Neuroinflammation-Targeted Strategies
Neuroinflammation-Targeted Strategies and Stroke
(Table 1)
Considering the importance of neuroinflammation in ischemic
stroke, immunomodulation appears like an interesting
therapeutic option. Immunomodulation is currently used for MS
treatment and several drugs used in MS have been evaluated in
ischemic stroke. Fumarate, because of its immunomodulatory
and antioxidant properties, suppresses pro-inflammatory
cytokines in in vitro and in vivo stroke models. This is associated
with a decrease in infarct size and an improvement in behavioral
outcome (Lin et al., 2016). In animal models of ischemic stroke,
treatment with fingolimod is associated with mixed results. In
one study, fingolimod reduced post-stroke lymphocytes influx
but had no favorable impact on infarct volume and behavioral
dysfunction (Liesz et al., 2011a). In another study it has been
shown that fingolimod has stroke-protective action by reduction
of thrombo-inflammation but not by a direct neuroprotective
effect (Kraft et al., 2013). Furthermore, in a small clinical trial,
oral fingolimod within 72h of stroke onset was associated with
decreased microvascular permeability, attenuated neurological
deficits and improved recovery (Fu et al., 2014). Few papers
on the impact of glatiramer in IS are available. The results
are somewhat contradictory with either no reduction of infarct
volume or improvement in neurological deficit in mice (Poittevin
et al., 2013; Kraft et al., 2014) or an improvement of neurological
deficit and an increase in neurogenesis and decrease in infarct
volume in rats (Ibarra et al., 2007; Cruz et al., 2015).

Other treatments modulating directly or indirectly
neuroinflammation may present an interest for stroke therapy.
Indeed, it has been reported that activation of Nrf2 is associated
with a decrease in microglia activation and CNS peripheral
cell infiltration as well as a protection against IS in mice (Kuo
et al., 2017). It has also been shown that a fusion protein, which
fused the natural inhibitor of IL1, the IL1 receptor antagonist,
with a cell penetrating peptide, alleviates brain infarction,
cerebral edema, neurological deficit score, motor performance
and inflammatory cytokines expression (Zhang D.D. et al.,
2017). Several IL may also present an interest. For example,
IL33 is protective against ischemic insult by promoting the
anti-inflammatory Th2 responses (Luo et al., 2014; Korhonen
et al., 2015). This protective effect seems also related to the
induction of IL4 secretion (Korhonen et al., 2015). It has been
previously reported that IL4 is secreted by ischemic neurons as
an endogenous defense mechanism by modulating microglia
activation (Zhao et al., 2015). Indeed, M2-polarized microglia
with its anti-inflammatory profile is a promising therapeutic
option for stroke therapy (Xia et al., 2015). Other potential
targets to decrease microglia-mediated neuroinflammation by
increasing M2-polarized microglia are protein kinases inhibitors
(Lee and Suk, 2017) or microRNA such as let-7c-5p (Ni et al.,
2015) or microRNA-124 (Hamzei Taj et al., 2016). As, as
previously mentioned, neuroinflammation involves infiltration
by peripheral immune cells of the CNS, other potential therapies
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for stroke prevention may be to decrease such infiltration.
Decreasing BBB disruption may do this. Indeed, preservation
of the BBB integrity by insulin growth factor 1 (Bake et al.,
2014), overexpression of heat shock protein 27 (Shi et al., 2017),
or preservation of tight junction by Sac-1004 (Zhang H. et al.,
2017) is associated with an improved post-stroke neurological
outcome. Another possibility to decrease peripheral immune
cells infiltration is to modulate adhesion molecule. Blockade
of α4 integrin can protect the brain against ischemic injuries
in experimental models of IS (Becker et al., 2001; Relton et al.,
2001; Liesz et al., 2011b). In contrast, blockade of α4 integrin
was ineffective to protect from acute IS (Langhauser et al., 2014).
This apparent discrepancy may be explained by the results of
a preclinical multicenter trial on anti CD49d treatment for
acute brain ischemia (Llovera et al., 2015). Indeed, treatment
with CD49d-specific antibodies reduced leukocytes invasion
and infarct volume in stroke model associated with small
cortical infarction but not in stroke model associated with

large ischemic lesion suggesting that treatment efficacy may
depend on infarct severity or localization (Llovera et al., 2015).
In humans, anti ICAM-1 therapy worsened stroke outcome
in a clinical trial (Investigators, 2001) whereas treatment with
natalizumab, an α4 integrin blocker, did not reduce infarct
growth but had a beneficial effect on functional outcome
(Elkins et al., 2017). Noteworthy, natalizumab is currently
used as MS treatments and its use in experimental models
of IS once again emphasizes the similarities between the 2
pathologies.

Few data are available on the impact of TNF-α blocking
on IS lesions. It has been observed that patients with psoriasis
and treated with TNF-α inhibitors had a lower cardiovascular
event risk compared to patients treated with phototherapy (Wu
et al., 2018) or methotrexate (Wu et al., 2017). Furthermore,
anti TNF-α therapy ameliorates functional outcomes after stroke
by altering the peripheral immune response but without any
impact on infarct volume (Clausen et al., 2014). One of the

FIGURE 1 | Common pathways in pathogenesis of multiple sclerosis and ischemic stroke include astrocytes, BBB dysfunction and M1/M2 polarization. Astrocytes
are involved in ions and neurotransmitters homeostasis and metabolic support. Gap junctions as well as glutamate transporters allow for glutamate uptake and
clearance. Similarly, gap junctions allow for potassium clearance. Stored glutamate may be released by astrocytes and may be responsible for delayed lesions. In the
same way astrogliosis has deleterious and protective effects. It protects preserved tissue from inflammation but decreased neurogenesis in ischemic tissue.
Inflammatory markers such as TNF-α or IL1-β, reactive oxygen species, danger associated molecular patterns (DAMPs, molecules released from necrotic cells),
chemokines, matrix metalloproteinases (MMPs), and adhesion molecules expression contribute to BBB disruption and peripheral immune cells infiltration. M1
polarization of immune cells is associated with an increase in pro-inflammatory mediators and deleterious effects on neuronal lesions. In contrast, M2 polarization is
associated with neuroprotection and dead cells phagocytosis allowing for a decrease in inflammation.
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potential problems for IS treatments with anti TNF-α therapy
may be BBB crossing. Indeed engineering of a BBB crossing TNF-
α inhibitor allowed to decrease infarct volume and to improve
neurological outcome in a stroke experimental model (Sumbria
et al., 2012). However, we have to remain cautious and more
data are necessary on the impact of TNF-α inhibitors on IS
as it has been observed that TNF-α inhibition was associated
with increased ischemic damage following a decrease in innate
immune response from the brain (Pires et al., 2014). Considering
IL6, it has been reported that pre-treatment with tocilizumab,
a monoclonal antibody against IL6 in a rat model of ischemic
stroke, prevents neuronal cell apoptosis (Wang et al., 2016).

In conclusion, targeting of neuroinflammation appears a
promising option in IS treatment. Several clinical trials have
been performed or are underway to evaluate clinical outcome in
patients (for review see (Veltkamp and Gill, 2016)).

Neuroinflammation-Targeted Strategies and MS
(Table 1)
It is well known that MS is an immume disease and the scope
of this review is not to describe inflammatory pathways involved
in MS. Most if not all of MS treatments are immunomodulatory
or immunosuppressive drugs. In this field, several inflammatory
factors may be identified as new potential targets for MS
treatment. Indeed, several studies show that cytokines contribute
to the pathogenesis of MS. Indeed, increased levels of TNF-α
can be found in active lesions within the CNS as well as in the
serum and CSF of MS patients (Wen et al., 2012). Furthermore,
increased levels of TNF-α in CSF are in relation with the severity
and progression of the disease (Sharief and Hentges, 1991). Thus
studies have been done in mouse models of MS to test treatment
strategy aiming to block TNF-α with very encouraging results
(Palle et al., 2017). The hypothesis that neutralization of TNF-
α may reduce or arrest MS progression was evaluated in a
phase II randomized, multicenter, placebo-controlled study using
lenercept, a recombinant TNFR1 fusion protein. However results
were discouraging as patients treated with lenercept suffered from
increased disease activity. These results suggest that non-selective
blockade of TNF-α is detrimental (The Lenercept Multiple
Sclerosis Study Group and The University of British Columbia

Ms/Mri Analysis Group, 1999). One possible explanation could
be that TNF-α may exert both proinflammatory effects and
protective functions, for example, mediating remyelination in
the CNS under pathological conditions (Probert, 2015). Other
cytokines could be involved in the pathogenesis of MS as
increased levels of IL6 have been found in active plaques of
individuals suffering from MS (Maimone et al., 1997). It has
also been reported that IL6-deficient animals were fully resistant
to EAE (Kleiter et al., 2016). However, we have to remain
cautious as a report described a patient with rheumatoid arthritis
who developed MS during anti-IL6 therapy (Beauchemin and
Carruthers, 2016). Furthermore, it has been reported that patients
treated with anti-TNF-α therapies are at risk to develop clinical
signs of MS. Putting all these data together we can speculate that
IL6 may have beneficial effect in patients with MS.

CONCLUSION AND PERSPECTIVES

IS and MS share common pathological pathways such as
astrocytes activation, BBB disruption and microglia/macrophages
polarization (Figure 1). This allows emphasizing similar
treatments. Already, drugs commonly delivered for MS
treatment have been the object of clinical trials for IS care
using their immunomodulation potential. Potential innovative
treatments targeting astrocytes activation, BBB integrity and
neuroinflammation with modulation of microglia/macrophages
polarization or cytokines expression have been the subjects of
animal studies and clinical trials (Table 1). This is of interest
as, except for thrombolysis, no treatment has been identified to
decrease IS burden.
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