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Background. In recent years, immune-associated genes (IAGs) have been documented as having critical roles in the occurrence and
progression of muscle-invasive bladder cancer (MIBC). Novel immune-related biomarkers and a robust prognostic signature for
MIBC patients are still limited. The study is aimed at developing an IAG-based signature to predict the prognosis of MIBC
patients. Methods. In the present study, we identified differentially expressed IAGs in MIBC by using transcriptomics data from
The Cancer Genome Atlas (TCGA) database and proteomics data from our samples. We further constructed an IAG-based
signature and evaluated its prognostic and predictive value by survival analysis and nomogram. Tumor Immune Estimation
Resource (TIMER) was applied to explore the correlation between the IAG-based signature and immune cell infiltration in the
microenvironment of MIBC. Results. A total of 22 differentially expressed IAGs were identified, and 2 IAGs (NR2F6 and
AHNAK) were used to establish a prognostic signature. Subsequently, survival analysis showed that high-risk scores were
significantly correlated with poor overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) of MIBC
patients. A prognostic nomogram was constructed by integrating clinical factors with the IAG-based signature risk score. In
addition, the IAG-based signature risk score was positively associated with the infiltration of macrophages and dendritic cells in
MIBC. Conclusions. We constructed and verified a novel IAG-based signature, which could predict the prognosis of MIBC and
might reflect the status of the immune microenvironment of MIBC. Further studies in more independent clinical cohorts and
further experimental exploration of the prognostic IAG-based signature are still needed.

1. Introduction

Bladder cancer (BC), a complex tumor associated with high
morbidity and mortality rates in the urinary system, is the
ninth most common malignant disease worldwide [1].
Approximately 25% of patients are diagnosed with muscle-
invasive bladder cancer (MIBC), which is a potentially lethal
malignancy with an inferior prognosis [2]. The primary
treatment for MIBC is surgery, whereas immunotherapies
are emerging as a preferred treatment for MIBC patients in
whom surgery and chemotherapy cannot control the disease
[3]. However, due to the intrinsic genetic heterogeneity of
MIBC patients, patients with similar pathological features

still have a different response rate to immunotherapies. At
present, the precise molecular mechanisms of MIBC have
not yet been realized, while a study demonstrated that genetic
factors, especially immune-associated genes (IAGs) and
immune cells, play important roles in the occurrence and
progression of MIBC [4]. Furthermore, new advances in
genome sequencing technology and bioinformatics have con-
tributed to screening potential biomarkers that can predict
the prognosis of cancer patients [5]. In recent years, The
Cancer Genome Atlas (TCGA) database has been widely
used to identify the differentially expressed genes in the
mRNA expression profiles. In addition, a label-free liquid
chromatography-tandem mass spectrometry- (LC-MS/MS-)
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based proteome profiling approach has been used to survey
the expression levels of protein in samples [6]. Hence, novel
immune-related biomarkers for predicting MIBC patient
survival outcomes and immune status could be well studied
by integrating with transcriptomics and proteomics data.

In the present study, transcriptomics data from the
TCGA database and proteomics data from our samples were
applied to identify differentially expressed IAGs in MIBC
patients. A prognostic IAG-based signature and a nomogram
were further constructed to predict the prognosis of MIBC
patients. New potential prognostic markers in our study also
provide preliminary bioinformatic evidence for understand-
ing the complex mechanism of MIBC progression.

2. Materials

2.1. Data Collection. The raw RNA sequencing expression
profile and corresponding clinical information of BC patients
were obtained from the TCGA official website (https://portal
.gdc.cancer.gov/repository). We further selected 164 MIBC
patients with complete histopathologic information from
BC patients, and the detailed clinical information of MIBC
patients is shown in Table 1. An IAG comprehensive list is
downloaded from the ImmPort database (https://immport
.nia/http://id.nih.gov/) [7], which contains a total of 2498
IAGs.

2.2. LC-MS/MS. In the present study, all of the tissue samples
were collected from 10 patients treated with surgical resec-
tion, including 10 MIBC tissues and corresponding normal
tissues. The detailed clinical information of these 10 MIBC
patients is shown in Table 1. These 10 patients underwent
laparoscopic radical cystectomy and did not receive preoper-
ative radiotherapy and chemotherapy. According to the eth-
ical guidelines as required by the Declaration of Helsinki,
informed consent was provided by each patient, and the
research protocol was approved by the Ethical Committee
of the Affiliated Hospital of Qingdao University [8].

Comparative proteomic profiling is commonly used in
LC-MS/MS [9]. In this study, the samemethod was performed
to characterize the variety of proteins in MIBC samples and
normal samples. The process contained protein extraction,
trypsin digestion, TMT/iTRAQ labeling, HPLC fractionation,
LC-MS/MS analysis, database search, and bioinformatic analy-
sis. The enrichment of the differentially expressed protein
against all identified proteins was detected by two-tailed Fish-
er’s exact test, and protein domains with a corrected p value
< 0.05 were recognized as statistically significant. The threshold
of the tumor/normal ratio was set as 1.2 to further distinguish
up- or downregulation of these proteins in MIBC.

2.3. Identification of Differentially Expressed IAGs. The differ-
entially expressed IAGs between TCGA MIBC and normal

Table 1: TCGA and our MIBC patient characteristics.

Clinical characteristics TCGA (n = 164) % Our samples (n = 10) %

Survival status
Alive 107 65.24 9 90

Dead 57 34.76 1 10

Age at diagnosis 68 (34-87) 64 (48-77)

Gender
Female 39 23.78 2 20

Male 125 76.22 8 80

Histologic grade
High grade 148 90.24 5 50

Low grade 16 9.76 5 50

Stage

I 0 0 0 0

II 49 29.88 2 20

III 63 38.41 4 40

IV 52 31.71 4 40

Pathologic_T

T1 0 0 0 0

T2 55 33.54 2 20

T3 86 52.44 7 70

T4 23 14.02 1 10

Pathologic_M
M0 157 95.73 9 90

M1 7 4.27 1 1

Pathologic_N

N0 115 70.12 8 80

N1 20 12.20 1 10

N2 27 16.46 1 10

N3 2 1.22 0 0

Histological subtype
Nonpapillary 103 62.8 2 20

Papillary 61 37.2 8 80
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samples were identified using edgeR (version R 3.5.1, https://
bioconductor.org/packages/release/bioc/) [10]. A false
discovery rate ðFDRÞ < 0:05 and ∣log 2 fold change ðFCÞ ∣ >1
were set as the cut-off values. Subsequently, proteomics data
were used to screen IAGs, which were differentially expressed
in both mRNA and protein levels. A boxplot was applied to
display these differentially expressed IAGs. Gene Ontology
(GO) enrichment analysis and KEGG pathway analysis for
differentially expressed IAGs were also performed using the
“clusterProfiler” R package.

2.4. Construction of a Prognostic IAG-Based Signature. The
univariate Cox regression analysis was performed to identify
IAGs that were closely related to overall survival (OS) of the

TCGA MIBC cohort. The hazard ratios (HRs) were used to
identify risk-related IAGs (HR > 1) and protective IAGs
(HR < 1). The prognostic IAGs as the candidate genes were
subjected to a least absolute shrinkage and selection operator
(LASSO) Cox regression to construct an optimal IAG-based
signature for predicting the prognosis of MIBC patients.
The prognostic risk score was computed for each MIBC
patient using the following formula: risk score =∑ðβi × Exp
iÞ (i = the number of prognostic IAGs) [11]. After calculating
the risk scores of MIBC patients, 164 MIBC patients were
divided into high- and low-risk groups according to the
median value of the risk score. A Kaplan-Meier (K-M) curve
was constructed to assess the survival outcome difference
between high- and low-risk groups. A receiver operating
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Figure 1: Boxplots of the mRNA (a) and protein (b) expression levels of 22 IAGs in MIBC and normal tissues.
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characteristic (ROC) curve was conducted to evaluate the
predictive accuracy of clinicopathologic characteristics and
the IAG signature with the R package “survivalROC.” Fur-
thermore, univariate and multivariate Cox regression analy-
ses were performed to assess whether the risk score was
independent of other clinical variables such as age, gender,
grade, stage, pathologic T, pathologic N, pathologic M, and
histological subtype in determining the prognosis of the
MIBC patients. Moreover, 164 MIBC patients were clustered
into two molecular subtypes (basal and luminal) based on the
expression levels of genes [12]. The expressed levels of two
IAGs in two molecular subtypes were analyzed by using the
Wilcoxon signed-rank test.

2.5. Construction of a Prognostic Nomogram. A nomogram
was constructed by integrating clinical variables (age, gender,

grade, pathologic stage, pathologic T, pathologic N, patho-
logic M, and subtype) and the risk score derived from the
prognostic signature to assess the probable 1-, 2-, and 3-
year OS of MIBC patients via the R package rms (https://
cran.r-project.org/web/packages/rms/) [13].

2.6. Correlation Analysis between Risk Score and Immune Cell
Infiltration in MIBC. Previous studies demonstrated that
tumor-infiltrating immune cells, such as macrophages, B
cells, and CD8+ T cells, can influence the balance between
antitumor immunity and immune evasion in MIBC [14–16].
Thus, Tumor Immune Estimation Resource (TIMER), a useful
resource for comprehensive analysis of tumor-infiltrating
immune cells, was employed to explore the correlations
between the signature risk score and immune cell infiltration
[17]. The composition of six tumor-infiltrating immune cell
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Figure 2: GO and KEGG analyses of differentially expressed IAGs. Heatmap exhibited the enriched GO terms across the differentially
expressed IAGs (a). Heatmap exhibited the enriched KEGG pathways across the differentially expressed IAGs (b).
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subsets (B cells, CD4+ T cells, CD8+ T cells, macrophages,
neutrophils, and dendritic cells) was estimated by using the
TIMER algorithm. The levels of immune cell infiltration in
MIBC patients were obtained from the TIMER website, and
the relationship between the signature risk score and six
tumor-infiltrating immune cells was performed in R.

3. Results

3.1. Identification of Differentially Expressed IAGs in MIBC.
The transcriptomics data and proteomics data of MIBC
patients were subjected to differential expression analysis. A
total of 22 differentially expressed IAGs were identified in
MIBC samples. Boxplots were used to display the expression
levels of 22 IAGs. Among 22 IAGs, 14 IAGs were downregu-
lated and 8 IAGs were upregulated in TCGA MIBC samples
(Figure 1(a)). In our samples, 15 IAGs were downregulated
and 7 IAGs were upregulated (Figure 1(b)). The subcellular
localization of 22 IAGs in tumor cells is mainly enriched in
the cytoplasm, endoplasmic reticulum, extracellular, mito-
chondria, nucleus, and plasma membrane (Supplementary

1). To investigate the potential molecular mechanisms of 22
IAGs in MIBC, GO and KEGG analyses were performed.
The results indicated that the most significant GO enriched
terms involved in immunity were negative regulation of
smooth muscle cell proliferation and antigen processing
and presentation of exogenous peptide antigen via MHC
class I (BP: biological process); adherens junction, collagen-
containing extracellular matrix, and extracellular matrix
(CC: cellular components); and calcium-dependent protein
binding (MF: molecular functions) (Figure 2(a)). In the
KEGG enrichment analysis, these IAGs were primarily corre-
lated with pathways related to adherens junction, extracellu-
lar matrix, vesicle lumen, focal adhesion, cell-substrate
junction, and costamere (Figure 2(b)).

3.2. Construction of an IAG-Based Signature. By performing
univariate Cox regression analysis on the 22 IAGs in the
TCGA cohort, ANXA6 (annexin A6), AHNAK (AHNAK
nucleoprotein), ILK (integrin-linked kinase), and NR2F6
(nuclear receptor subfamily 2 group F member 6) were sig-
nificantly related to the OS of MIBC patients (Figure 3(a)).
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Figure 3: Univariate Cox regression analysis showed that a total of 4 IAGs are closely associated with the survival of MIBC patients (a).
LASSO coefficient profiles of 4 genes in MIBC. Selection of the optimal parameter (lambda) in the LASSO model for MIBC (b). A
coefficient profile plot was generated against the log(lambda) sequence (c).
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Figure 4: Continued.
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Among 4 IAGs, ANXA6, AHNAK, and ILK were considered
risk factors with HR values greater than 1, whereas NR2F6
was considered a protective factor with HR values less than
1. LASSO Cox regression analysis was then applied to con-
struct an IAG-based signature in MIBC by using 4 IAGs.
While 2 genes were included, the signature achieved the best
performance (Figure 3(b)), and the regression coefficient for
4 IAGs was computed (Figure 3(c)). The risk score for each
MIBC patient is as follows: risk score = ð0:0009 × expression
value of AHNAKÞ + ð−0:0060 × expression value of NR2F6Þ,
and classified 164 patients into high- and low-risk groups
according to the median value of the risk score. K-M
survival analysis demonstrated that high-risk scores were
significantly associated with poor OS (p = 2:473e − 04,
Figure 4(a)), progression-free survival (PFS) (p = 1:237e − 04,
Figure 4(b)), and disease-free survival (DFS) (p = 4:487e − 03,
Figure 4(c)). To further evaluate the predictive ability of the
IAG signature, we performed the ROC curve, and the area
under the curve (AUC) of the signature risk score, grade, age,
gender, pathologic stage, pathologic M, pathologic N, patho-
logic T, and subtype were 0.695, 0.551, 0.546, 0.409, 0.649,
0.523, 0.632, 0.598, and 0.381, respectively (Figure 4(d)). The
result indicated superior predictive accuracy of the signature
in survival than other clinical factors. Subsequently, univariate
and multivariate Cox regression analyses were performed to
assess the prognostic significances of the IAG-based signature
and various clinical factors. Univariate Cox regression analysis
showed that age (p = 0:035), pathologic stage (p = 0:003),
pathologic T (p = 0:019), pathologic M (p = 0:003), subtype
(p = 0:033), and risk score (p < 0:001) were associated with
the OS of MIBC patients (Figure 4(e)). Multivariate Cox
regression analysis indicated that the IAG signature risk score
was an independent prognostic factor for MIBC (p < 0:001,
Figure 4(f)). In addition, the correlation of the IAG-based
signature and the clinicopathological characteristics of MIBC
patients was also analyzed. A heatmap indicated that the
signature was closely associated with the grade (p < 0:001),
pathologic stage (p < 0:001), pathologic T (p < 0:001), and
subtype (p < 0:001) of MIBC patients (Figure 5). In recent

years, several independent studies have shown that BC has dis-
tinct molecular subtypes, which were associated with different
outcomes of BC patients. Therefore, the expression levels of
two IAGs in two molecular types were further analyzed. The
results indicated that AHNAK was highly expressed in the
basal subtype and NR2F6 was highly expressed in the luminal
subtype (Figures 6(a) and 6(b)). Furthermore, MIBC patients
with a high IAG-based signature risk score may indicate the
features of a basal subtype (Figure 6(c)).

3.3. Construction of a Prognostic Nomogram for MIBC. To
establish a clinically applicable method for monitoring the
prognosis of MIBC patients, we established a prognostic
nomogram by combining clinicopathologic characteristics
(age, gender, grade, pathologic stage, pathologic T, patho-
logic N, pathologic M, and subtype) with the signature risk
score. The result indicated that the new prognostic nomo-
gram could superiorly predict 1-, 2-, and 3-year OS of MIBC
patients (Figure 7).

3.4. Correlation Analysis between the Risk Score and Immune
Cell Infiltration in MIBC. We estimated the relationship
between the abundance of six types of tumor-infiltrating
immune cells (B cells, CD4+ T cells, CD8+ T cells, dendritic
cells, macrophages, and neutrophils) and the signature risk
score in MIBC. The results revealed that the risk score was
positively related to the infiltration of macrophages
(p = 0:039, Figure 8(a)) and dendritic cells (p = 0:041,
Figure 8(b)) in MIBC. However, the risk score was not corre-
lated with the infiltration of B cells, CD4+ T cells, CD8+ T
cells, and neutrophils (Figures 8(c)–8(f)).

4. Discussion

MIBC is a common malignancy of the urinary system, in
which incidence rates are constantly increasing worldwide.
Due to the profound research on the mechanism of tumor
immune escape and immunotherapy, IAGs are getting
increasing attention in recent years. Current studies had
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Figure 4: Survival analyses of the IAG-based signature in MIBC. Kaplan-Meier curves revealed that the high-risk score was closely associated
with poor overall survival (OS) (a), progression-free survival (PFS) of MIBC patients (b), and disease-free survival (DFS) of MIBC patients (c).
The ROC curves showed that AUCs for the signature risk score, grade, age, gender, pathologic stage, pathologic M, pathologic N, pathologic
T, and subtype were 0.695, 0.551, 0.546, 0.409, 0.649, 0.523, 0.632, 0.598, and 0.381, respectively (d). Univariate Cox regression analysis
showed that age, pathologic stage, pathologic T, pathologic M, subtype, and risk score were associated with the OS of MIBC patients (e).
Multivariate Cox regression analysis indicated that the IAG-based signature risk score was an independent prognostic factor for MIBC (f).
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shown the important role of IAGs in various cancers, includ-
ing MIBC [18–21]. Therefore, IAGs are novel biomarkers,
which can predict the survival outcomes and the immune
status of MIBC patients. In the present study, 22 IAGs were
identified based on the transcriptomics and proteomics data
of MIBC patients; 4 IAGs (ANXA6, AHNAK, ILK, and
NR2F6) were significantly related to the survival of MIBC
patients. Subsequently, AHNAK and NR2F6 were finally
selected to construct a signature to predict the prognosis of
MIBC patients. Survival analysis showed that the signature
was associated with the OS, PFS, and DFS of MIBC patients
and can serve as an independent factor in predicting the sur-
vival of MIBC patients. In addition, a significant difference
was found between the high- and low-risk groups for the
molecular subtype. Therefore, MIBC patients with a basal
molecular type may indicate high-risk scores and poor sur-
vival outcomes. Previous studies also demonstrated that the

expression of IAGs, such as LAG3, PD-L1, CD3, and IL22,
was closely related to the prognosis of different subtypes of
MIBC [21–23]. Furthermore, a prognostic nomogram inte-
grated with the IAG signature risk score and clinicopatho-
logic features was established, which could superiorly
monitor the prognosis of MIBC patients. Previous studies
showed that immune cells were correlated with the progno-
sis, metastasis, and immune escape of cancers [24–26].
Therefore, we estimated the relationship between the abun-
dance of six types of tumor-infiltrating immune cells (B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells) and the signature risk score in MIBC. The
result revealed that the risk score was positively related to
the infiltration of macrophages and dendritic cells. Macro-
phages, especially M2 tumor-associated macrophages, can
promote the invasion, metastasis, carcinogenesis of cancers,
and dendritic cells that can mediate the antitumor immune
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response of BC [27–29]. Thus, AHNAK and NR2F6may pro-
mote the progression of MIBC by mediating the number of
macrophages and dendritic cells in the microenvironment
of MIBC.

It is worth noting that these two IAGs had participated in
different immune pathways to influence the prognosis of
tumors. NR2F6, an orphan nuclear receptor, regulates vari-
ous biological and embryological processes, such as cellular
differentiation and organogenesis [30, 31]. In immune cells,
it contributes to regulating the expression of cytokines and
it serves as a negative regulator in the development of T cells
[32–34]. In addition, NR2F6 was associated with the expres-

sion of programmed cell death-1 (PD-1), programmed cell
death ligand-1 (PD-L1), and cytotoxic T lymphocyte-
associated protein 4 (CTLA-4), and it was considered a
potential target for immunotherapy [35–37]. NR2F6 was also
defined as an intracellular immune checkpoint in tumor-
infiltrating T cells and is significantly related to the survival
outcomes of numerous cancers, such as head and neck squa-
mous cell carcinoma, early-stage cervical cancer, and colon
cancer [38–40]. Furthermore, overexpression of NR2F6 can
promote the chemoresistance of epithelial ovarian cancer
by activating the Notch3 signaling pathway [41]. AHNAK,
also known as desmoyokin [42], is a large protein that was
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Figure 8: Association between the IAG signature risk score and immune cell infiltration in the microenvironment of MIBC. The results
revealed that the risk score was positively related to the infiltration of macrophages (a) and dendritic cells (b). However, the risk score was
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originally identified as a desmosomal plaque protein found at
the periphery of the cytoplasmic plaque of desmosomes in
the stratified squamous epithelia [43]. AHNAK has been
previously reported to be expressed in several intracellular
locations, including the plasma membrane, cytoplasm, and
nucleus [44]. Previous studies have indicated that AHNAK
has participated in several important physiological activities,
such as cardiac L-type Ca2+ channel function [45], neuronal
cell differentiation, and calcium signaling in T cells [46, 47].
In recent years, it has been demonstrated that AHNAK serves
as a novel prognostic biomarker in different types of cancer,
such as pancreatic ductal adenocarcinoma, triple-negative
breast cancer, and BC [48–50]. Moreover, AHNAK also
correlated with the progression, migration, and invasion of
cancers [51–53]. Sohn et al. showed that AHNAK can pro-
mote the metastasis of tumors through transforming growth
factor-β-mediated epithelial-mesenchymal transition [54].
However, a study suggested that AHNAK can act as a tumor
suppressor that mediates the negative regulation of cell
growth via the modulation of the TGFβ/Smad signaling
pathway [55]. Therefore, the precise molecular mechanisms
of AHNAK in MIBC still needed to be elucidated. In our
study, the AUC of the signature is 0.695, and the signature
was positively related to the infiltration of macrophages and
dendritic cells in MIBC. Therefore, we suggested that the
IAG signature could not only predict the prognosis of MIBC
patients but also reflect the immune status of MIBC patients.
However, there are several limitations to our research. Firstly,
this is a retrospective study. Therefore, we could not obtain
the complete information of MIBC patients. Secondly, our
findings need to be further validated in other independent
cohorts to validate the robustness of the IAG-based signa-
ture. Thirdly, all the analyses are descriptive, and further
experimental studies are needed to investigate the potential
role of these IAGs in predicting the prognosis, especially
response to immunotherapy for MIBC.

In conclusion, we established and verified a novel IAG-
based signature that could reflect the prognosis of MIBC
based on transcriptomics and proteomics data and might
reflect the status of the immune microenvironment of MIBC
patients. Further studies in more independent clinical
cohorts and further experimental exploration of the prognos-
tic IAGs signature are needed.
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